Методическая система обучения студентов педвуза дифференциальному и интегральному исчислению функций в контексте фундаментализации образования

Анализ существующих трактовок феномена фундаментализации образования. Состав и структура методической системы обучения студентов-математиков педвуза дифференциальному и интегральному исчислению в условиях фундаментализации математического образования.

Рубрика Педагогика
Вид автореферат
Язык русский
Дата добавления 11.11.2010
Размер файла 59,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В этом же разделе при характеризации средств обучения дифференциальному и интегральному исчислению функций студентов-математиков педвуза подчеркивается, что в работе со студентами придается большое значение воспитанию в обучаемых потребности самостоятельно изучать учебники по математическому анализу, читать научные, научно-методические и научно-популярные статьи из периодических журналов и сборников (в том числе зарубежных изданий), обращаться к соответствующей литературе учебного и научного характера информационно-электронного ресурса.

Из средств обучения студентов дифференциальному и интегральному исчислению функций особо выделяются математические задачи, имеющие образовательное, практическое, методическое, воспитательное значения. В разделе осмысливается роль так называемых ключевых и теоретических задач. При конструировании систем задач, используемых в обучении студентов, исходим из того, что каждая такая система должна быть нацелена на формирование знаний, умений и навыков, позволяющих успешно изучать математический анализ; на формирование профессионально значимых знаний и умений; на приобретение навыков самостоятельной работы; на приобщение студентов к творческой и исследовательской деятельности.

В разделе обсуждается также роль компьютера как информационно-технического средства обучения и средства управления учебной деятельностью обучаемых.

Раздел 1.3. «Общие цели математического образования и предмет математического анализа как составляющие внешней среды методической системы обучения» содержит три подраздела. В 1.3.1. «Общие цели математического образования» подчеркнуто, что сегодня в условиях модернизации системы образования на первый план выступает личностно-ориентированное обучение, поскольку само образование характеризуется усилением внимания к обучаемому, к его саморазвитию, к общечеловеческим ценностям, к воспитанию в обучаемых умения находить свое место в жизни. Максимально возможное раскрытие творческих способностей человека и их реализация есть благо одновременно и для общества, и для самого человека, поэтому главной целью системы образования следует считать воспитание личности, способной и готовой к саморазвитию. Главная ценность всей системы образования состоит в ее способности открыть, сформировать и упрочить индивидуальные ценности образования у обучаемых (В.П. Зинченко).

Наблюдающийся информационный бум четко ставит проблему: как научить лучше за меньшее время? Решение этой проблемы видится в следующем: необходимо менять традиционные методы обучения, резко снижать долю репродуктивных подходов, учить критически относиться к изучаемому материалу, воспитывать желание и необходимость анализировать информацию, приобщать к научному исследованию. В отношении обучения любой категории учащихся актуален принцип: важно «учить учиться».

Автор концентрирует внимание на общих целях вузовского математического образования. Одной из таких целей является воспитание и развитие личности средствами математики. Систематическое изучение математики должно преследовать цель формирования у будущих специалистов научного мировоззрения, которое предполагает знакомство с природой научного знания, с принципами построения научных теорий, в том числе естественнонаучных и математических теорий. Это осуществляется посредством осознания взаимосвязи реального и идеального, происхождения математических абстракций из практики, характера отражения математикой окружающего нас мира, роли математического моделирования в научном познании и в практике.

К общим целям математического образования относим также обеспечение устойчивого интеллектуального развития обучаемых, включающее формирование и развитие определенных качеств мышления, необходимых в жизни. Прежде всего, это абстрактное мышление и дедуктивное мышление, столь характерные для математиков-специалистов, а также эвристическое мышление и творческое мышление. Кроме того, будущему специалисту необходимо обладать, логическим и алгоритмическим мышлением, навыками исследовательской деятельности. Важными целями математического образования являются и формирование математического стиля мышления, математической направленности ума, «свернутого» мышления, присущего творческим людям, развитие гибкости мышления, сообразительности.

Многие из приведенных общих целей математического образования имеют перспективную направленность, носят самый общий характер, в некотором смысле являются идеализированными, стратегическими (термин В.А. Тестова).

В подразделе 1.3.2. «Предмет математического анализа» обсуждается объект и предмет современной математики, метод математического моделирования и предмет математического анализа как области математики. Актуальность рассмотрения объекта сегодняшней математики объясняется тем обстоятельством, что математика в предыдущее и настоящее столетия сильно изменилась, она шагнула в своем развитии далеко вперед. Многие ее разделы стали еще более абстрактными, появились и совершенно новые, расширился круг приложений этой науки.

В трактовке предмета современной математики автор придерживается позиций Л.Д. Кудрявцева: математика изучает математические структуры. Рассмотрены различные характеризации понятия «математическая структура», при этом подчеркивается, что математическая структура может быть непосредственной математической моделью какого-либо реального явления. Если это не так, то она в той или иной степени может служить математическим аппаратом для изучения моделей реальных явлений. Приведены различные классификации математических моделей, обсуждается суть метода математического моделирования как метода изучения явлений посредством математических моделей.

В рамках данного подраздела анализируются известные в литературе трактовки предмета математического анализа. Следуя С.М. Никольскому, предметом математического анализа называем изучение функций и их обобщений методом пределов.

В подразделе 1.3.3. «Влияние предмета математического анализа на содержание обучения студентов-математиков педвуза дифференциальному и интегральному исчислению функций» подчеркивается важность изучения тех или иных структур математического анализа, которые непосредственно моделируют реальные процессы и явления окружающего нас мира. Отмечается, что иногда одни и те же структуры способны моделировать совершенно разные реальные явления. Например, производная функции может моделировать скорость, угловой коэффициент касательной к плоской кривой в заданной точке, линейную плотность в точке неоднородного стержня, силу тока в данный момент времени и т.д.

В исследовании показано, что на содержание математической подготовки студентов по дифференциальному и интегральному исчислению функций непрерывное воздействие должны оказывать динамичное расширение предмета математического анализа и тенденции развития ряда его направлений (в сочетании с определенным консерватизмом, связанным с продолжением российских традиций обучения анализу студентов в высшей школе). Обоснована целесообразность более обстоятельного знакомства студентов с неравенствами, которые играют большую роль в вопросах приложений дифференциального и интегрального исчисления, со свойствами выпуклых функций, также имеющих значительные применения. При изучении основ анализа студентам полезно иметь дело не только с классическими утверждениями, но и развитием фактов.

В разделе 1.4. «Другие составляющие внешней среды методической системы обучения студентов педвуза дифференциальному и интегральному исчислению функций» рассматриваются такие феномены математического образования, как его индивидуализация, дифференциация, гуманизация и гуманитаризация. Кроме перечисленных составляющих внешней среды конструируемой методической системы также осмысливаются структура личности и закономерностях ее развития, отдельные важные исследования последних лет, проведенные различными авторами в рамках дифференциального и интегрального исчисления функций. Таким образом, в данном разделе продолжается анализ методической системы на методологическом уровне.

Опираясь на исследования проблемы личности известными учеными (В.С. Леднев, Г.И. Саранцев и др.), в ее структуре выделяем мотивационный, операционально-действенный, эмоционально-волевой, нравственный компоненты. Показано, что установление соответствующих связей между компонентами структуры личности и конкретными видами математической деятельности при обучении студентов дифференциальному и интегральному исчислению может оказывать целенаправленное влияние на личность средствами математического анализа, владение такими связями позволяет осуществлять развитие личности студента-математика педвуза. Так, при освоении доказательств основных теорем дифференциального и интегрального исчисления у студента развивается логическая составляющая мышления, а при решении задач и поиске обобщений теорем - эвристическая составляющая. Реализация строгих доказательств утверждений, безусловно, отражается и на формировании морально-этических качеств личности. Лаконичные математические выкладки, неожиданные способы решения задач позволяют развивать эстетические чувства.

Говоря об индивидуальном подходе в обучении студентов, автор акцентирует внимание на гибком и умелом использовании преподавателем различных методов, форм и средств педагогического влияния на обучаемых, педагогическом сотрудничестве и взаимодействии с ними с целью достижения высоких результатов образовательной деятельности.

В данном разделе индивидуализация обучения дифференциальному и интегральному исчислению функций студентов-математиков в педвузе характеризуется следующими положениями: 1) обучаемые студенты должны иметь максимально возможную самостоятельность в выборе путей и средств практической реализации основных теоретических положений изучаемого раздела анализа; 2) студентам необходимо предоставить условия и возможности для специализации по отдельным направлениям дифференциального и интегрального исчисления; 3) в процессе обучения важно реализовать личностные возможности каждого студента - будущего учителя математики: методические, организаторские, научные; 4) обучаемым важно иметь возможность выбора учебников и учебных пособий, научно-методической литературы, а также форм самоконтроля.

Индивидуализация обучения способствует самостоятельному приобретению знаний, формированию умений и навыков, обеспечивает интенсификацию учебного процесса, глубину в усвоении студентами знаний. Она стимулирует опережающее обучение на различных этапах учения, формирует надежный исследовательский уровень обучения.

В работе дана обстоятельная характеристика феномена дифференциации обучения математике, проанализировано его хронологическое развитие. В отношении обучения студентов-математиков педвуза выделяются два типа дифференциации: внутренняя и внешняя. Внутренняя дифференциация учитывает индивидуальные особенности студентов в условиях работы преподавателя со всем курсом (потоком) или учебной группой. Внешняя же дифференциация характеризуется учетом индивидуальных особенностей обучаемых студентов в условиях специальной группы (в случае нашей методической системы обучения это, например, группа участников студенческого научно-исследовательского семинара, комплектуемая студентами разных курсов).

В характеризуемом разделе также производится осмысление феноменов гуманизации и гуманитаризации математического образования.

Гуманизация - это феномен, направленный на создание максимально благоприятных условий для развития личности, на организацию условий для раскрытия способностей обучаемых, совершенствования их нравственной и творческой сторон, преодоления «обезличенности» образования. Гуманизация образования обусловливает его гуманитаризацию. В разделе отмечается, что в обширной литературе, посвященной исследованию феномена гуманитаризации образования, в это понятие вкладывался разный смысл. Автор придерживается трактовки Г.И. Саранцева: «Подлинной сутью гуманитаризации математического образования является отражение в нем деятельностной концепции знания». Деятельностная сторона содержания обучения будущих педагогов дифференциальному и интегральному исчислению в работе отражается, в первую очередь, через реализацию деятельностных концепций работы с принципиальными теоремами и работы с определениями основных понятий.

В этом же разделе в качестве составляющей внешней среды конструируемой методической системы рассматриваются некоторые важные новые результаты исследований и открытия в области вещественного анализа функций, восходящие, в основном, к 90-м гг. прошлого столетия, а также началу настоящего. Упоминаемые результаты являются важными с точки зрения их использования в вопросе обучения студентов педвуза основам математического анализа, а также привития обучаемым исследовательских навыков ведения научной работы. Новые факты и исследования касаются: различных подходов к построению курса дифференциального исчисления функций одной переменной и нескольких переменных (в частности, подхода, использующего понятие функции, дифференцируемой по Каратеодори), элементов негладкого анализа, теории неравенств и выпуклых функций, обобщений и развитий классических теорем анализа о среднем значении (Ролля, Лагранжа, Коши, формулы Тейлора, правил Лопиталя-Бернулли), сведений об интегралах, некоторых вопросов аппроксимации функций.

В Главе II «Теоретические основы обучения студентов математического факультета педвуза дифференциальному и интегральному исчислению в контексте фундаментализации образования» изучается отражение идей фундаментализации образования в компонентах конструируемой методической системы обучения будущих учителей математики основам математического анализа. В частности, показывается влияние феномена фундаментализации математического образования на постановку целей обучения, отбор содержания обучения, выбор средств обучения. В данной главе анализ методической системы производится на теоретическом уровне.

В разделе 2.1 «Цели обучения студентов-математиков дифференциальному и интегральному исчислению функций» проводится анализ целей обучения студентов указанной дисциплине, при этом выделяются следующие уровни: 1) уровень теоретического представления математического образования; 2) уровень учебного предмета математического анализа; 3) уровень учебных материалов по дифференциальному и интегральному исчислению функций; 4) уровень реального учебного процесса. В настоящем разделе на соответствующих уровнях охарактеризованы общеобразовательные, развивающие, воспитательные, практические цели обучения будущих учителей дифференциальному и интегральному исчислению.

Одной из важнейших развивающих целей является приобщение обучаемых к творческой деятельности средствами математического анализа. На пути ее достижения принципиальным является вовлечение студентов в научно-исследовательскую работу.

Автор подробно останавливается также на важности постановки цели, восходящей к формированию у студентов эвристического мышления. В исследовании показано, что формирование творческого, эвристического мышления должно стать одним из самых важных моментов в совершенствовании методов обучения студентов. В курсе дифференциального и интегрального исчисления необходимо специально рассматривать вопросы, прививающие навыки самостоятельного поиска новых закономерностей и связей и знакомящие с достаточно общими, едиными приемами самостоятельного целенаправленного поиска решения задач и доказательства теорем.

Раздел 2.2. «Концепция содержания обучения студентов-математиков педвуза дифференциальному и интегральному исчислению» включает 4 подраздела, его главная цель - охарактеризовать содержание математического образования будущих учителей, касающегося основ анализа.

В подразделе 2.2.1. «О системе принципов отбора содержания обучения» анализируется концепция обучения предмету, представленная В.В. Краевским и трактуемая содержание как «педагогически адаптированный социальный опыт человечества». Взяв за основу положения этой концепции, автор формулирует свою - концепцию содержания обучения будущих учителей дифференциальному и интегральному исчислению, в которой отбору содержания обучения придается статус одной из стратегий обучения.

Отбор содержания обучения будущих учителей дифференциальному и интегральному исчислению осуществляется на основе системы принципов, объединенных в блоки: блок общих, блок ключевых и блок дополняющих принципов. Приводится характеризация каждого из этих блоков, а также механизм, или процесс отбора содержания обучения студентов основам анализа в соответствии с выделенными принципами, при этом весь спектр знаний условно подразделяется на компоненты - целевой и опосредованный. В подразделе выделены условные блоки целевых знаний, а в приложении Б диссертации приведено детализированное содержание обучения студентов дифференциальному и интегральному исчислению функций, включающее в себя не только целевые знания, но и опосредованные.

Подраздел 2.2.2. «Обоснование содержания обучения студентов-математиков дифференциальному и интегральному исчислению функций» содержит комментарии мотивов включения в совокупность предметных знаний тех или иных вопросов основ анализа для усвоения будущими учителями математики с опорой на выделенные принципы отбора содержания обучения.

В подразделе 2.2.3. «Способы деятельности как составляющая содержания обучения студентов-математиков дифференциальному и интегральному исчислению функций» раскрывается важность реализации деятельностного подхода в обучении будущих учителей (Г.И. Саранцев, О.Б. Епишева), интенсифицирующего учебный процесс. Акцентируется внимание на некоторых особенностях практической реализации деятельностного подхода в обучении дифференциальному и интегральному исчислению функций студентов-математиков в педагогическом вузе. Подчеркивается, что при освоении способов деятельности важно выявлять и разъяснять студентам различные схемы используемых рассуждений. Одна из таких схем восходит к усвоению определений основных понятий, другая схема связана с усвоением принципиальных теорем рассматриваемого курса (в работе подробно осмысляются различные этапы работы с теоремами и определениями анализа). Показано, что систематическое использование таких схем при обучении студентов полностью отвечает идеям гуманизации и гуманитаризации вузовского математического образования, согласуется с концепцией дифференциации и индивидуализации обучения, реально отражает направления фундаментализации образования.

В подразделе 2.2.4. «Эвристическая составляющая содержания обучения дифференциальному и интегральному исчислению функций» концентрируется внимание на эвристической подготовке будущих учителей математики. В исследовании обсуждаются эвристики, которые могут быть полезны и которые следует иметь в виду студентам-математикам педвуза при изучении дифференциального и интегрального исчисления функций, а также в их будущей профессиональной деятельности.

Раздел 2.3. «Современный учебник математического анализа в условиях фундаментализации образования» посвящен обсуждению проблемы построения учебников математики нового поколения, обеспечивающих активизацию когнитивных процессов, упорядочивающих самостоятельную работу студентов. Автором (с опорой на исследования по теории учебника И.Я. Лернера, Н.Ф. Талызиной, О.П. Околелова, Л. Тюриной) осмыслены основные характеристики современных учебников для студентов-математиков педвуза по математическому анализу, дифференциальному и интегральному исчислению функций, отвечающих духу новых образовательных идей. В данном разделе показано, что для обеспечения качественного усвоения студентами системы научных знаний по дифференциальному и интегральному исчислению функций необходимо, чтобы современный учебник по математическому анализу отвечал следующим требованиям: ему должна быть присуща четкая логика изложения материала; он должен акцентировать внимание на научных методах математического анализа как фундаментальных математических методах исследования; содержащийся в нем учебный материал важно организовывать и выстраивать по разветвленной схеме, разрабатываемой с учетом трех уровней (базового, основного, расширенного модулей) подготовки студентов в соответствии с их склонностями, интересами и нацеленностью на изучение дисциплины; учебник математического анализа для будущих учителей математики должен обязательно отражать связь вузовского курса анализа со школьным курсом начал математического анализа; он должен характеризоваться представленностью различных методов, форм и средств, побуждающих обучаемых к активной мотивированной умственной; в учебник необходимо включать описания специальных эвристик и эвристических приемов, а также способов деятельности по освоению содержания обучения; учебник должен отражать современное состояние и мировоззренческие принципы области математики, именуемой «Математический анализ».

Расширенный модуль знаний дифференциального и интегрального исчисления представлен: дополнительными сведения по курсу, к которым студент может обращаться с целью более глубокого изучения отдельных тем (например, могут быть изложены разные подходы к изучению каких-то вопросов, более общие теоремы и т.д.); специально разработанными разделами (или темами в рамках раздела) курса, материалы которых призваны удовлетворить творческие потребности и профессиональные запросы обучаемых (например, раздел, посвященный неравенствам, или тема о специальных свойствах выпуклых функций, используемых в вопросах решения уравнений); вопросами, нацеливающими студента на приобщение к исследовательской деятельности (могут быть приведены свежие результаты и результаты, полученные не так давно, которые или примыкают к программному материалу, или обобщают его); открытыми для исследования вопросами и задачами, а также гипотезами; соответствующими историческими сведениями, касающимися тем дифференциального и интегрального исчисления функций.

В Главе III «Реализация теоретических основ подготовки будущих учителей математики по дифференциальному и интегральному исчислению в условиях фундаментализации образования» конструируемая методическая система обучения анализируется на третьем уровне - уровне учебных материалов. В ней рассмотрены пути реализации деятельностных концепций работы с определениями принципиальных понятий и важными теоремами основ математического анализа при обучении студентов, обоснован так называемый подход Каратеодори изложения дифференциального исчисления функций одной и нескольких переменных, осмыслены образовательные возможности тематики, связанной с выпуклыми и логарифмически выпуклыми функциями.

В разделе 3.1. «Реализация деятельностной концепции работы с определением при обучении студентов основам математического анализа» на примере понятия производной иллюстрируются действия по работе с определениями основных понятий курса. Автором анализируются различные определения понятий производной функции в точке: классическое определение по Коши, определения через условие дифференцируемости функции и через подходящую линейную функцию, определения по Каратеодори, двусторонней производной, П-производной, производных Фреше и Гато, l-производной, симметрической производной. Кроме того, в этом же разделе осмысляются определения производной в негладком анализе - определения понятий производной по направлению и верхней и нижней производных Дини. Автором рассмотрены методические требования к усвоению определений перечисленных понятий производной функции, произведено сравнение определений в контексте логических характеристик понятий в математике.

В разделе 3.2. «Реализация деятельностной концепции работы с теоремой при обучении студентов основам математического анализа» на примерах классических теорем обстоятельно рассматриваются такие этапы работы с утверждениями, как этап обобщения, этап развития, этап поиска различных доказательств, этап применения утверждения.

В подразделе 3.2.1. «Этап обобщения работы с теоремой» анализируются принципиальные возможные направления обобщения теоремы. Реализация этапа обобщения работы с теоремой автором иллюстрируется на примере классической теоремы Ролля о среднем. В частности, обсуждаются следующие обобщения этой теоремы: векторный вариант, распространение на линейные комбинации соответствующих функций, теорема Лагранжа, теорема B. Finta в терминах лево- и правосторонних производных, в терминах одной односторонней производной, многомерный вариант теоремы, два комплексных варианта. Наряду с представленным материалом в приложении Г диссертации рассматриваются действия по обобщению классических теорем Лагранжа и Коши. Автором показано, что работа по обобщению теоремы способствует формированию у студента исследовательских навыков, развивает математическую интуицию, эвристическое и логическое мышление.

В подразделе 3.2.2. «Работа с теоремой. Этап развития» на основе эвристических приемов, восходящих к подходам доказательства теорем Лагранжа и Коши, устанавливаются некоторые новые замечательные утверждения о средней точке. В частности, доказываются теорема типа теоремы Лагранжа о нормали к графику функции, ее обобщение, теорема M. Bencze и ее обобщение, формулируется теорема Flett. Автор обсуждает новые теоремы с позиций возможностей приобщения студентов к исследовательской деятельности, базируясь на учебном материале.

В подразделе 3.2.3. «Работа с теоремой. Этап применения» иллюстрация соответствующих действий при работе с теоремой производится на примере установленной автором обобщенной теоремы Коши, формулируемой в терминах односторонних производных. Посредством этой теоремы получены обобщения формы Шлеммильха-Роша остаточного члена в формуле Тейлора, в более слабых предположениях сформулированы классические теоремы Лопиталя-Бернулли раскрытия неопределенностей.

Обсуждаемые в 3.2.1. - 3.2.3. теоремы указывают на тот факт, что возможно построение аналогов классической теории дифференциального исчисления функций одной переменной в терминах односторонних производных, а также в терминах только одной из односторонних производных.

В подразделе 3.2.4. «Работа с теоремой. Этап поиска различных доказательств» внимание сосредоточено на важности нахождения по возможности нескольких доказательств конкретного утверждения. Такие действия при работе с теоремой позволяют более полно отработать различные методы математического анализа. Соответствующую иллюстрацию отмеченного автор проводит на обосновании рассмотренных в предыдущем подразделе обобщенных теорем Лопиталя-Бернулли.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.