Использование занимательного материала на уроках математики в начальной школе

Определение понятия занимательных игр и анализ наиболее эффективных методов их использования на уроках математики в 1-ом классе. Разработка системы творческих занятий, формирующих познавательный интерес учащихся начальных классов на уроках математики.

Рубрика Педагогика
Вид курсовая работа
Язык русский
Дата добавления 02.02.2011
Размер файла 70,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

К концу дошкольного возраста у ребенка проявляются признаки логического мышления. В своих рассуждениях он начинает использовать логические операции и на их основе строить умозаключения. Очень важно в этот период научить ребенка логически мыслить и обосновывать свои суждения.

Для игры с кругами нужны нарисованные на бумаге один, два или три пересекающихся круга разного цвета, разноцветные обручи и наборы геометрических фигур разных цветов и размеров, карточки с числами и буквами русского алфавита. В принципе необязательно использовать круги, можно работать с любыми замкнутыми плоскими фигурами. В этом случае замкнутые области выделяются на монтажной панели, к примеру, цветными веревочками. Возможна также работа на компьютере со специальной компьютерной программой. Комплексное обучение, сочетающее игры с обручами со всем классом, игру за столом в группе и индивидуальную работу за компьютером, является наиболее эффективным.

Приведем несколько примеров заданий для игры "Круги". Предлагаемая методика игрового обучения взята из работы (10). Она может использоваться, начиная с первого класса.

I. Задачи с одним кругом

Цель работы над задачами с одним кругом - учить классифицировать предметы по одному признаку, понимать и применять логическую операцию отрицания «не».

Игра проводится со всем классом или группой. У учеников в руках наборы квадратов, кругов и треугольников разных цветов и размеров. В центре игровой площадки помещен обруч или на доске нарисован круг.

Учитель:

- Покажите треугольные фигуры.

- Покажите красные фигуры.

- Прыгните и приземлитесь (поставьте мелом точку) внутри круга.

- Прыгните и приземлитесь (поставьте мелом точку) вне круга.

Ученики выборочно выполняют эти простые задания. Надо быть готовым к тому, что здесь необязательно сразу будут правильные результаты. Понятия «внутри» и «вне» у многих детей в этом возрасте еще не полностью сформированы.

Учитель:

- Положите внутрь круга треугольные фигуры.

Ученики случайным образом (например, с закрытыми глазами) выбирают по одной геометрической фигуре из своего набора и по очереди помещают их на заданное место. Все дети наблюдают за действиями одноклассников, а в случае ошибки поднимают руку и говорят: «Стоп». Ошибка обсуждается со всей группой.

После того как все фигуры размещены, учитель задает два новых вопроса.

Учитель:

- Какие геометрические фигуры лежат внутри круга?

Ученик:

- Внутри круга лежат треугольные фигуры.

Этот ответ содержится в самом условии только что решенной задачи и формулируется обычно без особого труда. Правильного ответа на второй вопрос приходится ждать дольше.

Учитель:

- Какие геометрические фигуры лежат вне круга?

Правильный ответ ученика:

- Вне круга лежат нетреугольные фигуры.

Возможные неправильные ответы:

o вне круга лежат большие фигуры (но и внутри круга могут лежать большие фигуры);

o вне круга лежат красные фигуры (но и внутри круга могут лежать красные фигуры);

o вне круга лежат квадраты (не описывает все фигуры, лежащие вне круга).

Ответ:

- вне круга лежат квадраты и круги - является правильным, но наша цель в данном случае - охарактеризовать свойство фигур, лежащих вне круга, через свойство фигур внутри круга.

Возможно, потребуется уточнение к условию задачи:

- Выразите свойство всех фигур, лежащих вне круга, одним словом.

Очень трудно бывает учителю удержаться от произнесения правильного ответа самому. На уроке, проводимом А.А. Столяром, мы удивились, как он умел ждать правильного ответа от детей. Если мы хотим заниматься развитием логики у детей, а не добиваться механического запоминания, то спешить нельзя.

В дальнейшем в игру вносятся варианты вопросов различной степени трудности. В частности, можно задавать вопросы на подсчет количества фигур с определенным признаком.

Эту игру нужно провести в простом варианте 3-5 раз перед переходом к игре с двумя кругами, но возвращаться к ней с более сложными заданиями следует неоднократно.

Примеры заданий.

При выполнении каждого из этих заданий очень важно не только правильно разложить фигуры или карточки, но и правильно ответить на вопросы:

- Какие геометрические фигуры (буквы, числа...) лежат внутри круга?

- Какие геометрические фигуры (буквы, числа...) лежат вне круга?

1. В круг положите все красные фигуры.

Вне круга лежат некрасные фигуры.

2. В круг положите все круглые фигуры.

Вне круга лежат некруглые фигуры.

3. В круг положите все некруглые фигуры.

Скорее всего, ученики сразу дадут правильный ответ: "Вне круга лежат круглые фигуры". Однако возможен и ответ: «Вне круга лежат НЕ НЕкруглые фигуры». Эта задача помогает ввести и обсудить понятие двойного отрицания.

Игру с кругами можно использовать и для изучения свойств чисел, букв, звуков. Вот несколько таких примеров.

4. В круг положите все числа, большие 5.

Вне круга лежит и число 5, поэтому ответ «Вне круга лежат числа, меньшие 5» будет неверным.

Правильный ответ: «Вне круга лежат числа не больше 5».

5. В круг положите все числа, делящиеся на 2 (3, 5...).

Эта задача может быть использована для изучения признаков делимости чисел.

6. В круг положите все гласные буквы.

Вне круга кроме согласных букв лежат еще Ь и Ь, поэтому ответ «Вне круга лежат согласные буквы» не будет верным.

Правильный ответ: «Вне круга лежат негласные буквы».

7. В круг положите все буквы, смягчающие согласные.

Не надо думать, что игра с одним кругом содержит только очень простые задания. Попробуйте правильно ответить на вопрос: «Какие фигуры лежат вне круга, если внутри круга лежат фигуры, являющиеся одновременно красными и треугольными?».

Если ваши ученики освоили рассмотренные выше задачи, можно перейти к следующему этапу игры с более сложными заданиями:

8. В круг положите все числа, делящиеся на 2 и на 3 одновременно.

Вне круга лежат числа, не делящиеся на 2 или не делящиеся на 3.

9. В круг положите все числа, делящиеся на 2 или на 3.

Вне круга лежат числа, не делящиеся ни на 2, ни на 3.

10. В круг положите все геометрические фигуры, которые являются красными или треугольными.

Вне круга лежат геометрические фигуры, являющиеся одновременно некрасными и нетреугольными.

11. В круг положите все гласные буквы, обозначающие один звук.

При работе с небольшими группами или при индивидуальной работе с учащимися за столами, можно разобрать обратные задачи. В этом случае геометрические фигуры, буквы или числа сначала раскладываются на столе или закрепляются на монтажной панели, а затем ученикам дается задание с помощью веревочки объединить все фигуры, соответствующие одному признаку.

Например:

Учитель:

- Проведите замкнутую линию так, чтобы внутри были только все треугольники.

Замкнутая линия проводится с помощью тоненькой веревочки или карандаша.

Далее можно обсуждать с учениками те же вопросы, что и приведенные выше в задачах с кругами. Перед такой игрой необходимо предварительно изучить и закрепить понятие замкнутой линии. Один из наиболее эффективных способов усвоения этого понятия - работа в графическом редакторе, связанная с заливкой областей. Достаточно один раз испортить свой рисунок из-за заливки незамкнутой области, как это понятие твердо формируется в сознании ребенка.

II. Задачи с двумя кругами

Цель работы над задачами с двумя кругами - развить умение классифицировать предметы по двум свойствам, понимать и применять логическую операцию конъюнкции, выражаемую союзом «и».

У учащихся в руках тот же раздаточный материал, но теперь они уже будут работать с двумя кругами или обручами разных цветов с пересекающимися областями.

Перед решением задач необходимо выполнить ряд упражнений для выявления замкнутых областей, ограниченных проведенными окружностями. Лучше всего такие упражнения проводить на групповых занятиях с использованием обручей (синий, красный).

Учитель:

- Прыгните и приземлитесь (поставьте мелом точку) внутри синего, но вне красного круга.

- Прыгните и приземлитесь (поставьте мелом точку) внутри красного, но вне синего круга.

- Прыгните и приземлитесь (поставьте мелом точку) внутри синего и внутри красного кругов.

- Прыгните и приземлитесь (поставьте мелом точку) вне синего и вне красного кругов.

Ученики по очереди выполняют задания, наблюдая друг за другом. При выполнении этих упражнений в первый раз ошибки встречаются довольно часто. В случае ошибок важно добиться правильного объяснения от других учеников и понимания этого объяснения всеми учениками.

Учитель:

- Обведите границу области внутри синего, но вне красного круга.

- Обведите границу области внутри красного, но вне синего круга.

- Обведите границу области внутри синего и внутри красного кругов.

- Обведите границу области вне синего и вне красного кругов.

После успешного выполнения подготовительных упражнений можно приступить к решению задач.

1. В красный круг поместите все красные фигуры, а в синий круг поместите все треугольные фигуры.

Так же как и при решении задач с одним кругом, ученики случайным образом выбирают по одной геометрической фигуре из своего набора и по очереди помещают их в одну из областей. Все дети наблюдают за действиями одноклассников, а в случае ошибки поднимают руку и говорят: «Стоп». Ошибка обсуждается со всей группой. Если в процессе выполнения задачи кто-то из учеников совершил ошибку, которая осталась незамеченной, то учитель может оставить ее до последнего обсуждения, но при решении первых задач учителю лучше участвовать в игре вместе со всеми и самому произнести: «Стоп». При первом решении задачи полезно также просить каждого ученика объяснить, почему он кладет фигуру именно на это место.

Ученик:

- Красный круг должен лежать внутри красного круга, потому что он красный, но вне синего круга, потому что он нетреугольный.

- Синий квадрат должен лежать вне обоих кругов (вне красного - потому что он некрасный, вне синего - потому что нетреугольный).

- Красный треугольник должен лежать внутри обоих кругов (внутри красного - потому что он красный, внутри синего - потому что треугольный).

Если дети в процессе первой игры не догадываются, как им поступить, или не могут объяснить свои действия, то учитель должен помочь им. В дальнейшем они уже не должны испытывать затруднений.

После задачи с расположением фигур ученики отвечают на четыре вопроса:

Какие фигуры лежат:

- внутри обоих кругов;

- внутри синего, но вне красного круга;

- внутри красного, но вне синего круга;

- вне обоих кругов?

Фигуры надо называть, опираясь на два свойства - цвет и форму.

Учитель:

- Какие фигуры лежат внутри обоих кругов?

Ученик:

- Внутри обоих кругов лежат все красные треугольные фигуры.

Учитель:

- Какие фигуры лежат внутри синего, но вне красного круга?

Ученик:

- Внутри синего, но вне красного круга лежат все треугольные некрасные фигуры.

Учитель:

- Какие фигуры лежат внутри красного, но вне синего круга?

Ученик:

- Внутри красного, но вне синего круга лежат все красные нетреугольные фигуры.

Учитель:

- Какие фигуры лежат вне обоих кругов?

Ученик:

- Вне обоих кругов лежат все некрасные и нетреугольные фигуры.

Второй и третий вопросы, как показывает опыт, в самом начале проведения игр с двумя кругами вызывают наибольшие затруднения. Можно помочь ребятам посредством наводящих вопросов.

Учитель:

- Какие фигуры лежат внутри красного круга?

Ученик:

- Красные.

Учитель:

- Какие фигуры лежат вне синего круга?

Ученик:

- Нетреугольные.

Учитель:

- Значит, внутри красного круга, но вне синего круга лежат все красные нетреугольные фигуры.

При работе с детьми первого класса, особенно по программе, наряду с логическими задачами можно ставить и задачи подсчета фигур.

Сколько фигур лежит:

- внутри обоих кругов;

- внутри синего, но вне красного круга;

- внутри красного, но вне синего круга;

- вне обоих кругов?

Можно усложнить вопрос, добавив к подсчету фигур их признак:

Сколько зеленых фигур лежит вне обоих кругов?

Далее приводится несколько задач без разбора их решений и вариантов диалога с учениками. Перед каждой задачей определяется набор геометрических фигур, букв или чисел, с которыми предстоит работать.

1. В красный круг положите все квадратные фигуры, а в синий круг положите все зеленые фигуры.

2. В красный круг положите все желтые фигуры, а в синий круг положите все зеленые фигуры.

3. В красный круг положите все маленькие фигуры, а в синий круг положите все круглые фигуры.

4. В красный круг положите все круглые фигуры, а в синий круг положите все квадратные фигуры.

В этой задаче область пересечения обоих кругов также остается пустой, так как нет фигур одновременно круглых и квадратных.

5. В красный круг положите все большие фигуры, а в синий круг положите все прямоугольные фигуры.

6. В красный круг положите все числа, делящиеся на 3, а в синий круг положите все четные числа.

7. В красный круг положите все числа больше 5, а в синий круг положите все числа, меньше 10.

Для рассмотренного класса задач, как и для задач с одним кругом, полезно в процесс обучения включить обратные задачи. В этом случае геометрические фигуры, буквы или числа сначала раскладываются на столе или закрепляются на монтажной панели, а затем ученикам дается задание объединить с помощью двух веревочек разного цвета все фигуры, соответствующие одному признаку, заключив их внутри замкнутых фигур.

Например:

Учитель:

- Красной веревочкой объедините все треугольные фигуры, а синей веревочкой объедините все красные фигуры.

Вопросы для обсуждения с учащимися аналогичны приведенным выше для прямых задач с двумя кругами. Обратные задачи также развивают способность классифицировать предметы по двум свойствам, правильно использовать логическую операцию конъюнкции, выражаемую союзом «и». Эти задачи требуют большей внимательности.

Выше были приведены только некоторые задачи, затрагивающие интуитивное понимание основных логических конструкций математики. Материал для подобных задач может быть взят и из других учебных предметов (например, природоведения).

Умение классифицировать по трем признакам и применять более сложные логические операции отрабатывается на играх с тремя кругами.

2.2 Особенности использования игр и логических задач при объяснении нового материала

Игра ценна только в том случае, когда она содействует лучшему пониманию математической сущности вопроса, уточнению и формированию математических знаний учащихся. Дидактические игры и игровые упражнения стимулируют общение между учениками и преподавателем, отдельными учениками, поскольку в процессе проведения этих игр взаимоотношения между детьми начинают носить более непринуждённый и эмоциональный характер.

Практика показывает, что занимательный материал применяется на разных этапах усвоения знаний: на этапах объяснения нового материала, его закрепления, повторения, контроля. Использование дидактических игр оправдано только тогда, когда они тесно связаны с темой урока, органически сочетаются с учебным материалом, соответствующим дидактическим целям урока.

В практике начальной школы имеется опыт использования игр на этапе повторения и закрепления изученного материала, и крайне редко применяются игры для получения новых знаний.

При объяснении нового материала необходимо использовать такие игры, которые содержат существенные признаки изучаемой темы. Также в ней должны быть заложены практические действия детей с группами предметов или рисунков. При изучении раздела «Нумерация чисел первого десятка» используются прежде всего такие игры, с помощью которых дети осознают приёмы образования каждого последующего и предыдущего числа. На этом этапе можно применить игру «Составим поезд» (приложение 34)

На основе использования игры «Составим поезд» учащимся предлагают считать число вагонов слева направо и справа налево и подводят их к выводу: считать числа можно в одном направлении, но при этом важно не пропустить ни одного предмета и не сосчитать его дважды.

Также при знакомстве детей с приёмом образования чисел можно использовать игру «Живой уголок» (приложение 4).

При изучении нумерации в пределах десяти необходимо довести до понимания детей, что последнее, названное при счёте число, обозначает общее количество всей группы предметов. С этой целью следует проводить игры «Лучший счётчик», «Хлопки». С помощью этих игр дети устанавливают соответствие между числом и цифрой.

«Лучший счётчик» (приложение 5)

«Хлопки» (приложение 6)

Изучая числа первого десятка, важно сравнивать каждое предыдущее число с последующим и наоборот. Для этого предназначены игры «Лучший счётчик», «Число и цифру знаю я» (приложение 7).

Работа над составом числа начинается в разделе “Нумерация чисел первого десятка”. Состав чисел от одного до пяти дети в этот период должны знать на память, состав чисел 6-10 можно рассматривать на наглядной основе, на следующем этапе дети знакомятся с составом чисел на основе сложения по памяти. На третьем этапе дети воспроизводят состав чисел на основе выявленной закономерности: числа, стоящие на одинаковых местах (слева и справа) в числовом ряду, составляет в сумме последнее число в этом ряду.

В этот период большую помощь учащимся в изучении состава чисел окажет игра «Числа, бегущие навстречу друг другу» (приложение 8):

При изучении нумерации чисел в пределах 20 можно выделить 4 этапа:

1. Образование чисел путём прибавления единицы к предыдущему числу и вычитание единицы из последующего числа. Игра «Составим поезд».

2. Образование чисел из десятков и единиц. Здесь можно предложить игру «Математическая эстафета».

3. Анализ состава чисел в пределах 20. Можно использовать игру «Узнай, сколько палочек в другой руке».

4. Письменная нумерация чисел в пределах 20. На этом этапе можно предложить игру «Стук-стук».

«Математическая эстафета» (приложение 9)

Аналогичные упражнения выполняют из второй и третьей команд. Победит та команда, которая не допустит ни одной ошибки или допустит меньшее их число.

При изучении нумерации чисел в пределах 100 задача состоит в том, чтобы научить считать и записывать числа.

Установлению связи между устной и письменной нумерацией поможет известная игра «Молчанка» (приложение 10).

«Как запутался Серёжа?» (приложение 11)

«Спор цифр» (приложение 12).

Примечание: на уроке инсценировку «Спор цифр» может прочитать учитель или ученик, а во внеклассной работе её можно и драматизировать: за автора читает учитель, один ученик становится нулём, девять детей изображают цифры. В этой игре дети усваивают зависимость значения цифры от занимаемого его места.

Приведённые примеры далеко не исчерпывают всего разнообразия игр. Учитель может придумывать свои игры, используя местный материал, учитывая индивидуально-психологические особенности своих детей.

«Подарки Петрушки» (приложение 13).

При изучении темы состав числа 10 была проведена игра

«Украсим ёлку игрушками» (приложение 14)

Основная работа для развития логического мышления должна вестись с задачей. Ведь в любой задаче заложены большие возможности для развития логического мышления. Нестандартные логические задачи - отличный инструмент для такого развития. Существует значительное множество такого рода задач; особенно много подобной специализированной литературы было выпущено в последние годы.

Однако что зачастую наблюдается на практике? Учащимся предлагается задача, они знакомятся с нею и вместе с учителем анализируют условие и решают ее. Но извлекается ли из такой работы максимум пользы? Нет. Если дать эту задачу через день-два, то часть учащихся может вновь испытывать затруднения при решении.

Наибольший эффект при этом может быть достигнут в результате применения различных форм работы над задачей. Это (13).

1. Работа над решенной задачей. Многие учащиеся только после повторного анализа осознают план решения задачи. Это путь к выработке твердых знаний по математике. Конечно, повторение анализа требует времени, но оно окупается.

2. Решение задач различными способами. Мало уделяется внимания решению задач разными способами в основном из-за нехватки времени. А ведь это умение свидетельствует о достаточно высоком математическом развитии. Кроме того, привычка нахождения другого способа решения сыграет большую роль в будущем. Но я считаю, что это доступно не всем учащимся, а лишь тем, кто любит математику, имеет особые математические способности.

3. Правильно организованный способ анализа задачи - с вопроса или от данных к вопросу.

4. Представление ситуации, описанной в задаче (нарисовать "картинку"). Учитель обращает внимание детей на детали, которые нужно обязательно представить, а которые можно опустить. Мысленное участие в этой ситуации. Разбиение текста задачи на смысловые части. Моделирование ситуации с помощью чертежа, рисунка.

5. Самостоятельное составление задач учащимися.

Составить задачу: 1) используя слова: больше на, столько, сколько, меньше в, на столько больше, на столько меньше; 2) решаемую в 1, 2, 3 действия; 3) по данному ее плану решения, действиям и ответу; 4) по выражению и т.д.

6. Решение задач с недостающими или лишними данными.

7. Изменение вопроса задачи.

8. Составление различных выражений по данным задачам и объяснение, что обозначает то или иное выражение. Выбрать те выражения, которые являются ответом на вопрос задачи.

9. Объяснение готового решения задачи.

10. Использование приема сравнения задач и их решений.

11. Запись двух решений на доске - одного верного и другого неверного.

12. Изменение условия задачи так, чтобы задача решалась другим действием.

13. Закончить решение задачи.

14. Какой вопрос и какое действие лишние в решении задачи (или, наоборот, восстановить пропущенный вопрос и действие в задаче).

15. Составление аналогичной задачи с измененными данными.

16. Решение обратных задач.

Систематическое использование на уроках математики и внеурочных занятиях специальных задач и заданий, направленных на развитие логического мышления, организованных согласно приведенной выше схеме, расширяет математический кругозор младших школьников и позволяет более уверенно ориентироваться в простейших закономерностях окружающей их действительности и активнее использовать математические знания в повседневной жизни.

2.3 Способы использования дидактических игр при закреплении материала

На уроках закрепления нового материала важно применять игры на воспроизведение свойств, действий, вычислительных приёмов и т.д. В этом случае использование средств наглядности следует ограничить и направить внимание на проговаривание вслух правил, свойств, вычислительных приёмов. При закрепление материала форма проведения игры может быть разной: коллективной, групповой и индивидуальной. Целесообразно проводить игры в группах и в виде соревнования. Для проведения соревнования учитель в таблице на доске звёздочками отмечает дружную работу команд в течение урока. Если активность и интерес детей какой-либо команды ослабевает (например, из-за того, что команда набрала меньшее число очков, учитель должен спросить такого ученика из этой команды, который ответит правильно и заработает звезду. В конце урока учитель вместе с детьми подводя итоги соревнования, обращает внимание на дружную работу участников команд, что способствует формированию чувства коллективизма. Необходимо отнестись с большим тактом к детям, допустившим ошибки. Ошибки учащихся надо анализировать не в ходе игры, а в конце, чтобы не нарушать общего впечатления от игры.

Для закрепления устной нумерации в пределах 100 используется игра «Цепочка», при проведении которой дети каждого ряда (команды) на основе иллюстративного материала образуют числа в пределах 100, соревнуясь друг с другом.

«Цепочка» (приложение 15)

Для закрепления состава чисел можно предложить следующие игры: «Арифметический лабиринт», «Угадай-ка!», «Эстафета». Смысл этих игр заключается в том, что дети проговаривают все случаи состава числа 10 и выигрывает тот, кто назовёт наибольшее число комбинаций. Можно провести игру в виде соревнования по рядам. Также здесь можно предложить игру «Контролёры» (приложение 16).

При закреплении состава десятичного состава двузначных чисел используются игры «Сколько палочек в другой руке?», «Хлопки».

«Сколько палочек в другой руке?» (приложение 17)

«Хлопки» (приложение 18)

Как уже упоминалось в п.2 при изучении нумерации чисел в пределах 20 выделяют 4 этапа. Один из этапов - это письменная нумерация чисел в пределах 20. Здесь можно предложить игру «Стук-стук» (приложение 19).

Для закрепления навыков счёта можно предложить игру «Слушай и считай» (приложение 20)

В теме «Нумерация чисел первой сотни» для усвоения порядка следования чисел при счёте, порядковых и количественных отношений между смежными числами можно использовать игры «Считай дальше с любого числа», «Назови соседей числа», «Кто быстрей сосчитает?».

«Считай дальше с любого числа» (приложение 21)

«Назови соседей числа» (приложение 22)

«Кто быстрей сосчитает?» (приложение 23)

Также на этапе закрепления можно предложить следующие игры:

«Загадка» (приложение 24)

«Гном» (приложение 25)

«По порядку номеров» (приложение 26)

«Сбежавшие числа» (приложение 27)

При закреплении темы «Двузначные числа» была проведение игра «Рыболовы» (приложение 28)

При изучении и закреплении темы «Числа от 21 до 100» была использована игра «Весёлый счёт» или «Борьба за цифру» (приложение 29).

С помощью этих игр в процессе обучения были не только закреплены знания учащихся, но и активизировано внимание учащихся. С помощью игры “Весёлый счёт” развивалось также и зрительное восприятие детей.

2.4 Особенности применения дидактических игр при обобщении знаний учащихся

На этапе обобщения знаний целесообразно проводить уроки в форме путешествия в сказочную страну или условной экскурсии в лес с элементами игры.

При обобщении темы «Нумерация чисел в пределах 20» можно предложить следующую ситуацию. Класс отправляется на луг ловить бабочек. Начинается игра «Поймай бабочку» (приложение 30):

Потом все отправляются в магазин, (проголодались на прогулке). Далее проходит игра в «Магазин» (приложение 31)

Также при обобщении знаний по теме «Нумерация чисел в пределах 100» можно использовать следующие игры:

«Войди в ворота» (приложение 32)

Учитель школы №147 г.Санкт-Петербурга Е.А.Бочек на уроке обобщения знаний использовала игру-соревнование «Если вместе, если дружно» (приложение 33) в 1 классе. (14) Особенность этой игры - эстафетный характер заданий, когда от вклада каждого, от чёткости и взаимодействия зависит общий результат.

Эстафета №1 «Очень длинный пример»

На доске написаны примеры. Каждый ученик из команды подбегает к доске по очереди, решает один пример и передаёт эстафету следующему. Кто быстрее и правильнее решит весь пример?

Эстафета №2 «Собери робота»

Участники команд берут из корзин геометрические фигуры (круги, треугольники, квадраты и т.п.) и крепят их на доске так, чтобы получилась фигура, напоминающая робота. У кого робот получится лучше?

Эстафета №3 «Каждому по примеру»

Количество примеров на доске соответствует числу участников команды. Участники команд по очереди подбегают к доске и решают по одному примеру (на выбор). Побеждает команда, которая быстро и без ошибок решит все примеры.

Эстафета №4: «Найди цифру» На доске два плаката, где в беспорядке прикреплены цифры от 1 до 30. Участники команд по очереди снимают цифры по порядку и составляют числовой ряд. Побеждает команда, первая и правильно построившая полный числовой ряд.

Эстафета №5: «Без права на ошибку»

Команда выстраивается в шеренгу, у каждого в руках листок и карандаш. Ведущий читает задачу: 1. На одной жужаре к нам приехали 15 мямзиков, а на другой - на 7 мямзиков меньше. Сколько мямзиков приехало к нам на второй жужаре? 2. Когда Слюник видит, что кто-то нашёл пусик, он сразу начинает умирать от зависти. В четверг Мряка в присутствии Слюника нашла сначала 6 пусиков, а потом ещё 12 пусиков. Сколько раз Слюник умирал от зависти?

Каждый участник пишет ответ на листочке и показывает жюри, которое отмечает количество правильных ответов и неправильных. Ответ, не показанный до сигнала ведущего, не засчитывается.

Затем выстраивается другая команда и решает следующие задачи:

3. У Кости было 20 больших хрямзиков и 7 маленьких. Когда он узнал, что это такое, он всё побросал и отскочил подальше. Сколько хрямзиков бросил Костя?

4. Волк съел на своём Дне рождения трёх поросят, семерых козлят и одну Красную шапочку. Сколько сказочных героев съел Волк?

Побеждает команда, давшая большее количество верных ответов.

Эстафета №6: «Математическая сказка»

Все участники команды, говоря по одному предложению, продолжают сказку, которую начинает ведущий: первая команда «Однажды в математическом королевстве случилась беда…», вторая команда «У Пятёрки был День рождения, и она пригласила на него своих друзей…»

После подводятся итоги урока. Какая команда была самая дружная, кому удалось лучше всех справится с трудными математическими заданиями? Награждение. Очень важно, чтобы ученики поняли в процессе игры: если вместе взяться за дело, то даже самые трудные примеры можно решить. Если такая игра проводится в классе впервые, то учителю надо заранее позаботиться о помощниках (старшеклассниках, родителях), которые при необходимости помогли бы погасить возможные конфликты.

При подведении итогов важно отметить, сколь важны факты оказания помощи, проявления дружбы.

Состав команд в играх-соревнованиях в 1 классе должен меняться в каждой игре, чтобы у участников не появился конкретный постоянный соперник. Важный педагогический момент игры - помочь учащимся осознать, что учиться вместе легче, чем поодиночке, что у них прекрасные одноклассники, которые всегда помогут.

Также при обобщении знаний детей довольно эффективно проходят игры «Освободи птичку» и «Незадачливый математик».

«Освободи птичку» (приложение 35)

«Незадачливый математик» (приложение 36)

Заключение

В процессе работы над темой на основе рассмотренной нами психолого-педагогической и методической литературы по данному вопросу, а также в результате исследования, мы пришли к выводу, что в педагогической работе большое внимание уделяется игре на уроке и выявлено её существенное значение для получения, усвоения и закрепления новых знаний у учащихся начальных классов.

Проведя и проанализировав наши исследования, мы выявили, что игра позволяет не только активно включить учащихся в учебную деятельность, но и активизировать познавательную деятельность детей. Игра помогает учителю донести до учащихся трудный материал в доступной форме. Отсюда можно сделать вывод о том, что использование игры необходимо при обучении детей младшего школьного возраста на данном конкретном уроке.

В ходе проделанной нами работы, мы сделали вывод, что игра может быть использована как и на этапах повторения и закрепления, так и на этапах изучения нового материала. Она должна в полной мере решать как образовательные задачи урока, так и задачи активизации познавательной деятельности, и быть основной ступенью в развитии познавательных интересов учащихся.

Игры особенно необходимы в обучении и воспитании детей младшего школьного возраста. Благодаря играм удаётся сконцентрировать внимание и привлечь интерес даже у самых несобранных учеников. Вначале их увлекают только игровые действия, а затем и то, чему учит та или иная игра. Постепенно у детей пробуждается интерес и к самому предмету обучения.

Таким образом, игра - это целенаправленная творческая деятельность, в процессе которой обучаемые глубже и ярче постигают явления окружающей действительности и познают мир.

Важнейшей задачей математического образования является вооружение учащихся общими приемами мышления, пространственного воображения, развитие способности понимать смысл поставленной задачи, умение логично рассуждать, усвоить навыки алгоритмического мышления. Каждому важно научиться анализировать, отличать гипотезу от факта, отчетливо выражать свои мысли, а с другой стороны - развить воображение и интуицию (пространственное представление, способность предвидеть результат и предугадать путь решения). Именно математика предоставляет благоприятные возможности для воспитания воли, трудолюбия, настойчивости в преодолении трудностей, упорства в достижении целей.

Сегодня математика как живая наука с многосторонними связями, оказывающая существенное влияние на развитие других наук и практики, является базой научно-технического прогресса и важной компонентой развития личности.

Одной из основных целей изучения математики является формирование и развитие мышления человека, прежде всего, абстрактного мышления, способности к абстрагированию и умения «работать» с абстрактными, «неосязаемыми» объектами. В процессе изучения математики в наиболее чистом виде может быть сформировано логическое (дедуктивное) мышление, алгоритмическое мышление, многие качества мышления - такие, как сила и гибкость, конструктивность и критичность и т.д.

Поэтому в качестве одного из основополагающих принципов новой концепции в «математике для всех» на первый план выдвинута идея приоритета развивающей функции обучения математике. В соответствии с этим принципом центром методической системы обучения математике становится не изучение основ математической науки как таковой, а познание окружающего человека мира средствами математики и, как следствие, к динамичной адаптации человека к этому миру, к социализации личности.

Основной целью математического образования должно быть развитие умения математически, а значит, логически и осознанно исследовать явления реального мира. Реализации этой цели может и должно способствовать решение на уроках математики различного рода нестандартных логических задач. Поэтому использование учителем начальной школы этих задач на уроках математики является не только желательным, но даже необходимым элементом обучения математике.

Таким образом, игра - это целенаправленная творческая деятельность, в процессе которой обучаемые глубже и ярче постигают явления окружающей действительности и познают мир.

Приложение 1

Вопрос №1:

главное

не самое главное

второстепенное

никакого места не занимает

не задумывался над этим

не знаю

57%

43%

6%

8%

-

-

Приложение 2

Вопрос №2: “Вы в своей педагогической практике много времени отводите дидактической игре в учебном процессе?” 57% учителей ответило “очень много”, а 43% - не очень много, но достаточно.

очень много

не очень много

только на уроках математики

сегодня это никому не нужно

не задумывался над этим

не знаю

57%

43%

6%

8%

-

-

Приложение 3

Какие уроки ты больше всего любишь?

Если бы ты был учителем, чего больше было бы у тебя на уроке:

Как часто в вашем классе на уроках бывают игры:

Как ты относишься к игре на уроке?

Как ты думаешь, какая польза от игры на уроке?

с использованием схем, таблиц, картин

работы с учебником

очень часто

очень хочется участвовать

уроки становятся интереснее

Приложение 4

«Живой уголок»

Цель: ознакомление детей с приёмом образования чисел при одновременном закреплении пространственной ориентации, понятий «больше», «меньше».

Средства обучения: изучение животных.

Содержание игры: учитель говорит: «В нашем живом уголке живут кролики: серый и белый, кролики грызут морковь. Сколько кроликов грызут морковь? (два, ответ фиксируется показом цифры 2). Назовите, какие кролики грызут морковь? (серый и белый). К ним прибежал ещё один кролик. Что изменилось? (кроликов стало больше) Сколько кроликов теперь едят морковь? (три, ответ фиксируется показом цифры 3) Перечисли их (один белый и ещё один белый, и ещё один серый, всего три). Каких кроликов больше, белых или серых? (белых) Почему их больше? (их два, а два это один и один). Почему 2>1? (два идёт при счёте после числа 1)». Аналогично можно рассматривать образование последующих чисел (12)

Приложение 5

«Лучший счётчик»

Содержание игры: учитель на магнитном моделеграфе по секторам соответственно размещает от 1 до 10 рисунков. Открывая каждый сектор поочерёдно, учитель предлагает детям сосчитать число рисунков и показать нужную цифру. Сосчитавший первый называется лучшим счётчиком. Затем учитель показывает цифры вразбивку, а ученики - соответствующее число рисунков в секторах круга. В итоге игры учитель открывает 2 сектора, предлагает сравнить число рисунков в них и определить, где предметов меньше и на сколько.

Приложение 6

«Хлопки»

Содержание игры: учитель на магнитном моделеграфе размещает по секторам от 1 до 10 рисунков. Открывая по очереди сектор за сектором, предлагает сосчитать число рисунков и по его сигналу похлопать столько же раз, сколько открыто рисунков, и показать нужную цифру (учитель задаёт ритм хлопков).

Приложение 7

«Число и цифру знаю я»

Содержание игры: учитель на магнитном моделеграфе поочередно открывает сектор за сектором, дети считают число цифр в каждом из них и показывают учителю соответствующую карточку с цифрой, а затем сравнивают число цифр в двух соседних секторах магнитного моделеграфа.

Приложение 8

«Числа, бегущие навстречу друг другу»

Цель: знакомство с составом числа 10.

Содержание игры: учитель предлагает детям записать в тетрадь числа от 1 до 10 по порядку и дугами показать два числа, которые бегут навстречу друг другу, образуя в сумме число 10. Затем просит записать примеры на сложение с этими числами. Например:

0 1 2 3 4 5 6 7 8 9 10

0 + 10 = 10

10 + 0 = 10

1 + 9 = 10

9 + 1 =10

Учитель спрашивает: «Что интересного вы заметили при составлении примеров?» Дети отвечают, что числа, стоящие на одинаковых местах справа и слева в числовом ряду, составляют в сумме число 10.

Приложение 9

«Математическая эстафета»

Дидактическая цель: ознакомление с образованием чисел из десятка и единиц.

Средства обучения: 10 кругов и 10 треугольников.

Содержание игры: учитель делит класс на 3 команды по рядам и проводит игру-соревнование. Первый ученик из первой команды иллюстрирует число с помощью кругов и треугольников, второй из этой же команды называет цифрой обозначенное число, третий - его состав, четвёртый показывает число на карточках.

Приложение 10

«Молчанка»

Содержание игры: учитель иллюстрирует на абаке или карточках двузначные числа, а учащиеся обозначают их с помощью разрезных цифр и показывают их молча учителю или записывают в тетради.

Для глубокого осознания принципа поместного значения цифр используются иллюстративные (с помощью цифр) рассказы «Спор цифр» и «Как запутался Серёжа?».

Приложение 11

«Как запутался Серёжа?»

Серёжа научился писать числа в пределах сотни. Однажды вечером отец положил перед Серёжей на стол 4 палочки слева и один десяток связанных палочек справа и предложил мальчику написать, сколько палочек всего. Серёжа написал число 41. Правильно ли написал число Серёжа? Как он рассуждал?

Приложение 12

«Спор цифр»

Однажды цифры поспорили с нулём и стали его дразнить: Ты хотя тоже цифра, но ровнехонько ничего не значишь! Вот ученик возьмёт цифру 2 и поставит два кубика, а возьмёт тебя и ничего не поставит.

- Правда, правда, ни-че-го - сказала пятёрка.

- Ни-че-воч-ка, ни-че-воч-ка, - затараторили цифры.

- Глупые вы, ничего не понимаете, - сказал ноль, - Вот единица. Я встану рядом с тобой справа. Чем ты теперь стала? Отвечай!

Ноль встал справа рядом с единицей, и она стала … (десяткой).

- Вот я стану рядом с тобой справа, пятерка, что ты будешь обозначать? Отвечай! - Ноль встал справа рядом с пятёркой, и стала она … (пятью десятками, 50)

Ноль становится рядом справа с каждой цифрой и требовал ответить, чем она стала.

- Я увеличиваю каждую из вас, а вы меня ничевочкой называли. Неблагодарные! Подумайте хорошенько, и вы поймёте, что я для вас значу. Когда вас нет, я вас всегда заменяю. Можете ли вы написать ответ в таких примерах: 5-5=… , 7-7=…? А ну-ка, попробуйте! Никого из вас нельзя здесь поставить.

Задумались цифры и перестали дразнить ноль. Но цифрам всё же захотелось поспорить, и они затеяли спор между собой.

- Я больше всех значу, - заявила девятка, - я не какая-то единица.

Единица засмеялась, подскочила к девятке слева и закричала:

- Кто теперь больше, ты или я? Отвечай! (получилось 19)

- Я десяток, а ты только девять; десять ведь больше девяти. Что, молчишь?

Подбежала семёрка, прогнала единицу и сама стала слева. Получилось (79).

- Я семь десятков, 70, понимаешь?

Так все цифры становились рядом с девяткой и все оказывались больше неё. Удивилась девятка, смутилась…

Учитель спрашивает:

- Правильно ли спорят цифры? Какой вывод можно сделать?

- Девятка больше всех, когда цифры живут отдельно. Когда они становятся рядом друг с другом, дело меняется. Самое главное - это место цифр в числе. На первом месте справа пишутся единицы, на втором справа - десятки.

Цифры поняли и с тех пор перестали спорить, кто из них больше.

Приложение 13

«Подарки Петрушки»

Цель: ознакомить с составом числа 5.

Средства обучения: иллюстрации Петрушки, Незнайки и Веселого Карандаша; воздушные шары, вырезанные из цветного картона.

Содержание игры: учитель сообщает, что на урок в гости пришёл Петрушка с воздушными шарами и с ним пришли его друзья - Незнайка и Весёлый Карандаш (на доску крепятся иллюстрации с изображением сказочных героев). Петрушка решил подарить шары Незнайке и Весёлому Карандашу. Как он может подарить их?

Дети перечисляют возможные варианты состава числа пять и иллюстрируют у доски и после записывают в тетрадь. В конце игры наиболее активные дети поощряются.

Приложение 14

«Украсим елку игрушками»

Цель: знакомство с составом числа 10.

Средства обучения: рисунок ёлки; маленькие иллюстрации ёлочек для учащихся.

Содержание игры: учитель сообщает, что скоро Новый год. И все будут наряжать ёлку. И нам с вами тоже надо нарядить ёлку. Наша ёлка - математическая. На доску вывешивается плакат с ёлкой. На верхушке - звезда с числом 10. Но не все ветки украшены игрушками, надо повесить ещё недостающие шарики так, чтобы на каждом ярусе сумма чисел была равна 10. Дети выходят к доске и наряжают ёлку. Учитель должен поощрять слабых детей.

Приложение 15

«Цепочка»

Содержание игры: учитель выставляет для каждого ряда (команды) на подставку доски карточки, изображающие числа вида:

Десятки

Единицы

Десятки

Единицы

Учащиеся каждого ряда (команда) считают единицы каждого разряда и по цепочке называют проиллюстрированные числа (сначала ученик первой, потом второй и третьей команды). Потом учитель ставит другие карточки, иллюстрирующие числа второго десятка и ученики по цепочке называют их. Игра продолжается аналогично.

Выигрывает команда, которая допустит меньше ошибок в образовании двузначных чисел. Для подведения итогов игры учитель отмечает в таблице звёздочками правильные ответы учащихся.

Приложение 16

«Контролеры»

Цель: закрепление знания состава чисел первого десятка.

Содержание игры: учитель распределяет детей на две команды. Два контролёра у доски следят за правильностью ответов: один - первой команды, второй - другой команды. По сигналу учителя ученики первой команды делают несколько ритмических наклонов вправо, влево и считают про себя. По сигналу учителя они называют хором число наклонов первой команды до заданного числа и ведут счёт про себя (например, 6 - прибавил 1, 7 - прибавил 2, 8 - прибавил 3). Затем они называют число выполненных наклонов. По числу наклонов, выполненных учениками 1 и 2 группы, называется состав числа. Учитель говорит: «Восемь - это…», ученики продолжают: «Пять и три». Контролёры показывают зелёные круги в правой руке, если согласны с ответом, красные - если нет. В случае ошибки упражнение повторяется. Потом учитель предлагает детям второй команды по сигналу сделать несколько приседаний, а ученики первой команды дополняют приседания до заданного числа. Называется состав числа. Аналогично анализируется состав чисел на основе хлопков.

Данная игра не только систематизирует знания учеников, но и несёт элементы физической разгрузки, т.к. использует физкультурные упражнения.

Приложение 17

«Сколько палочек в другой руке?»

Цель: закрепление знания десятичного состава двузначного числа.

Средства обучения: набор отдельных палочек и пучков палочек.

Содержание игры: вызванный ученик берёт пучок палочек в одну руку, а отдельные палочки - в другую руку и показывает их классу. Дети угадывают их количество и показывают карточку с соответствующим числом.

Затем задание усложняется: надо угадать, сколько отдельных палочек в руке, если в другой - пучок, и составить пример на сложение. Например, ученик взял 15 палочек, положив пучок из 10 палочек в правую руку и 5 отдельных палочек в левую. Дети составляют пример на сложение 10+5=15

Приложение 18

«Хлопки»

Цель игры: закрепление знания десятичного состава двузначного числа.

Средства обучения: набор определённых палочек и пучков палочек.

Содержание игры: учитель вызывает двух детей к доске. Ученик, стоящий справа, обозначает единицы, а стоящий справа - десятки. Учитель называет двузначное число, правый ученик хлопками обозначает число единиц в этом числе, а левый - число десятков. Все остальные ученики выполняют роль контролёров. Они сигналят, если десятичный состав числа показан учениками неверно

Приложение 19

«Стук-стук».

Цель: закрепление знаний по нумерации чисел в пределах 20.

Средства обучения: на доске изображена таблица с двумя разрядами:

Десятки

Единицы

Содержание игры: учитель молча стучит указкой один раз в разряде десятков и несколько раз в разряде единиц. Дети внимательно слушают и показывают учителю соответствующее число на карточке с цифрами.

Приложение 20

«Слушай и считай»

Содержание игры: у каждого из учеников набор карточек с числами от 1 до 10. У учителя палочка, которой он ударяет по какому-либо предмету, издающему громкий звук, определённое число раз. Все учащиеся должны немедленно поднять и показать карточку с числом, соответствующим количеству ударов.

Можно условиться, что играющие, услышав удары, должны поднять карточку с числом, недостающим, например, до десяти (ударов было три, поднять карточку с числом 7). Затем устанавливается другое правило: показать надо не число, соответствующее числу ударов, а два соседних числа - меньшее и большее. Можно предложить и другой вариант игры: учитель сначала ударит палочкой по одному предмету 8 раз, а по другому - 3 раза. Это значит, что учащиеся должны от восьми отнять три и показать карточку с числом 5. Игра требует тишины и внимания, поэтому можно предложить ребятам, прислушиваясь к числу ударов, закрывать глаза.

Приложение 21

«Считай дальше с любого числа»

Эта игра поможет избавиться от ошибки, когда ученик называет число с переходом через круглый десяток, например, 67, 68, 69, 70 (а не шестьдесят десять).

Приложение 22

«Назови соседей числа»

Эта игра даёт возможность каждое число первой сотни рассматривать не изолированно, а в связи с предыдущим и последующим числом.

Средства обучения: мяч или два мяча - большой и маленький (или разного цвета).

Содержание игры: учитель бросает мяч то одному, то другому участнику игры, а те, возвращая мяч, отвечают на вопрос учителя. Бросая мяч, учитель называет какое-либо число, например двадцать один, играющий должен назвать смежные числа - 20 и 22 (обязательно сначала меньшее, потом большее).

Возможен и другой, более сложный вариант игры. Возвращая мяч, играющий должен сначала отнять от названного учителем числа единицу, потом прибавить к нему полученную разность. Например, учитель назвал число 11, а играющий должен назвать числа

10 (11-1=10) и 21 (11+10=21).

Эту игру можно провести и с двумя мячами: большим и маленьким (или разного цвета). Когда учитель бросает большой мяч, то отвечающий должен, к примеру, прибавить 9 и вернуть мяч обратно, а когда маленький - то отнять 3. Здесь дети не только считают, но и развивают внимание, чтобы не перепутать действия.

Приложение 23

«Кто быстрей сосчитает?»

Игра развивает зоркость, внимание.

Содержание игры: на доске вывешиваются два одинаковых плаката, на которых записаны в произвольном порядке числа. Например, от 61 до 90 (от 11 до 30 и т.п.). Например, требуется назвать и указать на таблице по порядку все числа от 61 до 90. Можно соревноваться и двумя командами, по одному человеку от каждой. Затем победители соревнуются между собой и определяется лучший счётчик.

Примерный вид плаката:

90

75

71

63

66

67

82

86

68

76

87

61

73

89

81

74

88

65

77

84

80

69

78

62

70

64

83

72

79

85

Приложение 24

«Загадка»

Цель: закрепить нумерацию чисел в пределах 100; десятичный состав числа.

Содержание игры: учитель загадывает загадку «Загадка про качели». Замени число десятками и единицами и в таблице найди буквы. Прочитайте слово и запишите его.

5 ед.

6 ед.

8 ед.

35, 75, 38, 98, 76, 95

3 дес.

К

Д

Ч

Ответ: качели

7 дес.

А

Л

М

9 дес.

И

Ю

Е

Приложение 25

«Гном»

Цель: закрепить умение детей заменять двузначное число суммой его разрядных слагаемых.

Содержание игры: Помоги гному найти дорогу к дому. Куда идти: вперёд или назад - об этом числа говорят. Замени каждое число суммой разрядных слагаемых и в таблице найди букву. Составь слово, прочитай.

4

5

7

84, 87, 27, 55, 85, 54

80

В

Ё

П

Ответ: вперёд.

50

Д

Р

М

20

О

О

Е

Приложение 26

«По порядку номеров»

Цель: закрепление порядка следования чисел при счёте.

Содержание игры: две команды по 10 человек выстраиваются шеренгами лицом к классу. У ведущего - два комплекта карточек разного цвета с числами от 1 до 10 (можно использовать любые варианты чисел). Перед началом игры ведущий перемешивает карточки каждого комплекта и по одной прикрепляет на спины играющих. Ни один из играющих не знает, какое число на его карточке. Узнать это каждый может лишь у своего соседа. По сигналу игроки команд должны построится так, чтобы числа на их карточках были расположены по порядку. Команда, выполнившая задание быстрее и точнее, выигрывает.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.