Приемы введения и формирования математических понятий на уроках математики
Процесс формирования математических понятий на уроках математики, методика их введения. Практическое исследование введения и формирования математического понятия дроби на уроках математики: содержание и ход эксперимента, анализ полученных результатов.
Рубрика | Педагогика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 28.04.2012 |
Размер файла | 124,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
е) одна миллионная доля квадратного метра.
- Сколько минут: а) в трети часа;
б) в четверти часа;
в) в половине часа;
г) в десятой доли часа;
д) в двенадцатой доле часа;
е) в шестой доле половины часа?
- Сколько секунд:
а) в 5 минутах;
б) в четверти часа;
в) в одном часу;
г) в четверти минуты;
д) в трети минуты;
е) в половине минуты?
- Какую часть 1м3 составляет 1 см3? Какую часть 1 м2 составляет 1 см2?
- Какую долю составляют: а) сутки от года;
б) сутки от недели;
в) дециметр от метра;
г) 1 см3 от литра?
- Какую часть недели составляют: а) пять суток;
б) шесть суток?
- Сколько минут в часе? Какую часть составляют 1 мин., 7 мин., 15 мин.
- Сколько минут в ч.; в ч.; в ч.; в ч.; в ч.?
Были включены задания на определение понятия доли числа с помощью штриховки фигур, а именно, определение заштрихованной и незаштрихованной части фигуры.
Подбирались задания творческого характера:
- Изобразите квадрат со стороной 4 см и разделите его на 4 доли 3 разными способами.
- Начертите отрезок длиной 8 см. Отметьте цветным карандашом отрезка. Какая часть отрезка осталась неотмеченной?
- Придумайте пять дробей, у которых числитель на 3 меньше знаменателя. Запишите пять дробей, у которых числитель на 3 меньше, знаменателя. Запишите пять дробей, у которых числитель в 3 раза больше знаменателя.
- Назовите 3 правильные дроби, числитель которых больше, чем 100. Назовите 3 неправильных дроби, знаменатель которых больше, чем 200.
- Назовите 5 дробей, которые больше, чем .
Выводили задания на сравнение дробей:
- Расставьте в порядке возрастания дроби: . Расставьте эти дроби в порядке убывания.
- Замените звездочку знаком < или > в записях:
а) ; б) , в) , г)
- Какая из дробей больше:
а) или , б) или , в) или , г) или ?
- Какая из точек лежит левее на координатном луче: а) А () или В ();
б) М () или N ()?
- Верно ли, что: а) меньше ;
б) больше .
- Сравните: а) и , б) и , в) 1 и , г) и 1, д) и 0, е) и 0
Включались задания на знания правил чтения и записи дробей, правил чтения равенств и неравенств, содержащих дробные числа, выражений и уравнений, содержащих обыкновенные дроби:
- Прочитайте дроби: , ,,,,,
Назовите числитель и знаменатель каждой дроби.
- Запишите в виде обыкновенной дроби:
а) три шестых;
б) одна треть;
в) половина;
г) три четверти;
д) семь десятых;
е) одиннадцать сотых;
ж) одиннадцать сорок восьмых.
- Прочитайте дроби ,,,,,,,,,,. Назовите числитель и знаменатель.
- Какая из точек лежит левее на координатном луче:
а) А () или В (); б) А () или В ()?
- Верно ли, что:
а) меньше , б) больше ?
- Выполните действия:
а) + ; б) + ; в) + ; г) + ; д) х - ; е) - ;
ж) - ; з) -
- Решите уравнение: а) х - = ; б) - у = ; в) z + = ;
г) + p = .
Полезными были упражнения на запись в виде неправильной дроби числа:
- Напишите все неправильные дроби с числителем 5.
- При каких значениях будет неправильной дробью?
- Запишите пять дробей, у которых числитель в 3 раза больше знаменателя.
- Найдите все значения х, при которых дробь будет неправильной?
- Назовите 3 неправильные дроби, знаменатель которых больше, чем 200.
Для себя мы вынесли немало полезного в плане организации и проведении практического исследования введения и формирования математического понятия дроби на уроках математики. Таким образом, отмечая эффективность проведенных уроков, мы пришли к следующим результатам: повышение активности и заинтересованности детей на уроках математики, улучшение успеваемости и качества работ по математики.
После проведения формирующего эксперимента мы провели контрольный эксперимент, целью которого являлось выяснение эффективности использования практического исследования введения и формирования математического понятия дроби на уроках математики в 5 классах. Для этого мы провели аналогичную работу той, которая проводилась на этапе констатирующего эксперимента. Результаты мы поместили в таблицу.
В качестве контрольного эксперимента мы провели тестирование по предложенным диагностическим тестам Т.Д. Гончаровой «Обучение на основе технологии полного усвоения». Тесты включали задания на определение понятия доли числа с помощью штриховки, определение понятия обыкновенных дробей, правильных и неправильных дробей, усвоение способов нахождения дроби от числа и числа по его дроби, знание формул сложения и вычитания дробей с одинаковыми знаменателями.
Сравнительная характеристика уровня успешности при выполнении заданий, составленных на этапе контрольного эксперимента, отражена на диаграмме.
2.2 Анализ полученных результатов
По итогам эксперимента было проведено сопоставление данных констатирующего и контрольного эксперимента, показывающие, что число учащихся, справившихся с заданием и допустивших 1-2 ошибки, на контрольном этапе увеличилось. На основе полученных данных делаем вывод о том, что задания на формирующем этапе были посильны основному и продвинутому уровню учащихся, поэтому произошел переход из основного уровня в продвинутый.
При сопоставлении результатов констатирующего и контрольного эксперимента мы отметили значительный рост числа учащихся в экспериментальном 5 «А» классе, справившихся с заданиями, переход некоторого количество учащихся, не справившихся с заданиями, в число учащихся, допустивших ошибки, Таким образом, переход из числа несправившихся в число учащихся, допустивших ошибки, обуславливает меньшее количество учащихся справившихся с заданиями. Улучшению успеваемости и качества работ учащихся в экспериментальном классе способствовали проведенные разработанные уроки с использованием заданий творческого характера.
При сопоставлении констатирующего и контрольного эксперимента, проведенного в контрольном 5 «Б» классе, в котором уроки были разработаны и проведены на основе обычной методики, мы пришли к такому выводу, что рост числа учащихся, справившихся с заданиями, произошел, но в отличие от экспериментального класса, оказался незначительным.
Сравнительная характеристика уровня успешности при выполнении заданий, составленных на этапе констатирующего и контрольного эксперимента, учащимися экспериментального и контрольного класса отражена на диаграмме.
5 «а» класс (экспериментальный)
5 «б» класс (контрольный)
Сопоставив результаты констатирующего и контрольного эксперимента, мы отметили повышение активности и заинтересованности учащихся, улучшение качества работ и успеваемости детей в 5 классах. Это является практическим подтверждением выдвинутой нами гипотезы.
Заключение
Учителю необходимо владеть понятием дроби и рационального числа, знать правила выполнения действий над рациональными числами, свойства этих действий не только для того, чтобы математически грамотно ввести понятие дроби и обучать младших школьников выполнять действия, но и, что не менее важно, видеть взаимосвязи множеств рациональных и действительных числе с множеством натуральных чисел, без понимания которых нельзя решить проблему преемственности в обучении математики в начальных и последующих классах школы.
Осваивая понятие «обыкновенная дробь», ученик должен поупражняться в подсчете числа равных долей, на которые разделено целое, и числа взятых долей.
Дроби есть числа, поэтому уже на перовом этапе нужно дать ученику возможность сравнивать, пользуясь только наглядностью, полученные дроби с целыми числами, например с 1, и дробь с дробью.
С введением разнообразных заданий, опирающихся на формирование дроби как рационального числа, сравнительной работы при решении задач на нахождение дроби от числа и числа по его дроби, опираясь на смысл понятия дроби, подбором заданий творческого характера повысилась активность, заинтересованность учащихся, качество работ и успеваемость детей в 5 классах улучшилось, что позволило достигнуть подтверждения выдвинутой нами гипотезы.
Список литературы
Беляев Е.А., Перминов В.Я. Философские и методологические проблемы математики. - М.: МГУ, 1981. - 214 с.
Гнеденко Б.В. Математика в современном мире. - М.: Просвещение, 1990. - 128 с.
Жуков Н.И. Философские проблемы математики. - Минск, 1977. - 95 с.
Непостижимая эффективность математики в естественных науках // Математика - 1991 - №10 - с. 23.
Размещено на Allbest.ru
Подобные документы
Сущность формирования понятий, его общая схема и особенности, этапы реализации и возможные пути. Классификация понятий и ее методика для математических дисциплин. Определение как завершающий этап формирования понятия, его разновидности и особенности.
реферат [688,1 K], добавлен 24.04.2009Характеристика задач по математике с практическим содержанием. Особенность определения понятия "компетенция" и детализация деятельностных осведомленностей. Главный анализ введения учебно-практических заданий на математических уроках в начальной школе.
дипломная работа [154,7 K], добавлен 30.09.2017Этапы формирования математических понятий при изучении математике в школе. Типичные ошибки, которые встречаются у учащихся при определении понятий. Методика работы над математическим определением, этапы их изучения. Педагогические приемы введения понятий.
реферат [63,6 K], добавлен 07.03.2010Использование дифференцированного подхода на уроках математики как основа формирования индивидуализма ребенка. Технологии разноуровневого обучения. Групповая и индивидуальная форма работы. Выявление математических способностей учащихся младших классов.
курсовая работа [33,9 K], добавлен 14.10.2013Развитие речи учащихся на уроках математики через устные упражнения. Диагностика уровня сформированности диалогической речи младших школьников на уроках математики. Исследование развития диалогической речи на уроках математики в начальной школе.
дипломная работа [527,4 K], добавлен 19.12.2022Методические особенности и критерии отбора задач с экологическим содержанием на различных этапах урока математики; анализ и оценка их результативности, значение для формирования понятий о математическом моделировании и экологической культуры учащихся.
курсовая работа [37,5 K], добавлен 26.07.2011Сущность, содержание и понятие игры. Психолого-педагогические условия применения дидактических игр в обучении математике. Мотивы сюжетно-ролевой игры. Особенности и факторы формирования познавательной деятельности на уроках математики в первом классе.
дипломная работа [88,1 K], добавлен 14.05.2015Самоконтроль как психологический компонент учебной деятельности. Способы развития самоконтроля у младших школьников, методы и приемы его формирования на уроках математики. Выявление уровня сформированности выполнения самопроверки у младших школьников.
курсовая работа [360,5 K], добавлен 14.09.2014Психолого-педагогические условия, приемы и способы формирования у младших школьников логических универсальных учебных действий (УУД) в процессе преподавания математики. Процесс моделирования на уроках математики как способ формирования логических УУД.
курсовая работа [64,6 K], добавлен 25.02.2015Роль математики в формирования логической грамотности у учащихся начальной школы. Методика формирования математической грамотности в образовательной программе "Школа 2100". Логические задачи как средство формирования логических операций с высказываниями.
курсовая работа [116,1 K], добавлен 20.02.2012