Использование игр с математическим содержанием для математического развития старших дошкольников

Сущность и задачи методики формирования элементарных математических представлений, место и роль игр в данном процессе на сегодня. Разработка теории и практической методики обучения старших дошкольников математике с использованием игровых методов.

Рубрика Педагогика
Вид курсовая работа
Язык русский
Дата добавления 19.02.2011
Размер файла 35,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Курсовая работа

«Использование игр с математическим содержанием для математического развития старших дошкольников»

Введение

Формирование математических представлений - это целенаправленный и организованный процесс передачи и усвоения знаний, приёмов и способов умственной деятельности, предусмотренных программными требованиями. Основная его цель - не только подготовка к успешному овладению математикой в школе, но и всестороннее развитие детей.

Период от рождения до поступления в школу является, по признанию специалистов всего мира, возрастом наиболее стремительного физического и психического развития ребёнка, первоначального формирования физических и психических качеств, необходимых человеку в течение всей последующей жизни, качеств и свойств, делающих его человеком. Особенностью этого периода, отличающей его от других, последующих этапов развития, является то, что он обеспечивает именно общее развитие, служащее фундаментом для приобретения в дальнейшем любых специальных знаний и навыков усвоения различных видов деятельности.

Концепция по дошкольному образованию, ориентиры и требования к обновлению содержания дошкольного образования очерчивают ряд достаточно серьёзных требований к познавательному развитию дошкольников, частью которого является математическое развитие. Все это обуславливает актуальность темы курсовой работы.

Рабочая гипотеза - предполагается, что организованная работа по математическому развитию старших дошкольников с применением игровых методов будет способствовать повышению уровня развития элементарных математических представлений у детей.

Цель работы: выявление значения использования игр с математическим содержанием для математического развития старших дошкольников.

В соответствии с целью сформулированы следующие задачи исследования:

- исследовать педагогический опыт формирования математических способностей у дошкольников;

- определить сущность и задачи методики формирования элементарных математических представлений;

- выявить место и роль игр в формировании математических представлений у ребенка;

- провести работу по выявлению уровня сформированности элементарных математических представлений;

- разработать практическую методику обучения старших дошкольников математике с использованием игровых методов;

- сделать выводы.

Объект - учебно-воспитательный процесс в ДОУ.

Предмет - формирование элементарных математических представлений у дошкольников.

Практическая значимость состоит в том, что был изучен разработанный воспитателем комплекс игр по развитию у дошкольников элементарных математических представлений.

1. Развитие математических представлений у детей дошкольного возраста

1.1 Педагогический опыт формирования математических способностей у дошкольников

Основоположники системы дошкольного образования, математического образования дошкольников Я.А. Каменский и И.Г. Песталоцци считают, что основы арифметики можно заложить только на третьем году, когда дети начнут считать до пяти, а впоследствии до десяти или, по крайней мере, начнут ясно выговаривать эти числа. Если на четвёртом, на пятом, на шестом году они научатся считать по порядку до двадцати и быстро различать что 7 больше 5, 15 меньше 30, то этого будет достаточно. Основы геометрии они будут в состоянии усвоить на втором году, различая, что мы называем большим и что малым, впоследствии они легко поймут, что такое короткое, длинное, широкое, узкое. На четвёртом году они поймут различия некоторых фигур. Если что-либо станет им более известным, само собою они сами попытаются измерить, взвешивать и сопоставлять одно с другим [9].

В педагогических сочинениях отца русской дидактики К.Д. Ушинского говорится, что, прежде всего, следует выучить детей считать до десяти на наглядных предметах: на пальцах, орехах, и т.д., которые не жаль было бы и разломать, если придется показать наглядно половину, треть, и т.д. Считать следует учить назад и вперёд так, чтобы дети с одинаковой лёгкостью считали от единицы до десяти и от десяти до единицы. Потом следует научить считать их парами, тройками, пятёрками, чтобы дети поняли, что половина десяти равна пяти и т.д. Ушинский говорил, что надо просто «приучить дитя распоряжаться с десятком совершенно свободно - и делить, и умножать, и дробить…"[16].

В истории педагогики достаточно широкое применение получила система математического развития детей М. Монтессори. Суть её в том, что когда трёхлетние дети приходят в школу, они уже умеют считать до двух или трёх. Потом они легко научаются нумерации. Одним из способов обучения нумерации М. Монтессори использовала монеты.»… Размен денег представляет первую форму нумерации, довольно интересную для возбуждения живого внимания ребёнка…"[11]. Далее она обучает с помощью методических упражнений, применяя, как дидактический материал одну из систем, уже использованную в воспитании чувств, то есть серию из десяти брусков различной длины. Когда дети разложат бруски один за другим по их длине, им предлагают считать красные и синие отметки. Теперь к упражнениям чувств для распознавания более длинных и более коротких брусков присоединяются упражнения в счёте. Так происходило обучение математическим представлениям в «Доме ребёнка» М. Монтессори.

Из множества различных взглядов на возникновение у детей понятия о числе можно обозначить три наиболее характерных.

Немецкий педагог В.А. Лай утверждает, что понятие числа возникает у детей путём непосредственного восприятия, т.е. если ребёнку дать несколько предметов (от 10 до 12), расположенных правильными фигурами, то он может узнать число этих предметов сразу, не считая их. И сообразно с этим, сторонники непосредственного восприятия чисел первоначальное обучение арифметике обосновывают на так называемых числовых фигурах, т.е. на группе одинаковых значков или тел, расположенных в определённом порядке.

Другой взгляд о том, что числовое понятие возникает только посредством счёта.

Третий, что «понятие числа психологически получается, как результат измерений. И сообразно с этим в начале обучения на первое место выдвигается изучение количественной изменяемости величин и их функциональной зависимости» [5].

Счёт необходим как один из процессов изучения чисел. Это видно из того, что его не отвергают и сторонники непосредственного восприятия чисел.

Вопрос о числовых фигурах считается одним из спорных вопросов в методике арифметики.

Больше всего этот вопрос, как большинство методических вопросов, обсуждался в немецкой литературе - родине числовых фигур. По их мнению, числовые фигуры могут иметь четыре различных назначения. Одно из них то, что числовые фигуры способствуют возникновению у детей числовых представлений. Второе по важности назначение числовых фигур - это облегчение производства действий над однозначными числами. Третье назначение числовых фигур заключается в том, что они могут служить предметом для счёта. Четвёртое назначение - они могут облегчать переход от числа к цифре, ибо числовая фигура, подобно цифре, является знаком для числа, явно показывающим число единиц в данном числе.

Существует мнение, что дети приходят в школу с готовыми понятиями о величине предметов. На практике получается совсем другая картина. Прежде чем научить детей сравнивать величину предметов, их надо научить эти предметы видеть и рассматривать. [7]

Л.В. Глаголева использовала разные методы при обучении сравнению величин предметов, а именно - лабораторный, иллюстрированный, исследовательский, наглядный методы и игру, как метод обучения сравнению величин.

Учить детей дошкольного возраста грамоте нельзя, но естественное усвоение грамоты должно совершиться в дошкольном возрасте. Учить их счислению недопустимо, но ребёнок должен постигнуть первый десяток, конечно, до семи лет. Все числовые представления, доступные для его возраста, он должен извлечь из жизни, среди которой он живёт и в которой он принимает деятельное участие. Его участие в жизни при нормальных условиях должно выражаться лишь в одном - в работе- игре.

Играя, работая, живя, он непременно самолично научится считать, если мы, взрослые, будем при этом его незаменимыми пособниками. Наблюдая окружающий его вещественный мир, воспринимая его и расчленяя при посредстве своих органов чувств, действенно участвуя в его жизни, ребёнок постепенно и незаметно для себя увеличивает запас своих представлений; он учится.

М. Морозова и Е. Тихеева в книге «Счёт в жизни маленьких детей» описывают примерную программу для детей от 2 до 8 лет: «Объёмы числовых представлений нормальных детей»:

2 года - распознавание понятий: один-много, большой-маленький.

3 года - счёт до трёх, количественное восприятие предметов в пределе трёх, выбор по называнию: большой и маленький, распознавание и выбор по называнию форм: шар и куб.

4 года - счёт до четырёх, распознавание понятий: низкий-высокий, широкий-узкий, длинный-короткий, толстый-тонкий, тяжёлый-лёгкий.

5 лет - счёт до пяти, употребление названий: глубокий-мелкий, высокий-низкий, распознавание форм: цилиндр, круг.

6 лет - счёт до десяти, сложение и вычитание в пределах восьми на конкретном материале, понятия: прибавить, отнять, решение и составление соответствующих задач.

Ф.Н. Блехер предложила общие пути работы по формированию математических представлений. Она выделила два основных пути в работе с детьми:

1. Использование всех многочисленных поводов, которые в изобилии доставляет повседневная жизнь детей в коллективе и различные виды детской деятельности.

2. Путь, тесно связанный с первым - игры и занятия со специальным заданием по счёту.

Если в первом случае усвоение счёта происходит попутно, то во втором - работа по счёту носит самостоятельный характер. В работе с детьми указанные пути перекрещиваются и применяются в каждой возрастной группе детского сада.

Так же Ф.Н. Блехер разработала основной дидактический материал, необходимый на занятиях по формированию элементарных математических представлений для всех возрастных групп.

Л.А. Венгер, О.М. Дьяченко [4] предлагают осуществлять математическое развитие на занятиях и закреплять в разных видах детской деятельности, в том числе, в игре.

1.2 Сущность и задачи методики формирования элементарных математических представлений

математический представление дошкольник игровой

Методика формирования элементарных математических представлений в системе педагогических наук призвана оказать помощь в математике - одного из важнейших учебных предметов в школе, способствовать воспитанию всесторонне развитой личности.

Выделившись из дошкольной педагогики методика формирования элементарных математических представлений стала самостоятельной научной и учебной областью. Предметом её исследования является изучение основных закономерностей процесса формирования элементарных математических представлений у дошкольников в условиях общественного воспитания. Круг задач, решаемых методикой, достаточно обширен:

- научное обоснование программных требований к уровню развития количественных, пространственных, временных и других математических представлений детей в каждой возрастной группе;

- определение содержания материала для подготовки ребёнка в детском саду к усвоению математики в школе;

- совершенствование материала по формированию математических представлений в программе детского сада;

- разработка и внедрение в практику эффективных дидактических средств, методов и разнообразных форм и организация процесса развития элементарных математических представлений;

- реализация преемственности в формировании основных математических представлений в детском саду и соответствующих понятий в школе;

- разработка на научной основе методических рекомендаций родителям по развитию математических представлений у детей в условиях семьи.

Теоретическую базу методики формирования элементарных математических представлений у дошкольников составляют не только общие, принципиальные, исходные положения философии, педагогики, психологии, математики и других наук. Как система педагогических знаний она имеет и свою собственную теорию, и свои источники. К последним относятся:

- научные исследования и публикации в которых отражены основные результаты научных поисков (статьи, монографии, сборники научных трудов и т.д.);

- программно-инструктивные документы («Программа воспитания и обучения в детском саду», методические указания и т.д.);

- методическая литература (статьи в специализированных журналах, например, в «Дошкольном воспитании», пособия для воспитателей детского сада и родителей, сборники игр и упражнения, методические рекомендации и т.д.);

- передовой коллективный и индивидуальный педагогический опыт по формированию элементарных математических представлений у детей в детском саду и семье, опыт и идеи педагогов-новаторов.

Методика формирования элементарных математических представлений у детей постоянно развивается, совершенствуется и обогащается результатами научных исследований и передового педагогического опыта.

В настоящее время благодаря усилиям ученых и практиков создана, успешно функционирует и совершенствуется научно-обоснованная методическая система по развитию математических представлений у детей. Её основные элементы - цель, содержание, методы, средства и формы организации работы - теснейшим образом связаны между собой и взаимообуславливают друг друга.

Ведущим и определяющим среди них является цель, так как она ведёт к выполнению социального заказа общества детским садом, подготавливая детей к изучению основ наук (в том числе и математики) в школе.

Обучение ведёт за собой развитие. В условиях рационально построенного обучения, учитывая возрастные возможности дошкольников, можно сформировать у них полноценные представления об отдельных математических понятиях. Обучение при этом рассматривается как непременное условие развития, которое в свою очередь становится управляемым процессом, связанным с активным формированием математических представлений и логических операций. При таком подходе не игнорируется стихийный опыт и его влияние на развитие ребёнка, но ведущая роль отводится целенаправленному обучению.

Под математическим развитием следует понимать сдвиги и изменения в познавательной деятельности личности, которые происходят в результате формирования математических представлений и связанных с ними логических операций. Формирование математических представлений - это целенаправленный и организованный процесс передачи и усвоения знаний, приёмов и способов умственной деятельности, предусмотренных программными требованиями. Основная его цель - не только подготовка к успешному овладению математикой в школе, но и всестороннее развитие детей.

1.3 Место и роль игр в формировании математических представлений и развитии личности ребёнка

Период от рождения до поступления в школу является, по признанию специалистов всего мира, возрастом наиболее стремительного физического и психического развития ребёнка, первоначального формирования физических и психических качеств, необходимых человеку в течение всей последующей жизни, качеств и свойств, делающих его человеком. Особенностью этого периода, отличающей его от других, последующих этапов развития, является то, что он обеспечивает именно общее развитие, служащее фундаментом для приобретения в дальнейшем любых специальных знаний и навыков усвоения различных видов деятельности. Формируются не только качества и свойства психики детей, которые определяют собой общий характер поведения ребёнка, его отношение ко всему окружающему, но и те, которые представляют собой «заделы» на будущее и выражаются в психологических новообразованиях, достигаемых к концу данного возрастного периода.

Реализация специфических возрастных возможностей психического развития происходит благодаря участию дошкольников в соответствующих возрасту видах деятельности. Организация и руководство разных видов деятельности должны находиться в центре внимания педагогов. Только сочетание возрастного и индивидуального подходов в воспитании и обучении детей может обеспечить их эмоциональное благополучие и полноценное психическое развитие.

К семи годам формируются предпосылки для успешного перехода на следующую ступень образования. На основе детской любознательности впоследствии формируется интерес к учению; развитие познавательных способностей послужит основой для формирования теоретического мышления; умение общаться со взрослыми и сверстниками позволит ребёнку перейти к учебному сотрудничеству; развитие произвольности даёт возможность преодолевать трудности при решении учебных задач; овладение элементами специальных языков, характерных для отдельных видов деятельности, станет основой усвоения различных предметов в школе (музыка, математика и т.п.).

Исключительное значение в воспитательном процессе придается игре, позволяющей ребёнку проявить собственную активность, наиболее полно реализовывать себя. Игра основывается на свободном сотрудничестве взрослого с детьми и самих детей друг с другом, становится основной формой детской жизни.

Основная задача воспитателя - наполнить повседневную жизнь группы интересными делами, проблемами, идеями, включить каждого ребёнка в содержательную деятельность, способствовать реализации детских интересов и жизненной активности. Организуя деятельность детей, воспитатель развивает у каждого ребёнка стремление к проявлению инициативы, поиски разумного и достойного выхода из различных жизненных ситуаций.

В процессе игр закрепляются количественные отношения (много, мало, больше, столько же), умение различать геометрические фигуры, ориентироваться в пространстве и времени.

Особое внимание уделяется формированию умения группировать предметы по признакам (свойствам), сначала по одному, а затем по двум (форма и размер).

Игры должны быть направлены на развитие логического мышления, а именно на умение устанавливать простейшие закономерности: порядок чередования фигур по цвету, форме, размеру. Этому способствуют и игровые упражнения на нахождение пропущенной в ряду фигуры.

Необходимым условием, обеспечивающим успех в работе, является творческое отношение воспитателя к математическим играм: варьирование игровых действий и вопросов, индивидуализация требований к детям, повторение игр в том же виде или с усложнением. Необходимость современных требований вызвана высоким уровнем современной школы к математической подготовке детей в детском саду в связи с переходом на обучение в школе с шести лет.

Математическая подготовка детей к школе предполагает не только усвоение детьми определённых знаний, формирование у них количественных пространственных и временных представлений. Наиболее важным является развитие у дошкольников мыслительных способностей, умение решать различные задачи.

Воспитатель должен знать не только как обучать дошкольников, но и то, чему он их обучает, то есть ему должна быть ясна математическая сущность тех представлений, которые он формирует у детей. Широкое использование специальных обучающих игр так же важно для пробуждения у дошкольников интереса к математическим знаниям, совершенствования познавательной деятельности, общего умственного развития.

Активность ребёнка, направленная на познание, реализуется в содержательной самостоятельной игровой и практической деятельности, в организуемых воспитателем познавательных развивающих играх.

Взрослый создаёт условия и обстановку, благоприятные для вовлечения ребёнка в деятельность сравнения, сосчитывания, воссоздания, группировки, перегруппировки и т.д. При этом инициатива в развёртывании игры, действия принадлежит ребёнку. Воспитатель вычленяет, анализирует ситуацию, направляет процесс её развития, способствует получению результата.

Ребёнка окружают игры, развивающие его мысль и приобщающие его к умственному труду. Например, игры из серии: «Логические кубики», «Уголки», «Составь куб» и другие; из серии: «Кубики и цвет», «Сложи узор», «Куб-хамелеон» и другие.

Нельзя обойтись и без дидактических пособий. Они помогают ребёнку вычленить анализируемый объект, увидеть его во всём многообразии свойств, установить связи и зависимости, определить элементарные отношения, сходства и отличия. К дидактическим пособиям, выполняющим аналогичные функции, относятся логические блоки Дьенеша, цветные счётные палочки (палочки Кюизенера), модели и другие.

Играя и занимаясь с детьми, воспитатель способствует развитию у них умений и способностей:

- оперировать свойствами, отношениями объектов, числами; выявлять простейшие изменения и зависимости объектов по форме, величине;

- сравнивать, обобщать группы предметов, соотносить, вычленять закономерности чередования и следования, оперировать в плане представлений, стремиться к творчеству;

- проявлять инициативу в деятельности, самостоятельность в уточнении или выдвижении цели, в ходе рассуждений, в выполнении и достижении результата;

- рассказывать о выполняемом или выполненном действии, разговаривать с взрослыми, сверстниками по поводу содержания игрового (практического) действия.

2. Анализ результативности экспериментальной работы по математическому развитию детей старшего дошкольного возраста

2.1 Выявление уровня сформированности элементарных математических представлений

В процессе выявления уровня сформированности элементарных математических представлений у старших дошкольников использовались следующие методы:

1. Анализ специальных литературных источников.

2. Педагогический эксперимент:

- констатирующий (диагностика математического развития детей, соответствие его современным требованиям),

- формирующий эксперимент,

- контрольный эксперимент.

3. Методы математической обработки данных.

Организация исследования:

Исследование проводилось в три этапа в период на базе детского сада «Хрустальный» г. Караганды. В исследовании принимали участие две однородные группы детей, каждая из которых насчитывала по десять детей в возрасте 4-5 лет.

На первом этапе изучалась и анализировалась литература, подбиралась система игр. При анализе литературы были изучены работы учёных, монографии, статьи, освещающие передовой педагогический опыт.

На втором этапе проводилось обследование двух групп детей (экспериментальной и контрольной) с целью выявления их уровня математического развития перед началом эксперимента, а также после его окончания.

Основной педагогический эксперимент проходил с целью проверки эффективности разработанной системы игр. На третьем этапе проводились обобщения, математическая обработка полученных результатов.

Для педагогического эксперимента были взяты две группы детей (по десять человек) старшего дошкольного возраста: контрольную группу, работающую по «Программе воспитания и обучения в детском саду» и экспериментальную группу, работающую по методике обучения математике с использованием игровых действий.

Констатирующий эксперимент проводился с целью выявления уровня развития каждого ребёнка. В качестве основного метода исследования использовалась диагностика математического развития. Детям были предложены четыре теста, в состав которых входили дидактические игры.

1. Тест: Методы исследования количественных представлений

Сосчитай себя.

1. Назвать части своего тела, которых по одной (голова, нос, рот, язык, грудь, живот, спина).

2. Назвать парные органы тела (2 уха, 2 виска, 2 брови, 2 глаза, 2 щеки, 2 губы: верхняя и нижняя, 2 руки, 2 ноги).

3. Показать те органы тела, которые можно считать до пяти (пальцы рук и ног).

Зажги звёзды.

Игровой материал: лист бумаги тёмно-синего цвета - модель ночного неба; кисть, жёлтая краска, числовые карточки (до пяти).

1. «Зажечь» (концом кисти) столько «звёзд на небе», сколько изображено фигур на числовой карточке.

2. Тоже самое. Выполнять, ориентируясь по слуху на количество ударов в бубен или под крышкой стола, сделанных взрослым.

Помоги Буратино.

Игровой материал: игрушка Буратино, монеты (в пределах 7-10 штук).

Задание: помочь Буратино отобрать такое количество монет, которое ему подарил Карабас Барабас.

II Тест. Величина

Ленточки.

Игровой материал: полоски бумаги разной длины - модели лент. Набор карандашей.

1. Самую длинную «ленточку» закрась синим карандашом, «ленточку» покороче закрась красным карандашом и т.д.

2. Уравнять все «ленточки» по длине.

Разложи карандаши.

На ощупь разложить карандаши разной длины в порядке возрастания или убывания.

Разложи коврики.

Разложить «коврики» в возрастающем и убывающем порядке по ширине.

III Тест. Методы исследования представлений о геометрических фигурах.

Какой формы?

Игровой материал: набор карточек с изображением геометрических форм.

1. Взрослый называет какой-либо предмет окружающей обстановки, а ребёнок карточку с геометрической формой, соответствующей форме названного предмета.

2. Взрослый называет предмет, а ребёнок словесно определяет его форму. Например, косынка-треугольник, яйцо - овал и т.д.

Мозаика.

Игровой материал: набор геометрических форм. С помощью геометрических форм выложить сложные картинки.

Почини коврик.

Игровой материал: иллюстрация с геометрическим изображением порванных ковриков.

Найти подходящую (по форме и цвету) заплатку и «починить» (наложить) её на дырку.

IV Тест. Методы исследования пространственных представлений.

Исправь ошибки.

Игровой материал: 4 больших квадрата белого, жёлтого, серого и черного цветов - модели частей суток. Сюжетные картинки, изображающие деятельность детей в течении суток. Они положены сверху квадратов без учёта соответствия сюжета модели.

Исправить ошибки, допущенные Незнайкой, объяснить свои действия.

Найди различия.

Игровой материал: набор иллюстраций с противоположным изображением предметов.

Найти различия.

В качестве критериев оценки уровня математического развития использовалась десятибалльная система.

8-10 баллов - ребёнок оперирует свойствами объектов, обнаруживает зависимости и изменения в группах объектов в процессе группировки, сравнения; сосчитывает предметы в пределе 15. Устанавливает связи увеличения (уменьшения) количества, чисел, размеров предметов по длине, толщине, высоте, и т.д. Проявляет творческую самостоятельность в практической, игровой деятельности, применяет известные ему способы действия в иной обстановке.

4-7 баллов - ребёнок различает, называет, обобщает предметы по выделенным свойствам. Выполняет действия по группировке, воссозданию фигур. Обобщает группы предметов по количеству (числу), размеру. Считает в пределе 10. Самостоятельно осуществляет действия, веющие к изменению количества, числа, величины. Затрудняется в высказываниях, пояснениях.

1-3 балла - ребёнок различает предметы по отдельным свойствам, называет их, группирует в совместной с взрослым деятельности. Пользуется числами в пределах 7, допускает ошибки. Выполняет игровые практические действия в определенной последовательности; связи между действиями (что сначала, что потом) не устанавливает.

Критерии констатирующего эксперимента.

1. Обобщение геометрических фигур, предметов по форме, размеру, цвету и т.д. Выделение одновременно трёх свойств геометрических фигур (форма, цвет, размер).

2. Ориентировка в групповой комнате по плану, умение двигаться в заданном направлении, определение расположения предмета по отношению к себе. Ориентировка на плоскости стола и листе бумаги.

3. Классификация предметов по одному, двум признакам. Число как показатель количества, итог счёта; порядок следования и место в общей последовательности чисел.

4. Активное участие в воссоздании силуэтов, построек, изображений в играх моделирующего характера как по образцу, так и по собственному замыслу.

Формирующий эксперимент предполагал разработку системы математического развития детей 5-6 лет в контексте разных видов деятельности. При проведении формирующего эксперимента решались следующие задачи:

- создать развивающую среду; определить наиболее оптимальный подход для детей 5-6 лет;

- составить систему игр;

- экспериментально апробировать воздействие разработанной системы игр на формирование математических представлений.

Для решения поставленных целей и задач было решено провести игры по развитию математических представлений у детей 5-6 лет. Для этого все игры были разделены по принципу от простого к сложному.

Формирующий эксперимент проходил в три этапа с экспериментальной группой. (Приложение 1)

Эксперимент проводился в естественных условиях.

После формирующего эксперимента с экспериментальной группой детей был проведён контрольный эксперимент по этой же методике, целью которого было выявление успешности обучения математическим представлениям по разработанной системе.

Определение среднего арифметического величины показателей вычислялось по формуле:

- знак суммирования

- варианты или значения признака (данные одного ребенка)

n - количество детей

Средняя арифметическая величина позволяет сравнивать и оценивать группы изучаемых явлений в целом.

Затем определялось среднеквадратичное отклонение:

Хмакс - наибольшее значение варианта

Хмин - наименьшее значение варианта

R - табличный коэффициент

Ошибка среднеарифметической величины определялась по формуле:

n - число вариантов

- среднеквадратичное отклонение

Уровень достоверности различий вычисляется по формуле:

t =

Х1 - среднеарифметическое значение экспериментальной группы

Х2 - среднеарифметическое значение контрольной группы

Процент прироста получился, когда мы отняли среднее арифметическое до эксперимента от среднего арифметического после эксперимента.

В результате педагогического эксперимента было выявлено, что изначально показатели умственного развития детей экспериментальной и контрольной групп имели примерно равный потенциал, равные возможности.

Средние значения показателей констатирующего эксперимента приведены в таблице 1.

Таблица 1

Показатель

Контрольная группа Х± m

Экспериментальная группа Х ± m

t

Р

Количество и счёт

3,6 ± 0,2

3,5 ± 0,2

0,3

>0,05

Величина

3,1±0,2

3,5 ± 0,3

1

>0,05

Геометрические фигуры

3,6±0,3

3,5 ± 0,2

0,7

>0,05

Ориентировка в пространстве

3,1 ±0,3

3,0 ± 0,2

0,25

>0,05

Разработанная система дидактических игр и апробация этой системы предусматривала отбор дидактических игр в соответствии со следующими критериями:

- соответствие игрового материала задачам исследования;

- включенность тех психических процессов, которые несут преимущественную нагрузку в процессе обучения;

- доступность и эмоциональная привлекательность игрового материала.

Игры использовались во всех формах работы по формированию элементарных математических представлений у детей дошкольного возраста; утренней гимнастике; физкультурных занятиях; в повседневной жизни; активном отдыхе и непосредственно, в самостоятельной поисковой деятельности.

Игровая форма обучения повышала настроение детей» способствовала проведению игр в эмоциональном ритме, а самое главное - развитию элементарных математических способностей.

Важным условием самостоятельной игровой деятельности являлось создание предметной среды, имеющей развивающий характер, т.е. создание предметного оснащения для самостоятельных игр.

Необходимо отметить, что с контрольной группой проводилась работа по формированию элементарных математических представлений, в основе которой лежала «Программа воспитания и обучения в детском саду» под ред. Васильевой, а в экспериментальной - работа шла по разработанной мною системе дидактических игр.

После проведения формирующего эксперимента был проведён контрольный эксперимент.

Средние значения показателей контрольного эксперимента показаны в таблице 2.

Таблица 2

Показатель

Экспериментальная группа Х± m

Контрольная группа Х± m

t

Р

Количество и счёт

6,42 ± 0,2

3,9 ± 0,2

8,4

<0,05

Величина

5,82 ± 0,2

4,3 ± 0,2

5,0

<0,05

Геометрические фигуры

6,29 ± 0,2

4,4 ± 0,2

6,3

<0,05

Ориентировка

в пространстве

6,13±0,2

4,0 ± 0,2

7,1

<0,05

Таким образом, проделанная работа по формированию у детей математических представлений дала свои положительные результаты. Полученные данные дают возможность предположить, что у детей в исследуемых группах произошёл прирост в средних показателях математического развития.

В экспериментальной группе произошёл прирост по разделам:

количество и счёт -28,2%

величина - 27,2%

геометрические фигуры - 26,9% ориентировка в пространстве - 30,3%

В контрольной группе соответственно: количество и счет - 4%

величина - 12%

геометрические фигуры -9%

ориентировка в пространстве - 10% (Приложение 2)

Улучшение показателей в экспериментальной группе обусловлено использованием предложенной мною системы дидактических игр. Стабильная, систематическая работа в данном направлении позволила повысить уровень математических знаний у детей экспериментальной группы, у них был сформирован соответствующий уровень умений и навыков.

математический представление дошкольник игровой

2.2 Методика обучения старших дошкольников математике с использованием игровых действий

В результате опытно-экспериментальной части были сделаны выводы о том, что система работы по математическому развитию детей с использованием игровых действий способствует повышению уровня математического развития детей.

Обновление и качественное улучшение системы математического развития дошкольников позволяет педагогам искать наиболее интересные формы работы, что способствует развитию элементарных математических представлений. Дидактические игры дают большой заряд положительных эмоций, помогают детям закрепить и расширить знания по математике.

В качестве методики обучения математике старших дошкольников можно предложить несколько программ. Одна из них - программа «Детство» заключается в следующем:

1. Цель - развитие познавательных и творческих способностей детей (личностное развитие).

2. Содержание классическое:

доматематические математические

виды деятельности: виды деятельности:

- сравнение - счёт

- уравнивание - измерение

- комплектование - вычисление

плюс элементы логики и математики.

3. Методы и приёмы:

- практические (игровые);

- экспериментирование;

- моделирование;

- воссоздание;

- преобразование;

- конструирование.

4. Дидактические средства:

Наглядный материал (книги, компьютер):

- блоки Дьенеша,

- палочки Кюизенера,

- модели.

5. Форма организации детской деятельности:

- индивидуально-творческая деятельность,

- творческая деятельность в малой подгруппе (3-6 детей),

- учебно-игровая деятельность (познавательные игры, занятия),

- игровой тренинг.

Всё это опирается на развивающую среду, которую можно построить следующим образом:

1. Математические развлечения:

- игры на плоскостное моделирование (Пифагор, Танграм и т.д.),

- игры головоломки,

- задачи-шутки,

- кроссворды,

- ребусы.

2. Дидактические игры:

- сенсорные,

- моделирующего характера,

- специально придуманные педагогами для обучения детей.

3. Развивающие игры - это игры, способствующие решению умственных способностей. Игры основываются на моделировании, процессе поиска решений.

Заключение

В качестве заключения можно предложить несколько рекомендаций воспитателям, разрабатывающим проблемы формирования элементарных математических представлений у дошкольников.

1. Познание свойств старшими дошкольниками происходит наиболее успешно в активных действиях по сравнению, группировке, видоизменению и воссозданию геометрических фигур, силуэтов, предметов разной формы, величины. Уместны игры типа «Цвет и форма», «Форма и размер» и другие, в которые непосредственно включены разнообразные обследовательские действия.

2. Использование логических блоков Дьенеша или набора логических геометрических фигур даёт возможность приобщить детей к выполнению простых игровых действий на классификацию по совместным свойствам, причём как по наличию, так и по отсутствию свойства.

3. Игры и упражнения с цветными счетными палочками Кюизенера наиболее успешно способствуют познанию величинных и числовых отношений.

4. Практическая деятельность взрослых совместно с детьми по изготовлению печенья, салата, уборке помещения, посадке и уходу за растениями, уходу за животными, сопровождаемая познавательными разговорами успешно способствует освоению элементарных математических отношений.

5. Игры на освоение счёта очень разнообразны: подвижные, конструктивные, настольно-печатные и другие. Для освоения сравнения, обобщения групп предметов по числу следует специально, с учётом уровня развития детей, подбирать игры и варьировать их.

6. Для закрепления представлений детей о сохранении количества, его независимости от формы расположения, хорошо использовать игру «Точечки». Дети любят общаться, их радует одобрение старших, это поощряет их к освоению новых действий.

7. Для эффективного повышения уровня математических знаний предлагается методика использования различных видов детской деятельности преимущественно игрового характера.

8. Целенаправленное развитие элементарных математических представлений должно осуществляться на протяжении всего дошкольного периода.

Список литературы

1. Звонкин А. Малыш и математика, непохожая на математику - Москва, Знание и сила, 1985 г. стр. 41-44.

2. Альтхауз Д., Дум Э. Цвет, форма, количество. - М.: Просвещение 1984 г. стр. 11 -16, 40.

3. Блехер Ф.Н. Счет и число в детском саду. Методическое письмо. - М.: 1945 г. стр. 6-8.

4. Венгер Л.А., Дьяченко О.М. Игры и упражнения по развитию умственных способностей у детей дошкольного возраста. - М.: Просвещение 1989 г.

5. Волковский Д Л. Руководство к «Детскому миру» в числах. - М.: 1916 г. стр. 7-11,13,24.

6. Гальперин П.Я. О методе формирования умственных действий. Хрестоматия по возрастной и педагогической психологии - М.: 1981 г.

7. Глаголева Л.В. Сравнение величин предметов в нулевых группах школ - Л-М.: Работник просвещения 1930 г. стр. 4-6, 12-13.

8. Ерофеева Т.И. и другие. Математика дня дошкольников - М.: Просвещение 1992 г.

9. Каменский Я.А. Избранные педагогические сочинения. - М.: Учпедиз. 1939 г. стр. 10-51.

10. Логинова В.И. Формирование умения решать логические задачи в дошкольном возрасте. Совершенствование процесса формирования элементарных математических представлений в детском саду - Л., 1990 г. стр. 24-37.

11. Монтессори М. Дом ребёнка. Изд. 4-е.-М., Задруга 1920 г. стр. 182-183.

12. Носова Е.А. Формирование умения решать логические задачи в дошкольном возрасте. Совершенствование процесса формирования элементарных математических представлений в детском саду. - Л., 1990 г. стр. 24-37.

13. Песталоцци И.Г. Избранные педагогические сочинения. Т-1., - М.: Педагогика 1981 г. стр. 167-168.

14. Рихтерман Т.Д. Формирование представлений о времени у детей дошкольного возраста. - М.: Просвещение 1982 г.

15. Смоленцева А.А. Сюжетно - дидактические игры с математическим содержанием. - М.: Новиздат, 1996 г. стр. 9-19.

16. Тарунтаева Т.В. Развитие элементарных математических представлений дошкольников, - М.: Просвещение 1980 г. стр. 37-40.

17. Ушинский К.Д. Избранные педагогические сочинения. Т-2. - М.: Учпедиз, 1954 г. стр. 651 -652.

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.