Основы формирования вычислительных навыков у детей с нарушением интеллекта
Специфика формирования математических представлений и знаний у детей с нарушенным интеллектом. Разработка системы дидактических игр для формирования вычислительных навыков у учащихся начальных классов школы VIII вида с использованием дидактических игр.
Рубрика | Педагогика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 22.11.2012 |
Размер файла | 64,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Основы формирования вычислительных навыков у детей с нарушением интеллекта
Содержание
Ведение
Глава 1. Теоретические основы формирования вычислительных навыков у учащихся начальных классов школы VIII вида с использованием дидактических игр
1.1 Значение формирования математических представлений у детей
1.2 Психолого-педагогическая характеристика детей с нарушением интеллекта и особенности усвоения ими математических знаний
1.3 Использование дидактических игр при формировании вычислительных навыков у учащихся младшего школьного возраста с нарушениями интеллекта
Глава 2. Изучение формирования вычислительных навыков у учащихся младшего школьного возраста с нарушениями интеллекта
2.1 Методика изучения чисел в пределах первого десятка
2.2 Система дидактических игр на формирование вычислительных навыков у учащихся младшего школьного возраста с нарушениями интеллекта
Заключение
Список использованной литературы
Введение
математический навык дети игра
Актуальность исследования. Добиться овладения учащимися с нарушением интеллекта доступных математических знаний, умений и навыков, необходимых в повседневной жизни и в будущей профессии, так прочно, чтобы они стали достоянием учащихся на всю жизнь-главная задача обучения математике.
В специальных исследованиях В.А. Крутецкого показано, что для творческого овладения математикой как учебным предметом необходима способность к формализованному восприятию математического материала (схватыванию формальной структуры задачи), способность к быстрому и широкому обобщению математических объектов, отношений, действий, способность мыслить свернутыми структурами (свертывание процесса математического рассуждения), гибкость мыслительных процессов, способность к быстрой перестройке направленности мыслительного процесса, математическая память (обобщенная память на математические отношения, методы решения задач, принципы подхода к ним) [5].
Именно эти способности, необходимые для успешного овладения математическими знаниями, у учащихся школы VIII вида развиты чрезвычайно слабо. Известно, что математика является одним из самых трудных предметов для этой категории учащихся.
Следует отметить, что для детей с нарушением интеллекта характерна конкретность мышления, слабость регулирующей роли мышления, ее некритичность [10].
Наблюдаются недостатки памяти, причем эти недостатки касаются всех видов запоминания: непроизвольного и произвольного, кратковременного и долговременного. Они распространяются на запоминание как наглядного, так и словесного материала, что не может не сказаться на успеваемости.
Внимание детей характеризуется неустойчивостью, повышенной отвлекаемостью, недостаточной сконцентрированностью на объекте. Наблюдается сравнительно низкий уровень восприятия. Об этом свидетельствует прежде всего недостаточность, ограниченность, фрагментарность знаний детей об окружающем мире [20].
Обучая математике учащихся вспомогательных школ, надо учитывать, что усвоение необходимого материала не должно носить механического заучивания и тренировок.
Знания, получаемые учениками, должны быть осознанными. От предметной наглядной основы, следует переходить к формированию доступных математических понятий. Вести учащихся к обобщениям и на их основе выполнять практические работы.
Многие ученые [А.А. Хилько, А.Н. Лященко, М.И. Согатов и др.] убедительно показывают необходимость заданий репродуктивного характера для воспитания уверенности в самостоятельных действиях и формированию прочных знаний и умений.
Однако по мере развития и коррекции познавательных способностей школьников показана необходимость заданий, требующих самостоятельного поиска, умозаключений, переноса знаний в новые и нестандартные ситуации, а также заданий практического характера (несложное моделирование, дидактические игры, экскурсии и т.д.) [16].
В своих исследованиях Ю.Ю. Помпутис пришел к выводу, что когда действия учеников мотивированы, когда они могут полученные на уроках знания применять в своей бытовой или трудовой деятельности, качество усвоения математического материала возрастает [21].
Поиски наиболее эффективных путей коррекции дефектов детей с нарушением интеллекта происходили во все времена. Актуальность этой проблемы не уменьшилась и в настоящее время, так как ее дальнейшая разработка служит основой совершенствования процесса обучения учащихся во вспомогательной школе [9].
Исходя из вышеперечисленных фактов, мы сформулировали тему нашего исследования: «Формирование вычислительных навыков у учащихся начальных классов школы VIII вида с использованием дидактических игр».
Объект исследования: особенности математических знаний у учащихся младших классов специальной (коррекционной) школы VIII вида.
Предмет исследования: формирование вычислительных навыков у учащихся начальных классов школы VIII вида с использованием дидактических игр.
Цель исследования: разработать систему дидактических игр на формирование вычислительных навыков у учащихся начальных классов школы VIII вида с использованием дидактических игр.
Задачи исследования:
1. Определить степень разработанности проблемы в теории и практики специальной педагогики.
2. Выявить особенности формирования математических представлений и знаний у детей с нарушенным интеллектом.
3. Разработать систему дидактических игр на формирование вычислительных навыков у учащихся начальных классов школы VIII вида с использованием дидактических игр.
Глава 1. Теоретические основы формирования вычислительных навыков у учащихся начальных классов школы VIII вида с использованием дидактических игр
дидактический игра математический дети
1.1 Значение формирования математических представлений у детей
Основные задачи специальной (коррекционной) школы VIII вида -- максимальное преодоление недостатков познавательной деятельности и эмоционально-волевой сферы умственно отсталых школьников, подготовка их к участию в производительном труде, социальная адаптация в условиях современного общества. При определении задач обучения математике учащихся школы VIII вида необходимо исходить из этих главных задач [15].
Добиться овладения учащимися системой доступных математических знаний, умений и навыков, необходимых в повседневной жизни и в будущей профессии, так прочно, чтобы они стали достоянием учащихся на всю жизнь, -- главная общеобразовательная задача обучения математике [24].
За период обучения в школе VIII вида учащиеся должны получить следующие математические знания и практические умения:
а) представления о натуральном числе, нуле, натуральном ряде чисел, об обыкновенных и десятичных дробях;
б) представление об основных величинах (длине отрезка, стоимости, массе предметов, площади фигур, емкости и объеме тел, времени), единицах измерения величин и их соотношениях;
в) знание метрической системы мер, мер времени и умение практически пользоваться ими;
г) навыки простейших измерений, умение пользоваться инструментами (линейкой, мерной кружкой, весами, часами и т.д.);
д) умение производить четыре основных арифметических действия с многозначными числами и дробями;
е) умение решать простые и составные (в 3--4 действия) арифметические задачи;
ж) представление о плоскостях и объемных геометрических фигурах, знание их свойств, построение этих фигур с помощью чертежных инструментов (линейки, циркуля, чертежного угольника, транспортира) [10].
Обучая математике учащихся вспомогательных школ, надо учитывать, что усвоение необходимого материала не должно носить характера механического заучивания и тренировок. Знания, получаемые учениками, должны быть осознанными. От предметной, наглядной основы следует переходить к формированию доступных математических понятий, вести учащихся к обобщениям и на их основе выполнять практические работы.
Учащиеся школы VIII вида должны овладеть некоторыми теоретическими знаниями, на основе которых более осознанно формируются практические умения. Это относится в первую очередь к овладению свойствами натурального ряда чисел, закономерностями десятичной системы счисления, свойствами арифметических действий, существующими между ними связями, отношениями, зависимостями [3].
В процессе обучения математике ставится задача применения полученных знаний в разнообразных меняющихся условиях. Решение этой задачи позволит преодолеть характерную для умственно отсталых школьников косность мышления, стереотипность использования знаний. Успешность решения этой задачи во многом зависит от выбора методов и приемов обучения, их целесообразного сочетания и правильности использования в учебном процессе. Если учитель будет прибегать к «натаскиванию» учащихся в решении задач одного и того же вида, пользоваться однотипными формулировками или вопросами, то это может привести к формализму в знаниях, видимости знаний [7].
Математика в школе VIII вида решает одну из важных специфических задач обучения учеников с нарушением интеллекта -- преодоление недостатков их познавательной деятельности и личностных качеств.
Математика как учебный предмет содержит необходимые предпосылки для развития познавательных способностей учащихся, коррекции интеллектуальной деятельности и эмоционально-волевой сферы.
Формируя у умственно отсталых учащихся на наглядной и наглядно-действенной основе первые представления о числе, величине, фигуре, учитель одновременно ставит и решает в процессе обучения математике задачи развития наглядно-действенного, наглядно-образного, а затем и абстрактного мышления этих детей [16].
На уроках математики в результате взаимодействия усилий учителя и учащихся (при направляющем и организующем воздействии учителя) развивается элементарное математическое мышление учащихся, формируются и корригируются такие его формы, как сравнение, анализ, синтез, развиваются способности к обобщению и конкретизации, создаются условия для коррекции памяти; внимания и других психических функций.
В процессе обучения математике развивается речь учащихся, обогащается специфическими математическими терминами и выражениями их словарь. Учащиеся учатся комментировать свою деятельность, давать полный словесный отчет о решении задачи, выполнении арифметических действий или задания по геометрии. Все это требует от учеников больше осознанности своей деятельности, их действия приобретают обобщенный характер, что, безусловно, имеет огромное значение для коррекции недостатков мышления умственно отсталых школьников [2].
Обучение математике организует и дисциплинирует учащихся, способствует формированию таких черт личности, как аккуратность, настойчивость, воля, воспитывает привычку к труду, желание трудиться, умение доводить любое начатое дело до конца.
На уроках математики в процессе выполнения практических упражнений (лепка, обводка, штриховка, раскрашивание, вырезание, наклеивание, изменение, конструирование и др.) корригируются недостатки моторики ребенка. Обучение математике в школе VIII вида способствует решению и воспитательных задач.
Материал арифметических задач, заданий по нумерации и другим темам содержит сведения о развитии промышленности, сельского хозяйства, строительства в нашей стране. Это расширяет кругозор учеников, способствует воспитанию любви к своей Родине [11].
На уроках математики необходимо привлекать знания, полученные учащимися на уроках естествознания, географии, истории, рисования, черчения, труда, физкультуры и других предметов. Сведения из этих дисциплин смогут служить материалом для составления арифметических задач, числовых выражений. Например, знание дат исторических событий, протяженности границ нашей Родины и других стран, длины рек, высоты гор, площадей, занимаемых государствами, морями, озерами, урожайности культурных растений, надоев молока, средней массы животных, расхода материала на то или иное изделие, размеров изготовляемых изделий на уроках труда, времени, затраченного на их изготовление, и т.д. может служить прекрасным материалом для составления арифметических задач и примеров, сравнения и анализа чисел и для других упражнений на уроках математики [11].
На уроках математики учащиеся знакомятся с геометрическими фигурами: точкой, прямой линией, отрезком, кругом, четырехугольником, прямоугольником, квадратом, параллелограммом, ром бом, треугольником. На уроках изобразительного искусства учащиеся закрепляют, уточняют представления о геометрических фигурах, учатся их изображать. Например, в 1-м классе они рисуют геометрический орнамент по образцу, по опорным точкам, по трафарету (узор в полосе из квадратов и кругов). Предварительно дети должны вспомнить названия геометрических фигур, выделить их из ряда других фигур сначала по образцу, а затем по названию, проанализировать каждую фигуру, выделяя ее признаки: цвет, размер, форму, расположение на плоскости (листе бумаги). На этом примере видно, что знания, полученные на уроках математики в 1-м классе о геометрических фигурах, закрепляются на уроках изобразительного искусства, а главное, формируются практические умения изображения геометрических фигур [2].
Знания и умения, приобретенные учащимися на уроках изобразительного искусства, используются для лучшего усвоения математики.
Так, на уроках математики в 7-м классе учащиеся получают знания о симметричных фигурах, об оси симметрии. А подготовительная работа к усвоению этих знаний ведется уже на уроках рисования в 3--4-х классах при изображении плоских предметов симметричной формы с применением осевой линии: молотка, доски для резания овощей, детской лопатки, теннисной ракетки (3-й класс), вымпела с изображением ракеты, бабочки (4-й класс). Используя эти умения учащихся и их наблюдения симметричных фигур, а также умение их изображать, легко можно дать знания об оси симметрии и симметричных предметах [2].
На уроках географии при изучении отдельных тем, например «Масштаб», «План», учитель широко может использовать знания черчения, математики (при определении периметра, площади, использовании единиц измерения и их соотношений).
На уроках истории учитель расширяет и уточняет временные представления учащихся, а также использует их умения в решении задач на время для вычисления продолжительности и удаленности исторических событий. Последние приобретают большую конкретность для учащихся, лучше соотносятся с определенным временем [18].
На уроках физкультуры учащиеся закрепляют знания о величинах (длине, массе). Величина находит здесь свое конкретное выражение особенно тогда, когда нужно пройти на лыжах, пробежать, проплыть то или иное расстояние, прыгнуть, преодолев определенную высоту или длину. Уроки физкультуры позволяют практически ощутить, осознать взаимозависимость между временем, расстоянием и скоростью, о которых они узнают на уроках математики.
Своеобразна связь обучения математике с русским языком. На уроках математики учитель решает задачу развития математической речи учащихся, обогащения ее математическим словарем (математическими терминами, выражениями). Опыт и наблюдения показывают, что точность, лаконичность математической речи положительно влияют на усвоение математических знаний, а умение описать (рассказать) ход решения задачи, числового выражения способствует сознательному выполнению действий. Учитель математики следит не только за правильностью решения задач и примеров, но и за грамотностью письма, правильным стилем при построении предложений [9].
На уроках русского языка необходимо закреплять написание числительных и других математических терминов и выражений.
Учитель математики следит на правильностью произношения звуков учащимися. Он должен поддерживать контакт с логопедами, учитывать работу логопеда, направленную на коррекцию дефектов речи, произношения, работать над автоматизацией поставленных звуков. В противном случае ученик будет считать, что следить за своей речью, за правильным произношением звуков и слов надо только на логопедических занятиях, а на других учебных предметах это делать необязательно [20].
Коррекционная школа VIII вида решает задачу взаимосвязи обучения и подготовки учащихся к труду таким образом, чтобы эти два процесса шли не параллельно, а были тесно связаны и обогащали друг друга.
Педагогические и психологические исследования показывают, что умственно отсталые школьники, даже обладая знаниями, не могут ими воспользоваться при решении трудовых задач, у них не возникает ассоциаций между определенными математическими знаниями, закономерностями и теми жизненными явлениями, с которыми они сталкиваются в процессе выполнения трудовых операций. Следовательно, задача и учителя математики и учителя труда -- создавать такие ситуации, в которых бы эти ассоциативные связи возникали. Процесс обучения математике следует строить так, чтобы знания, полученные на уроках труда, а также трудовой опыт учащихся использовались на уроках математики, повышали интерес учащихся к изучению этого предмета, показывали жизненную необходимость математических знаний [4].
Практические умения: измерительные, графические, конструктивные, вычислительные, предусмотрены программой по математике и находят самое широкое применение в любом виде труда, в любой профессии. Однако эти знания ученик сможет применить на уроках труда лишь в том случае, если и учитель математики, и учитель труда научат учащихся применять эти знания и будут включать их в жизненно-практические задачи.
Необходимо, чтобы учитель математики хорошо знал, какими профессиями овладевают учащиеся данного класса, в каких видах труда они участвуют, с какими орудиями труда, материалами они имеют дело, какими измерительными и чертежными инструментами пользуются, какие изделия изготовляют. Учителя математики должны знать, какие модели, таблицы, диафильмы, кинофильмы использует учитель профессионального труда и какие математические знания для их осмысления, понимания потребуются учащимся [13].
Изучив все это, т.е. очень подробно ознакомившись с программами по тем видам профессионального труда, которыми овладевают учащиеся класса, и с практическими работами в мастерских, учитель математики намечает, какие темы курса математики наиболее тесно связаны с трудом, как сделать, чтобы знания, полученные при изучении математики, подготовили учащихся к овладению трудовым процессом, сделали их труд более осмысленным.
Например, известно, что на уроках математики учащиеся знакомятся со всеми мерами длины. На уроках труда учитель по трудовому обучению должен показать учащимся практическое использование этих мер, ставить задачи, требующие выражения заданной величины в различных единицах измерения, требовать точности измерений, вырабатывать у учащихся навыки пользования измерительными инструментами.
В свою очередь учитель математики может использовать знания и опыт учащихся, полученные на уроках труда. Например, учитель спрашивает: «Какое изделие изготовляли на уроках труда? Из какого материала оно выполнено? Какова толщина листового металла? С помощью какого инструмента определяли толщину металла? Какую меру длины надо выбрать для определения толщины металла? В каких мерах производят измерения, когда снимают мерку для шитья юбки, блузки в швейной мастерской? В каких мерах производят измерения, когда делают совок в мастерской?» 16[].
На уроках слесарного дела учащиеся производят разметку и обработку деталей прямоугольной формы по заданным размерам. Учитель математики должен подготовить к этому учащихся теоретически: повторить с ними свойства квадрата и прямоугольника, правила измерения, единицы измерения длины и их соотношения. На уроках труда учитель трудового обучения учит школьников использовать полученные знания в новой ситуации, знакомит с новыми инструментами для разметки (чертилка, кернер, разметочный циркуль и др.), показывает, чем ученическая линейка отличается от складного метра [7].
На уроках слесарного дела учащиеся изготовляют предметы цилиндрической формы: детское ведро, лейку, масленку для жидкого масла. В этом случае они должны широко использовать свои знания о свойствах цилиндра, умения сделать развертку цилиндра, вычислить длину окружности основания. В свою очередь на уроках математики учитель требует от учащихся самостоятельно снять размеры с изготовленного на уроке труда изделия и определить расход материала на его изготовление с учетом припуска на фальц (швы). Можно предложить и такое задание: сделать расчет размеров и разметку изделия цилиндрической формы (ведро, лейка, картонный стакан) по заданному диаметру и высоте.
Вместо выражения «единицы измерения» в коррекционной школе следует употреблять слово «меры», так как учащиеся смешивают понятия: единицы -- первый разряд в десятичной системе счисления, единица -- первое число в последовательности числового ряда и единицы измерения.
В свою очередь преподаватели труда должны хорошо знать программу и учебники по математике и стараться использовать, закреплять и углублять математические знания, умения и навыки [6].
Однако для связи обучения математики с трудом недостаточно только изучения программы, необходимо взаимопосещение уроков, совместное их обсуждение, рассмотрение вопросов взаимосвязи обучения математике с профессионально-трудовым обучением на совместных методических объединениях учителей труда и математики.
1.2 Психолого-педагогическая характеристика детей с нарушением интеллекта и особенности усвоения ими математических знаний
Овладение даже элементарными математическими понятиями требует от ребенка достаточно высокого уровня развития таких процессов логического мышления, как анализ, синтез, обобщение, сравнение.
Исследования В.А. Крутецкого показали, что для творческого овладения математикой как учебным предметом необходима способность к формализованному восприятию математического материала (схватыванию формальной структуры задачи), способность к быстрому и широкому обобщению математических объектов, отношений, действий, способность мыслить свернутыми структурами (свертывание процесса математического рассуждения), гибкость мыслительных процессов, способность к быстрой перестройке направленности мыслительного процесса, математическая память (обобщенная память на математические отношения, методы решения задач, принципы подхода к ним) [5].
Именно эти способности, необходимые для успешного овладения математическими знаниями, у учащихся школы VIII вида развиты чрезвычайно слабо. Известно, что математика является одним из самых трудных предметов для этой категории учащихся. С одной стороны, это объясняется абстрактностью математических понятий, с другой стороны, особенностями усвоения математических знаний учащимися.
Успех в обучении математике школьников с нарушением интеллекта во многом зависит, с одной стороны, от учета трудностей и особенностей овладения ими математическими знаниями, а с другой -- от учета потенциальных возможностей учащихся. Состав учащихся школы VIII вида чрезвычайно разнороден, поэтому трудности и потенциальные возможности каждого ученика своеобразны. Однако можно усмотреть и некоторые общие особенности усвоения математических знаний, умений и навыков, которые являются характерными для всех учащихся с интеллектуальным недоразвитием. [6]
Здесь будут раскрыты только общие трудности усвоения математики, которые объясняются особенностями психофизического развития учащихся коррекционной школы. Трудности и особенности усвоения различных разделов математики (овладение нумерацией, арифметическими действиями, решением задач, геометрическими понятиями и т.д.) будут раскрыты в соответствующих главах при изложении частных вопросов методики математики.
Наблюдения и специальные исследования показывают, что узость, нецеленаправленность и слабая активность восприятия создают определенные трудности в понимании задачи, математического задания. Учащиеся воспринимают задачу не полностью, а фрагментарно, т.е. по частям, а несовершенство анализа и синтеза не позволяет эти части связать в единое целое, установить между ними связи и зависимости и, исходя из этого, выбрать правильный путь решения. [16]
Воспринимая задачу фрагментарно, ученик и решает ее на основе воспринятого фрагмента. Фрагментарность восприятия является одной из причин ошибочного вычисления значения числовых выражений, содержащих два действия вида.
Слабая активность восприятия приводит к тому, что учащиеся не узнают знакомые геометрические фигуры, если они даются в непривычном положении или их нужно выделить в предметах, найти в окружающей обстановке. Они не могут найти в задаче числовые данные, если они записаны не цифрами, а словами, выделить вопрос, если он стоит не в конце, а в начале или в середине задачи, и т.д. [11]
Трудности при обучении математике вызываются также несовершенством зрительных восприятий (зрительного анализа и синтеза) и моторики учащихся. Это проявляется в обучении письму вообще и цифр в частности. У школьников с нарушением интеллекта младших классов нередко наблюдается зеркальное письмо цифр.
Учащиеся часто путают цифры 3, 6 и 9, 2 и 5,7 и 8 и при чтении, и при письме под диктовку. Причиной слабого различения цифр 7 и 8 является, очевидно, и несовершенство слуховых восприятий: учащиеся не различают на слух слова семь -- восемь. Учащиеся нередко строят цифры, а не пишут: например, при написании цифры 1 сначала пишут вертикальную палочку, а потом к ней пристраивают крючочек справа, пишут цифру снизу вверх (не запоминают, с какого элемента надо начинать написание цифры). [16]
Затрудненность письма у некоторых учащихся усугубляется тремором (дрожанием) рук, параличами. Нарушение координации движений у отдельных учащихся нередко служит причиной очень сильного нажима при письме, который приводит к поломке карандаша и прорыву бумаги.
Несовершенство зрительных восприятий, трудности пространственной ориентировки приводят к тому, что учащиеся не видят строки и не понимают ее значения. Поэтому ученик может начать писать строчку цифр в левом верхнем углу тетради, а закончить ее в правом нижнем углу, т.е. располагает цифры по диагонали, также располагает и строчки примеров, не соблюдает высоту цифр, интервалов.
Письмо цифр, примеров из года в год совершенствуется, так как в процессе обучения корригируется моторика, зрительные восприятия. Однако и в старших классах еще наблюдаются случаи размашистого, неустойчивого почерка. Эта особенность некоторых умственно отсталых школьников затрудняет производить вычисления в столбик, так как такие ученики не соблюдают поразрядность в записи примеров, а отсюда ошибки в вычислениях. [19]
Несовершенство моторики школьников с нарушением интеллекта (двигательная недостаточность, скованность движений или, наоборот, импульсивность, расторможенность) создает значительные трудности в пересчете предметов: ученик называет один предмет, а берет или отодвигает сразу несколько предметов, т.е. называние чисел опережает показ или, наоборот, показ опережает называние чисел.
Известно, что у умственно отсталых школьников с большим трудом вырабатываются новые условные связи, особенно сложные, но, возникнув, они оказываются непрочными, хрупкими, а главное, недифференцированными. Слабость дифференциации нередко приводит к уподоблению знаний. Учащиеся быстро утрачивают те существенные признаки, которые отличают одну фигуру от другой, один вид задачи от другого, те признаки, которые позволяют различать числа, действия, правила и т. д. Уподобление наблюдается и у учащихся массовой школы, но это происходит реже, когда знания забываются, сглаживаются или плохо усвоены по той или иной причине. У умственно отсталых школьников наблюдается грубое уподобление. Например, получив задание найти похожие геометрические фигуры, учащиеся отбирают и квадраты, и прямоугольники, и треугольники; единицы длины они уподобляют единицам массы, стоимости, площади (расстояние измеряется килограммами, квадратными метрами: 100 кв. м=100 р.). Уподобляются задачи, в которых есть хоть какое-то внешнее сходство (простые задачи уподобляются сложным, и наоборот) и т.д. [18]
Причины уподобления знаний неоднородны. Одна из причин, как указывает Ж. И. Шиф, состоит в том, что приобретенные знания сохраняются неполно, неточно, объединение знаний в системы происходит с трудом, системы этих знаний недостаточно расчленены.
Другая причина слабой дифференцированности математических знаний кроется в отрыве математической терминологии от конкретных представлений, реальных образов, объектов, в непонимании конкретной ситуации задачи, математических зависимостей и отношений между данными, а также между данными и искомыми. Например, учащиеся не представляют себе реально таких единиц измерения, как километр и килограмм, а некоторое сходство в их звучании приводит к их уподоблению.
Трудности в обучении математике учащихся школы VIII вида обусловливаются косностью и тугоподвижностью процессов мышления, связанных с инертностью нервных процессов. Проявление этих процессов мышления умственно отсталых при обучении математике многообразно. [4]
Отмечается «застревание» на принятом способе решения примеров, задач, практических действий. С трудом происходит переключение с одной умственной операции на другую, качественно иную. Например, учащиеся, научившись складывать и вычитать приемом пересчитывания, с большим трудом овладевают приемами присчитывания и отсчитывания.
При вычислении значения числовых выражений, содержащих два разных действия, например сложение и вычитание, ученик, выполнив одно действие, не может переключиться на выполнение другого действия. [3]
Учащиеся школы VIII вида нередко записывают ответ первого примера в ответы всех последующих примеров, т.е. наблюдается явление персеверации
Недостатки мышления проявляются также в стереотипности ответов. Например, задание посчитать от 5 до 8 выполняется нередко умственно отсталым учеником на основе стереотипно заученного числового ряда. Он считает от 1 до 10 (1, 2, 3, .... 10). На вопрос учителя: «Сколько будет, если 2x4?» -- умственно отсталый ученик воспроизводит таблицу умножения числа 2. При этом он забывает, зачем он это делает, так как не удерживает в памяти задание, «теряет» его. Косность мышления проявляется в «приспосабливании» заданий к своим знаниям и возможностям. [7]
Эта особенность проявляется и при воспроизведении задач. Задачу на нахождение неизвестного компонента ученик воспроизводит как задачу на нахождение результата, т.е. более привычную. Например, задачу: «У девочки было 3 конфеты. Несколько конфет она съела, осталась у нее одна конфета. Сколько конфет съела девочка?» -- ученик 4-го класса воспроизводит так: «У Девочки было 3 конфеты, она съела одну конфету. Сколько конфет у нее осталось?» [15]
Тугоподвижность мышления умственно отсталых проявляется в «буквальном переносе» имеющихся знаний без учета ситуации, без изменений этих знаний в соответствии с новыми условиями. Преобразования и действия с числами, выраженными в мерах времени, они выполняют так же, как с числами, выраженными в метрической системе мер. Причина таких ошибок не только в незнании соотношения мер, но и в особенностях мышления учащихся: они редко подвергают задания предварительному анализу, с трудом актуализируют адекватные заданию знания.
«Буквальный перенос» наблюдается и при решении задач. Особенно часто это проявляется при переходе от решения простых задач к составным (во 2--3-х классах составная задача в два действия решается одним действием). В 4--5-х классах, когда большинство задач решается в 2--3 действия, учащиеся, наоборот, простые задачи решают двумя и даже тремя действиями, привнося лишние действия [12].
Несовершенство анализа приводит к тому, что умственно отсталые школьники сравнение задач, геометрических фигур, примеров, математических выражений проводят поверхностно, не проникая во внутренние связи и отношения. Например, если даны две задачи одного вида, но с различными ситуациями, умственно отсталые учащиеся не устанавливают их сходства. Ученик руководствуется при сравнении лишь внешними признаками, не проникая в математическую сущность задачи, не вскрывая отношений между числовыми данными [21].
Умственно отсталые учащиеся исходят при решении задач или выполнении заданий из несущественных признаков, руководствуются отдельными словами и выражениями или пользуются усвоенными ранее схемами-шаблонами. Это приводит к тому, что, не умея отойти от этих штампов, ученик нередко дополняет условие задачи, чтобы подвести ее под определенную, известную ему схему. Он вводит слова всего, осталось, стало, вместе и на их основе выбирает действия.
А вот пример сравнения геометрических фигур. «В чем различие квадрата и прямоугольника?» -- спрашивает учитель. «Они не похожи сторонами». -- «В чем их сходство?» -- «У них углы, стороны» (4-й класс). Нередко при сравнении наблюдается «соскальзывание» на несоотносимые элементы. «Эта лента длинная, а эта красная» [17].
При сравнении задач, числовых выражений, геометрических фигур дефекты мышления проявляются в трудностях перехода от выявления сходства к установлению на этой основе общности и от выявления различия к установлению своеобразия в геометрических фигурах: круге, квадрате, треугольнике и прямоугольнике. Ученики 1-го класса коррекционной школы не видят сходства. Например, Алик (8 лет 9 мес.) поочередно берет круг и треугольник, круг и прямоугольник, накладывает друг на друга и говорит: «Не похожи». Похожих фигур сам Алик не находит. Когда экспериментатор кладет перед ним квадрат и прямоугольник, то мальчик долго смотрит на них, кладет одну фигуру на другую, но сходства не видит. «Эта какая большая (прямоугольник), а эта квадратная. Не похожи» [22].
У умственно отсталых школьников снижена способность к обобщению. Это проявляется в трудностях формирования математических понятий, усвоения законов и правил. С трудом формируются понятия числа, счета, усваиваются закономерности десятичной системы счисления. Например, ученик 1-го класса коррекционной школы, умея пересчитывать палочки, нередко отказывается от пересчета шишек или других предметов, которые раньше не употреблялись как объекты счета. Затрудняет учащихся счет непривычно расположенных предметов (вертикально, вразброс, рядами). Это свидетельствует о том, что ребенок заучил названия числительных по порядку, однако понятия и навыки счета у него не сформированы [24].
Слабость обобщений проявляется в механическом заучивании правил, без понимания их смысла, без осознания того, когда их можно применить. Например, ученик знает переместительное свойство сложения, но при решении примеров его не использует.
Низкий уровень мыслительной деятельности школьников с нарушением интеллекта затрудняет переход от практических действий к умственным. В отличие от нормально развивающихся детей и детей с задержкой психического развития, для формирования у умственно отсталых учащихся представлений о числе, счете, арифметических действиях и др. требуется развернутость всех этапов формирования умственных действий.
Недостатки гибкости мышления проявляются в подборе примеров к правилам, при составлении задач: учащиеся нередко составляют задачи с одинаковой фабулой, повторяющимися глаголами, числовыми данными, вопросами и т.д. [21].
Школьники с нарушением интеллекта в силу неумения мыслить обратимо с большим трудом связывают взаимообратные понятия и, усвоив одно из них, могут не иметь представления о другом, обратном (много -- мало, вверху -- внизу и т.д.), не связывают их в пары, воспринимают обособленно, затрудняются в сравнении чисел, установлении отношений эквивалентности и порядка при изучении отрезков натурального ряда чисел.
У учащихся школы VIII вида имеют место недостатки и своеобразие общего речевого развития. В олигофренопсихологии отмечаются недостаточность и своеобразие их собственной речи, трудности в понимании обращенной к ним речи [3].
Бедность словаря, непонимание значения слов и выражений создают значительные трудности в обучении математике, особенно в обучении решению задач. Нередко учащиеся не решают задачу потому, что не понимают значения слов, выражений, предметной ситуации задачи, а также той математической «нагрузки», которую несут такие слова, как другой, второй, оба, каждый, столько же.
Бедность словаря проявляется и при составлении задач: учащиеся оперируют словами-штампами, не могут избежать слов-штампов в формулировке вопросов, заменяя специфические слова в вопросах общим словом сколько. [4]
Из-за слабости регулирующей функции речи ученику коррекционной школы трудно полностью подчинить свое действие словесному заданию. Например, задание посчитать до заданного числа или от заданного до заданного числа, несмотря на его правильное восприятие, нередко выполняется стереотипно -- ученик считает от 1 до 10 и обратно от 10 до 1.
Учащиеся школы VIII вида испытывают затруднения в использовании имеющихся знаний в новой ситуации, а также в практической деятельности. Причиной этого являются трудности переноса знаний без критического отношения к ним, без учета ситуации, трудности актуализации имеющихся знаний, а также, по выражению Ж.И. Шиф, отсутствие «гибкости ума», трудности обобщений при решении новых задач умственно отсталыми школьниками. Например, зная таблицу умножения, ребенок испытывает затруднения в ее использовании при решении примеров и задач в учебных мастерских. Ученик на уроке математики может хорошо ответить на вопросы, выявляющие знания соотношения мер длины, но быть беспомощным в учебной мастерской, когда 1 см 5 мм ему надо выразить в миллиметрах. Он может хорошо различать виды углов на моделях геометрических фигур, но не сможет выделить указанный угол на изделии (например, табурете). Ученик на уроке математики ответит таблицу деления на 2, но затрудняется, когда надо разделить на две равные части числа, полученные при снятии мерки в швейной мастерской [25].
Трудности в обучении математике учащихся школы VIII вида усугубляются слабостью регулирующей функции мышления этих детей. «Бездумным» подходом к выполнению любого задания объясняется и редкое использование рациональных приемов вычислений: округления, группировки. Многие трудности в обучении математике и многие ошибки в вычислениях при решении задач и при выполнении других заданий снимаются, если учащиеся умеют контролировать свою деятельность. Учащимся школы VIII вида свойственны некритичность в выполнении действий, слабость самоконтроля. Причиной этого является некритичность мышления умственно отсталых школьников. Они редко сомневаются в правильности своих действий, не проверяют ответов, не замечают даже абсурдных ошибок, например, таких, когда частное больше делимого или произведение меньше множимого. Требуется целая система наводящих вопросов, чтобы ученик почувствовал и осознал абсурдность ответов.
Некритичность мышления проявляется и при решении задач. Учащихся не смущает, что ответ часто не соответствует ни условию, ни вопросу задачи [11].
Некоторые учащиеся бывают не уверены в своих действиях, они часто обращаются к учителю за поддержкой, не пишут ответ пока не получат одобрения со стороны учителя. Без всякого критического обсуждения они могут тут же изменить ответ, решение задачи, не вдумываясь в то, что делают и нужно ли это. «А что тут нужно отнять, умножить?» -- спрашивает ученик и тут же исправляет действие.
У умственно отсталых учащихся, проучившихся некоторое время в массовой школе, наблюдается нередко отрицательное отношение к учению вообще и к математике в частности, как наиболее трудному учебному предмету. Объясняется это тем, что темп работы, содержание учебного материала были непосильны учащимся, а методы и приемы работы учителя не учитывали особенностей дефектов этих детей [7].
Для успешного обучения учащихся школы VIII вида математике учитель должен хорошо изучить состав учащихся, знать причины умственной отсталости каждого ученика, особенности его поведения, определить его потенциальные возможности, с тем чтобы наметить пути включения его во фронтальную работу класса с учетом его психофизических особенностей, степени дефекта. Это даст возможность правильно осуществить дифференцированный и индивидуальный подход к учащимся, наметить пути коррекционной работы, т.е. обеспечить их всестороннее развитие.
1.3 Использование дидактических игр при формировании вычислительных навыков у учащихся младшего школьного возраста с нарушениями интеллекта
Игра -- основная деятельность детей. Силой воображения, игровых действий, роли, способностью перевоплощаться в образ дети создают игру. В играх нет реальной обусловленности обстоятельствами, пространством, временем. Дети -- творцы настоящего и будущего. В этом -- обаяние игры. В каждую эпоху общественного развития дети живут тем, чем живет народ. Но окружающий мир воспринимается ребенком по-иному, чем взрослыми: ребенок -- «новичок», все для него полно новизны, значения; ребенок в игре делает «открытия» того, что давно известно взрослому.
Дети не ставят в игре каких-то иных целей, чем цель -- играть. Но было бы неправильно не учитывать обучающего и развивающего влияния игры и при сохранении в ней непосредственности жизни детей. [7]
В игре вырабатываются у ребят организационные навыки, развиваются выдержка, умение взвешивать обстоятельства и пр. Развивая мысль о необходимости широко использовать игру как средство воспитания, А.С. Макаренко обращал внимание родителей на то, что «воспитание будущего деятеля должно заключаться не в устранении игры, а в такой организации ее, когда игра остается игрой, но в игре воспитываются качества будущего работника и гражданина». Игра является средством воспитания, когда она включается в целостный педагогический процесс.
Руководя игрою, оказывая влияние е содержание, организуя жизнь; в игре, их взаимоотношения, воспитатель воздействует на все стороны личности ребенка: на чувства, волю, отношения, поступки и поведение в целом. Ценность игры как воспитательного искусства заключается и в том, что, оказывая воздействие на коллектив (грающих детей, педагог через коллектив оказывает воздействие на каждого из детей. Организуя жизнь детей в игре, воспитатель формирует не только игровые отношения, но и реальные, закрепляя полезные привычки в нормы поведения детей в разных условиях и вне игры. Таким образом, при правильном руководстве детьми игра становится школой воспитания.
Игра является и средством первоначального обучения, усвоения детьми «науки до науки». В игре они отражают окружающую жизнь и познают те или иные доступные их восприятию и пониманию факты, явления. Но дети даже старшего дошкольного возраста воспринимают лишь внешние стороны и в меньшей степени могут усвоить причины, связи Используя игру как средство ознакомления с окружающим миром, воспитатель имеет возможность направить внимание детей на те явления, которые ценны для расширения круга представлений. И вместе с тем он питает интерес детей, развивает любознательность, потребность и сознание необходимости усвоения знаний для обогащения содержания игры, а через игру, в процессе игры формирует умение распоряжаться знаниями в различных условиях. Руководя игрой, педагог воспитывает активное стремление детей что-то узнавать, искать, проявлять усилие и находить, обогащает духовный мир детей. А это все содействует умственному и общему развитию. [7]
Дидактическая игра - игра, специально предназначенная для реализации целей обучения. Практически во всех программах, действующих в детских учреждениях предусмотренные специально организованные дидактические игры. Кроме игровой деятельности, которая является ведущей в дошкольном возрасте, в старшем дошкольном возрасте появляется учебная деятельность. Дети пока еще только играют в учебную деятельность, и она не является лидирующей. Ведущей учебная деятельность станет только в младшем школьном возрасте. Смена ведущей деятельности у детей связана с возрастным кризисом (кризис 7 лет) и появлением психических новообразований, связанных с этим кризисом.
Как правило, дидактические игры очень широко используются в процессе школьного обучения.
Дидактическая игра - форма деятельности, направленная на реализацию конкретной цели обучения, воссоздающая, усваивающая или фиксирующая определенный способ действия, закрепленный в науке или культуре. Она обеспечивает познание и усвоение предметной или социальной действительности, а так же интеллектуальное, эмоциональное и нравственное развитие личности ребенка.
Дидактическая игра - специально организованная игра, выполняющая определенную дидактическую задачу, скрытую от ребенка в игровой ситуации за игровыми действиями.
Форма и вид дидактической игры полностью зависит от дидактической цели, которая решается в данной игре. Дидактическая игра может быть индивидуальной, парной, групповой. Дидактическая игра может быть использована на уроке, факультативном, коррекционном занятии во внеучебной, кружковой деятельности, как дополнительный или стимулирующий материал особенно для детей-игровиков в начальной школе.
Дидактическая игра может рассматриваться как средство развития личности.
Дидактическую игру иногда классифицируют как умственный вид детской игры, то есть игры, где содержание, методика и правила разрабатываются учителем или воспитателем для развития познавательной активности ребенка. Здесь важным моментом является принятие или непринятие целей правил и игры ребенком.
Дидактическая игра -- явление сложное, но в ней отчетливо обнаруживается структура, т. е. основные элементы, характеризующие игру как форму обучения и игровую деятельность одновременно. Один из основных элементов игры -- дидактическая задача, которая определяется целью обучающего и воспитательного воздействия. Познавательное содержание черпается из «Программы воспитания в детском саду».
Наличие дидактической задачи или нескольких задач подчеркивает обучающий характер игры, направленность обучающего содержания на процессы познавательной деятельности детей. Дидактическая дача определяется воспитателем и отражает его обучающую деятельность.
Структурным элементом игры является игровая задача, осуществляемая детьми в игровой деятельности. Две задачи -- дидактическая и игровая -- отражают взаимосвязь обучения и игры. В отличие от прямой постановки дидактической задачи на занятиях в дидактической игре она осуществляется через игровую задачу, определяет игровые действия, становится задачей самого ребенка, возбуждает желание и потребность решить ее, активизирует игровые действия.
Игровая задача и познавательная направленность предстоящего игрового действия иногда заложены в названии игры: «Узнаем, что в чудесном мешочке»; «Кто в каком домике живет?»; «Кто быстрее назовет предметы из бумаги, дерева, металла?» и т. д.
Дидактическая задача реализуется на протяжении всей игры через осуществление игровой задачи, игровых действий, а итог ее решения обнаруживается в финале. Только при этом условии дидактическая игра может выполнить функцию обучения и вместе с тем будет развиваться как игровая деятельность. [19]
Игровые действия составляют основу дидактической игры -- без них невозможна сама игра. Они являются как бы рисунком сюжета игры. Чем разнообразнее и содержательнее игровые действия, тем интереснее для детей сама игра и тем успешнее решаются познавательные и игровые задачи. Игровые действия иногда и не являются тождественными реальным: они раскрывают лишь как бы их внешнюю сторону даже при отражении реальных явлений и реальных действий. Игровым действиям детей нужно учить. Лишь при этом условии игра приобретает обучающий характер и становится содержательной. Обучение игровым действиям чаще всего не является прямым, а дается через пробный ход, через показ действия при раскрытии той или иной роли. В игровых действиях проявляется мотив игровой деятельности, активное желание решить поставленную игровую задачу. По своей сложности они различны и обусловлены сложностью познавательного содержания и игровой задачи.
Игровые действия -- это не всегда практические внешние действия, когда нужно что-то тщательно рассмотреть, сравнить, разобрать и др. Это и сложные умственные действия, выраженные в процессах целенаправленного восприятия, наблюдения, сравнения, припоминания ранее усвоенного, -- умственные действия, выраженные в процессах мышления.
Одним из составных элементов дидактической игры являются правила игры. Их содержание и направленность обусловлены общими задачами формирования личности ребенка и коллектива детей, познавательным содержанием, игровыми задачами и игровыми действиями в их развитии и обогащении. Правила содержат нравственные требования к взаимоотношениям детей, к выполнению ими норм поведения. В дидактической игре правила являются заданными. Используя правила, воспитатель управляет игрой, процессами познавательной деятельности, поведением детей. Правила игры имеют обучающий, организационный, дисциплинирующий характер, и чаще всего они разнообразно сочетаются между собой. Обучающие правила помогают раскрывать перед детьми, что и как нужно делать, они соотносятся с игровыми действиями, усиливают их роль, раскрывают способ действий. Правила организуют познавательную деятельность детей: что-то рассмотреть, подумать, сравнить, найти способ решения поставленной игрой задачи.
Организующие правила определяют порядок, последовательность игровых действий и взаимоотношений детей. В игре формируются игровые отношения и реальные отношения между детьми. Отношения в игре определяются ролевыми отношениями. Но иногда им не соответствуют реальные отношения и взаимоотношения между детьми: в игре по выполняемой роли дети доброжелательны, дружелюбны, вежливы, уступчивы и внимательны, а вне игры, в реальных отношениях, они иногда допускают грубость, жадность, завистливость, не проявляют дружеских отношений, заботы о товарище и др. [7]
Правила игры и должны быть направлены на воспитание положительных игровых отношений и реальных в их взаимосвязи. В этом их воспитательное воздействие. Нужно помнить, что усвоение и выполнение детьми правил в игре не происходит быстро и легко. Воспитатель должен учить детей выполнению правил, не перегружая ими игру, не слишком регламентируя действия детей, не ожидая скорых результатов. Дети часто нарушают правила не потому, что делают это сознательно, а потому что не знают, как выполнять, а иногда и забывают о них. Лучше не пожалеть времени на объяснение, как и почему, когда нужно выполнять правила, проверить понимание необходимости их усвоения, выразить уверенность в том, что дети будут все делать правильно, создать у них эмоционально-волевую готовность. Соблюдение правил в ходе игры вызывает необходимость проявления усилий, овладения способами общения в игре и вне игры и формирования не только зияний, но и разнообразных чувств, накопления добрых эмоций и усвоения традиций.
Подобные документы
- Формирования навыков сложения и вычитания в пределах 20 у учащихся начальных классов школы VIII вида
Теоретические основы формирования навыков сложения и вычитания в пределах 20 у учащихся начальных классов школы VIII вида. Дидактическая игра как средство обучения. Формирование навыков сложения и вычитания у учащихся младшего с нарушениями интеллекта.
дипломная работа [956,9 K], добавлен 09.11.2012 Психолого-педагогическая характеристика детей с нарушением интеллекта и особенности усвоения ими математических знаний. Изучение формирования вычислительных навыков в пределах пяти у младших школьников - детей с нарушениями интеллектуального развития.
курсовая работа [58,1 K], добавлен 09.11.2012Общая характеристика исследований в области формирования представлений о смысле арифметических действий у учащихся начальных классов. Проблема формирования вычислительных навыков у младших школьников. Задачи-ситуации и их использование на уроках.
курсовая работа [324,1 K], добавлен 26.01.2013Особенности приобретения знаний и памяти младших школьников. Методические основы формирования вычислительных навыков в первом классе. Разработка рекомендаций по развитию слуховой памяти у первоклассников. Средства обучения математике в начальных классах.
дипломная работа [106,3 K], добавлен 28.03.2015Исследование методики преподавания математики в начальной школе. Дидактическая игра и ее роль на уроках математики. Характеристика основных методов и приемов формирования вычислительных навыков младших школьников. Особенности дидактических игр "Спектра".
дипломная работа [1,3 M], добавлен 09.09.2017Серия задач и упражнений для изучения приемов устных вычислений, направленных на формирование вычислительных навыков в начальной школе. Использование дидактических игр и средств наглядности в процессе изучения математических примеров и упражнений.
курсовая работа [626,9 K], добавлен 15.09.2014Теоретические основы проблемы формирования вычислительных навыков у младших школьников посредством использования проблемных заданий на уроках математики. Понятие проблемного обучения. Опытно-экспериментальная работа по формированию вычислительных навыков.
курсовая работа [148,8 K], добавлен 12.08.2013Особенности овладения количественными представлениями дошкольниками с нарушением интеллекта. Коррекционно-педагогическая работа по формированию элементарных математических представлений. Применение сюжетно-дидактических игр с математическим содержанием.
дипломная работа [132,6 K], добавлен 13.10.2017Психолого-педагогическая характеристика учащихся с нарушением интеллекта. Методы формирования у них общетрудовых умений. Использование информационно-коммуникационных технологий как обучающего компонента на уроках труда для детей коррекционной школы.
дипломная работа [617,9 K], добавлен 06.10.2017Характеристика психофизических особенностей детей с нарушением интеллекта. Определение уровней усвоения математических навыков у учеников с нарушением интеллекта. Осуществление индивидуального подхода в изучении математики на уроках в школе VIII вида.
курсовая работа [39,6 K], добавлен 26.06.2011