Использование логических задач на занятиях по математике и во внеучебной деятельности
Ценность обучения математике, понятие логического мышления. Методы и приемы развития элементарных математических представлений и логического мышления у дошкольников. Логические приемы умственных действий. Применение математических знаний в жизни.
Рубрика | Педагогика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 17.03.2015 |
Размер файла | 22,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ
«Ангарский педагогический колледж»
КОНТРОЛЬНАЯ РАБОТА
по МДК 03.04 «Теория и методика математического развития»
Тема: Использование логических задач на занятиях по математике и во внеучебной деятельности
Хабибуллиной Елены Владимировны
Специальность «Дошкольное образование»,
Руководитель: Ажеева Л.В.,
преподаватель методики математического развития
Ангарск 2015
Содержание:
Введение
Использование логических задач на занятиях по математике и во внеучебной деятельности
Заключение
Список литературы
Введение
Ценность обучения вообще и математики в частности в настоящий период объясняется не только тем, что на математике мы развиваем математические знания, на развитии речи -- речевые, на изодеятельности-художественные, а тем, что используем эти знания не только для математики, но и для общего интеллектуального развития детей. К таким общим интеллектуальным способностям психологи относят логические операции: анализ, сравнение, абстрагирование, обобщение, классификация, сериация.
Для решения такой важной задачи, как развитие логического мышления у дошкольника, необходимо умело осуществлять подбор средств, методов и приёмов. Использование логических игр, задач, упражнений, моделей, таблиц, схем помогает разнообразно и целенаправленно с постепенным усложнением проводить данную работу.
Понимая то, что нужно развивать логическое мышление, не каждый педагог знает, как это делать, с чего начать.
В процессе решения проблемы вначале нужно глубоко освоить то, что уже имеется в науке, в педагогике, методике, психологии о развитии логического мышления. Сейчас из всего многообразия литературы очень сложно отобрать самое важное, найти из разнообразных источников необходимое, выстроить линию усложнения и получить желаемые результаты. математика логический мышление дошкольник
Использование логических задач на занятиях по математике и во внеучебной деятельности.
Логические задачи прежде всего развивают логическое мышление, для этого нужно:
1. Изучить и выстроить систему логических игр и упражнений, обеспечивающих возможность педагогу управлять развитием логических операций.
2. Разработать цикл математических занятий, в содержании которых в равной степени решались бы не только дидактические (чему учить), но и развивающие задачи.
3. Путём психолого-педагогического мониторинга (отслеживания) проанализировать развивающий эффект экспериментальных занятий.
4. Создать систему наглядно-дидактических средств и методическое обеспечение к проведению математических занятий с систематическим использованием логических игр, упражнений, заданий поискового, творческого характера.
Что же такое логическое мышление?
В результате логического мышления человек приходит к правильным выводам, суждениям. Надо ли это дошкольникам? Способен ли ребёнок старшего дошкольного возраста овладеть данной формой мышления?
В результате многочисленных дискуссий, научных споров, учёные пришли к выводу, что на современном этапе формирование логического мышления доступно детям старшего дошкольного возраста.
Р. С. Немов называет данный уровень -- «теоретическое мышление» -- это такое мышление, пользуясь которым, человек в процессе решения задач, обращается к понятиям, выполняет действия в уме, не имея дела с опытом, получаемым при помощи органов чувств. Это широко используется в технологии ТРИЗ (теория решения изобретательских задач).
Можно ли взрослому человеку построить осмысленные, логически выдержанные доказательства, если человек не владеет способностями сравнивать, соотносить, классифицировать и т.д. Я думаю, конечно нет. Поэтому в разной литературе и подчёркивается необходимость формирования у детей логических операций: анализ, сравнение, абстрагирование, обобщение, классификация, сериация.
Можно ли не осознав линий усложнения достигнуть успеха? Конечно же нет, но как это можно сделать?
1. Постепенное увеличение количества объектов, которые даны в задании на сравнение, сопоставление, выделение закономерностей.
2. Постепенное увеличение количества деталей в предметах. предъявленных для анализа, сравнения, выделения, связей, закономерностей.
3. Перевод детей от решения логических задач и упражнений на предметном содержании к решению словесных логических задач.
4. Осуществление постепенного перехода от решения детьми готовых логических задач и упражнений к творческому самостоятельному составлению детьми логических задач, упражнений, вопросов,
5. Обеспечение в работе переноса усвоенных детьми математических знаний, интеллектуальных умений на решение жизненно важных задач. Чтобы изученные математические знания дети могли применить в жизни, видеть аналогичное содержание.
Чтобы развивать логическое мышление можно использовать разные средства. Однако учитывая тему, я постараюсь обосновать такое средство, о котором говорю -- это логические упражнения, задачи, задания, а чтобы их использовать необходимо было сформировать логические операции.
Логических задач существует очень много: алгоритмические, графические, комбинаторные, лабиринтные, аналитические, сказочные, сюжетные, на сравнение, сопоставление, на отрицание, на замещение, на обобщение. Все они направлены на развитие умения мыслить последовательно. При решении всех этих задач первичным является анализ и сравнение.
Анализ можно развивать, когда мы увеличиваем объём свойств, по которым сравниваем предметы, или количество предметов данных для анализа.
Ребенок должен использовать умения сравнивать, классифицировать, анализировать и обобщать результаты своей деятельности.
Логические приемы умственных действий - сравнение, обобщение, анализ, синтез, классификация, сериация, аналогия, систематизация, абстрагирование - в литературе также называют логическими приемами мышления. Развивать логическое мышление дошкольника целесообразнее всего в русле математического развития.
Сериация - построение упорядоченных возрастающих или убывающих рядов по выбранному признаку. Классический пример сериации: матрешки, пирамидки, вкладные мисочки и т. д.
Анализ - выделение свойств объекта, или выделение объекта из группы, или выделение группы объектов по определенному признаку.
Синтез - соединение различных элементов (признаков, свойств) в единое целое. В психологии анализ и синтез рассматриваются как взаимодополняющие друг друга процессы (анализ осуществляется через синтез, а синтез - через анализ).
Психологически способность к синтезу формируется у ребенка раньше, чем способность к анализу. То есть, если ребенок знает, как это было собрано (сложено, сконструировано), ему легче анализировать и выделять составные части. Именно поэтому столь серьезное значение уделяется в дошкольном возрасте деятельности, активно формирующей синтез, - конструированию.
Сначала это деятельность по образцу, то есть выполнение заданий по типу "делай как я". На первых порах ребенок учится воспроизводить объект, повторяя за взрослым весь процесс конструирования; затем - повторяя процесс построения по памяти, и, наконец, переходит к третьему этапу: самостоятельно восстанавливает способ построения уже готового объекта (задания вида "сделай такой же"). Четвертый этап заданий такого рода - творческий: "построй высокий дом", "построй гараж для этой машины", "сложи петуха". Задания даются без образца, ребенок работает по представлению, но должен придерживаться заданных параметров: гараж именно для этой машины.
Для конструирования используются любые мозаики, конструкторы, кубики, разрезные картинки, подходящие этому возрасту и вызывающие у ребенка желание возиться с ними.
Сравнение - логический прием умственных действий, требующий выявления сходства и различия между признаками объекта (предмета, явления, группы предметов).
Показателем сформированности приема сравнения будет умение ребенка самостоятельно применять его в деятельности без специальных указаний взрослого на признаки, по которым нужно сравнивать объекты.
Классификация - разделение множества на группы по какому-либо признаку, который называют основанием классификации. Классификацию можно проводить либо по заданному основанию, либо с заданием поиска самого.
Следует учитывать, что при классификационном разделении множества полученные подмножества не должны попарно пересекаться и объединение всех подмножеств должно составлять данное множество. Иными словами, каждый объект должен входить только в одно множество и при правильно определенном основании для классификации ни один предмет не останется вне определенных данным основанием групп.
Классификацию с детьми дошкольного возраста можно проводить:
- по названию (чашки и тарелки, ракушки и камешки, кегли и мячики и т. д.);
- по размеру (в одну группу большие мячи, в другую - маленькие, в одну коробку длинные карандаши, в другую - короткие и т. д.);
- по цвету (в эту коробку красные пуговицы, в эту - зеленые);
- по форме (в эту коробку квадраты, а в эту - кружки; в эту коробку - кубики, в эту - кирпичики и т. д.);
- по другим признакам нематематического характера: что можно и что нельзя есть; кто летает, кто бегает, кто плавает; кто живет в доме и кто в лесу; что бывает летом и что зимой; что растет в огороде и что в лесу и т. д.
Обобщение - это оформление в словесной (вербальной) форме результатов процесса сравнения. Обобщение формируется в дошкольном возрасте как выделение и фиксация общего признака двух или более объектов. Обобщение хорошо понимается ребенком, если является результатом деятельности, произведенной им самостоятельно, например классификации: эти все - большие, эти все - маленькие; эти все - красные, эти все - синие; эти все - летают, эти все - бегают и др.
Таким образом, за два года до школы можно оказать значимое влияние на развитие математических способностей дошкольника.
Вторая линия усложнения анализа по глубине, когда от анализа и сравнения внешним, не всегда существенным признакам, переводим детей к сравнению по существенным (родовым и видовым признакам).
Например: Сравните два кубика. Что можно сказать? Чем они похожи, чем о отличаются? (отличаются цветом? размером? материалом? а похожи формой) А теперь один из кубиков оставляем, а вместо другого кубика буду брать равные предметы каждый раз сравнивая. (яблоко, вата, стекло, вода, гирька…). Чем больше брать материалов, тем больше свойств будем обнаруживать.
Чтобы учить анализировать необходимо формировать и развивать способность к анализу. Таким действием является операция -- разбиение,
Разбиение -- прообраз операции классификации, а чтобы обучать классификации необходим анализ, сравнение. Следовательно, формирование любой логической операции идёт не отдельно, изолированно, а параллельно с другими логическими операциями.
1 линия. 6 предметов легче разбить на части, чем 12.
2 линия. Составляем совокупности из таких предметов с разнообразными признаками, по которым отличаются предметы для классификации. Например: дано множество фигур. Необходимо произвести разбиение множества по форме, по величине, по цвету.
З линия. От классификации по внешним признакам мы переводим детей к классификации по существенным признакам (видового и родового значения). Например: зелёные растения и красные цветы. Разбиение идёт по цвету (эти-зелёные, а эти-красные, т.е по внешним признакам. Это-цветы, а это-деревья разбиение идёт по существенным признакам).
После этого мы работаем над тем, чтобы совершенствовать логические операции и на новом уровне решать математические задания.
Задачи на удаление лишнего предмета являются более простыми, поэтому их нужно не использовать первыми в обучении детей.
Задание с пересекающимися классами. Множество животных, множество деревьев, множество колючих предметов.
Работая над проблемой, широко использую метод моделирования, при решении логических задач и упражнений. В основе моделирования лежит принцип замещения (т. е. реальный предмет может быть замещён другим предметом, изображением, схемой, чертежом, графиком, т.е. образными, знаковыми, мысленными заместителями).
Предлагают детям ось с проставленными цифрами, 2-3 группы предметов изображенных на карточках от 5 до 10. Прошу сосчитать предметы изображённые на карточках и показать карточку с цифрой. Знакомлю с числовой осью и объясняю, что количество предметов необходимо отметить дугой.
В последствии ось можно использовать при решении задач.
Знакомят детей с моделью логического древа. Необходимо провести заблудившиеся цифры по нужным дорожкам.
Применяя метод моделирования, показываю полоску бумаги с написанными в ряд цифрами от 0 до 10 и круг в виде эллипса. Прошу расположить эллипс так, чтобы внутри оказались цифры меньше 5. Второй эллипс прошу наложить так, чтобы он охватывал все цифры больше 5. Продолжая задание можно предложить третий эллипс, который бы охватывал все цифры больше 2--х, но меньше 8.
Таким образом, дети видят пересекающиеся множества цифр, усваивая способ действия с математической моделью типа кругов Эйлера, что способствует умственному развитию детей. В качестве модели использую модель числа. Можно на полу выложить верёвки в виде 2--х пересекающихся кругов -- домиков. У каждого домика свой код (он может быть задан количеством предметов, примером, числом…) У детей числовая карточка. Задание: найди свой домик. Тем самым дети успешно овладевают математическими моделями и активной моделирующей деятельностью при формировании знаний о числе.
Используется метод «Моделирование маленькими человечками», где свойства, признаки предметов, явлений, рассматриваются с помощью моделей, которые помогают детям подчеркнуть скрытую от визуального восприятия сущность числа, и в свою очередь развивают интеллектуальные способности ребёнка.
Прежде чем ребёнок сможет образовывать понятие числа важно уловить принцип сохранения количествам. Таким образом, процесс формирования понятия о числе с одной стороны требует способности к обобщению, а с другой может быть успешно использован для развития важной операции.
Следующая серия логических задач на нахождение недостающей Фигуры. Эти задачи представляют определённую трудность. Очень много такого рода задач в книге «Игровые занимательные задачи для дошкольников» под редакцией Михайловой, «399 задач для развития интеллекта» и др. Эти задачи требуют доказательства.
Вывод: как только дети усвоили принцип решения задачи, они свободно могут доказывать свой ответ, а затем и составлять сами логические цепочки.
Разрушение квадрата, постепенный рост гусеницы.
Фигуры, изображения можно рисовать мелом на доске и предложить решить фронтально, где дети могут не повторять условия, достаточно в тетрадях нарисовать ответ. Можно пригласить ребёнка к доске, и попросить нарисовать правильный ответ и подробно рассказать о том, как он получен. Использовать раздаточные карточки одинаковые для всех, можно индивидуальные с учётом уровня развития ребёнка. Когда взрослые пытаются навязать ребенку математические понятия, он выучивает их только словесно. Настоящее понимание приходит только с его умственным ростом.
Действенным средством развития являются комбинаторные задачи. При решении этих задач формируются такие качества как гибкость, глубина сравнения. Выставляю карточки с цифрами 1,2,3 и прошу придумать разные двухзначные числа, разные комбинации из букв А, У, Х, из геометрических фигур, где дети комбинируют по цвету, по форме, по величине.
Развитию логических операций способствуют аналитические задачи на сравнение, на отрицание, на совмещение, на замещение, сюжетные, сказочные… Аналитические задачи требуют понимания глубокой логики в решении задачи.
В основе таких логических задач лежит такое свойство отношения величин, как транзитивность, (смысл-если первый член отношений сравним со вторым, а второй с третьим, то первый сравним с третьим).
К логическим задачам относятся и эвристические задачи, которые заставляют детей анализировать, сравнивать, абстрагировать, делать обобщения, выводы, строить свои умозаключения.
Наглядное иллюстрирование взаимно-обратных операций заставляет ребёнка применять рассуждение, т.е. логические средства исследования, способствующие развитию мыслительных операций.
Заключение
Кроме названных методов и приёмов часто используются проблемные ситуации, вопросы, задания поискового, творческого характера, лабораторные, экспериментальные работы.
Чтобы изученные математические знания дети могли применить в жизни, видеть аналогичное содержание.
Необходимо использовать в обучении детей такое нестандартное средство, как логические задачи, которые эффективно способствуют развитию способов их выполнения. Следовательно, существуют реальные возможности педагогического управления развитием логического мышления у ребенка.
Список литературы:
1. Венгер Л.А., Дьяченко О.М. Игры и упражнения по развитию умственных способностей у детей дошкольного возраста. -- М.: Просвещение, 1989. -- 224с.
2. Данилова В.В., Рихтерман Т.Д, Михайлова З.А. Обучение математике в детском саду -- М.: Издательский центр «Академия», 1997. -- 158с.
3. Дидактические игры и упражнения по сенсорному воспитанию дошкольников: Пособие для воспитателя детского сада. -- Под ред. Л. А. Венгера. 2-е изд., перераб. и доп.-- М.: Просвещение, 1998. -- 144с.
4. Люблинская А. А. Детская психология: учебное пособие для студентов педагогических ин-тов. -- М.: Просвещение, 1971. -- 415с.
5. Михайлова З.А. Математическое развитие дошкольников: Учебное пособие/ Сост. З.А. Михайлова и др. -- СПб.: ООО «Издательство «Детство-пресс», 2000. -- 160с.
6. Роговская Е.Б. Формирование представлений о числе и величине у детей дошкольного возраста в процессе моделирования / Е.Б. Роговская. -- М., 1986. -- 432с.
7. Смоленцева А.А., Суворова О.В. Математика в проблемных ситуациях для маленьких детей. -- СПб.:ООО «Издательство «Детство-пресс», 2004. -- 112с.
8. Тарунтаева Т.В. Развитие элементарных математических представлений дошкольников. -- М.: Просвещение, 1980. -- 64с.
Размещено на Allbest.ru
Подобные документы
Традиции математического образования в различные исторические эпохи, воспитательное значение предмета. Анализ психолого-педагогической и методической литературы по проблеме логического мышления школьника. Подбор задач для развития логического мышления.
дипломная работа [73,9 K], добавлен 07.12.2011Особенности мышления в детстве. Словесно-логическое мышление, его связь с предыдущим этапом. Формирование и развитие логической сферы дошкольников. Обучение математике в старшей группе детского сада. Педагогические возможности игры в развитии логического.
курсовая работа [44,5 K], добавлен 06.08.2010Понятие и содержание, а также особенности развития логического мышления младших школьников. Используемые в данном процессе педагогические методы и приемы. Средства развития логического мышления детей младшего школьного возраста на уроках математики.
дипломная работа [593,0 K], добавлен 18.09.2017Использование логических блоков с целью развития логико-математических представлений у детей. Общая характеристика системы игр, упражнений, направленных на развитие логического мышления детей. Методические рекомендации по организации игровой деятельности.
контрольная работа [13,5 K], добавлен 25.07.2010Формы формирования элементарных математических представлений у дошкольников. Роль различных анализаторов в развитии у дошкольников элементарных математических представлений. Конспекты уроков по формированию элементарных математических представлений.
курсовая работа [99,9 K], добавлен 10.07.2011Анализ учебной и учебно-методической литературы по геометрии. Методика решения задач на построение. Развитие логического мышления школьников в процессе обучения математике. Задачи проведения факультативных занятий. Методы геометрических преобразований.
дипломная работа [1,8 M], добавлен 24.06.2009Направления работы со старшими дошкольниками, включающие формирование представлений о числах и ознакомление с геометрическими фигурами. Условия обучения дошкольников математике. Влияние игры на формирование элементарных математических способностей.
реферат [55,2 K], добавлен 03.12.2010Мыслительные процессы, суждение и умозаключение. Усвоение понятий, решение мыслительных задач. Виды мышления, логическое мышление и актуальность проблемы его развития у учащихся. Возможности применения математических игр для развития логического мышления.
дипломная работа [2,3 M], добавлен 15.06.2010Характеристика методов обучения дошкольников. Использование разнообразных методов и приемов развивающего обучения на занятиях по математике в детском саду. Приёмы обучения дошкольников. Формирование у детей элементарных математических представлений.
реферат [27,9 K], добавлен 05.06.2015Особенности развития логического мышления младших школьников. Разработка комплекса заданий по математике, направленных на развитие логического мышления младших школьников. Методические рекомендации и результаты констатирующего, формирующего эксперимента.
курсовая работа [1,1 M], добавлен 30.03.2016