Математическая логика в младших классах
История возникновения математической логики и алгебры. Анализ заданий школьного учебника второго класса. Система дополнительных упражнений на развитие логического мышления. Методика изучения неравенств и уравнений. Разработка конспектов уроков по теме.
Рубрика | Педагогика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 14.10.2010 |
Размер файла | 210,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1
Содержание
Введение
Глава I. Исторические и психолого-педагогические основы темы "Математические слова и предложения. Развитие логического мышление при изучение элементов алгебры и математической логики"
1. История возникновения математической логики и алгебры
2. Математический язык. Понятие о математических словах и предложениях
3. Анализ заданий школьного учебника второго класса. Система дополнительных упражнений на развитие логического мышления учащихся
Глава II. Методика изучения элементов алгебры и математической логики
1. Методика изучения числовых выражений, выражений с переменными, числовых равенств и неравенств, уравнений
2. Различные трактовки введения понятий алгебры и математической логики
3. Разработка конспектов уроков по теме
4. Материал для внеклассной работы
5. Эксперимент
Заключение
Литература
Приложения
Введение
Наука алгебры и алмукабалы - это наука о правилах,
По которым узнают числовые неизвестные по
соответствующим им известным.
Ал-Каши.
В последние годы в связи с дифференциацией обучения, появлением школ различной профильной направленности, в том числе гуманитарных, технических, экономических, естественно-математических и других по-новому встают вопросы о целях, содержании формах и методах обучения математике в школе, о месте и роле каждого школьного предмета.
В 1992 году был принят Закон Российской Федерации об образовании, вторая статья которого посвящена принципам государственной политики в области образования. В ней говорится о гуманистическом характере образования, приоритете общечеловеческих ценностей жизни и здоровья человек, свободного развития личности. Таким образом, Закон открыл широкие перспективы для перестройки среднего образования, возможности для внедрения различных форм дифференцируемого обучения в практику работы школы.
Психологический аспект дифференциации обучения связан с исследованиями в области дифференциальной психологии.
Исследования проблемы индивидуализации и дифференциации обучения с педагогических позиций посвящены работы Ю. К. Бабанского, И. Э. Унт и других. В них представляются системы обучения, отвечающие склонностям учащихся и направленные на развитие и формирование различных сторон личности учащихся.
В перечисленных работах ставились и решались важные общие психолого-педагогические и методические проблемы учета индивидуальных особенностей учащихся и дифференцированного обучения. В то же время потребности современной школы ставят перед методикой преподавания математики новые задачи, связанные с дифференциацией обучения.
Необходимы новые учебные пособия, методические разработки которые учитывали бы специфику таких классов, но при этом сохраняли достаточно общий уровень математического образования, достигнутого отечественной школой.
Все выше сказанное определило актуальность исследования.
Объектом исследования является процесс обучения математике в начальных классах.
Предметом исследования является процесс обучения алгебраическому материалу.
Научная проблема исследования состоит в обосновании и разработке некоторых методических положений алгебраического материала.
Целью исследования является разработка методики формирования умений по теме "Алгебраический материал".
Данная тема выбрана мною с целью уточнить и углубить знания об элементах алгебры и математической логики.
В первые в истории русской школы в соответствии с новой программой в начальный курс математики включены элементы алгебры. Учащиеся 1 - 3 классов должны получить первоначальные сведения о математических выражениях, числовых равенствах и неравенствах, ознакомиться с буквенной символикой, с переменной, научить решать несложные уравнения и неравенства.
Алгебраический материал изучается, начиная с первого класса в тесной связи с арифметическим. Введение элементов алгебры способствует обобщению понятий о числе, арифметических действиях, математических отношениях и вместе с тем готовить детей к изучению алгебры в следующих классах.
Обучаясь в 1 - 3 классах дети должны научиться читать и записывать выражения, усвоить правила порядка выполнения действий в выражениях содержащих два и более действия, практически познакомиться с преобразованием выражений на основе использования изученных свойств арифметических действий.
Работа над выражением тесно связано с изучением самих действий и оказывает большое влияние на владение школьниками такими понятиями, как равенства, неравенства, уравнения. И поэтому, недостаточно ясное представление о простейших выражениях сумме и разности двух чисел является причиной ошибок при выполнении первоклассниками ряда заданий. Только глубокое понимание структуры выражения и твердое знание правил порядка действий могут предупредить дальнейшее не понимание предмета.
Все это обязывает к необходимости разработки системы упражнений по формированию понятия выражения у учащихся начальной школы с учетом возникающих трудностей.
На практике выражением иногда называют последовательность математических символов, включающую знаки отношений: ">", "<", "=". Например, прочитайте выражение: (90 + 30) : 10 > 90 : 10; из заданных выражений выпишите только верные: 7 + 3·5 = 22, (7 + 3)·5 = 22, 7 + 3·5 = 50 и т. д. Конечно, в этих случаях речь должна идти о равенствах и неравенствах, которые являются конкретными видами высказываний. Выше приведенный пример свидетельствует о поверхностных знаниях учителя, что, безусловно, отразится на знаниях учащихся. Поэтому есть основания утверждать, что нечеткое понимание педагога, казалось бы, элементарного материала может привести детей к непониманию и противоречиям.
Практическая значимость исследования определяется тем что в нем разработаны и проверенны:
Системы задач для темы "Алгебраический материал", в том числе: устных, опорных, стандартных, повышенной трудности, нестандартных, исследовательских, занимательных.
Разработка работ, направленных на развитие умений.
Глава I. Исторические и психолого-педагогичекие основы темы "Математические слова и предложения. Развитие логического мышления при изучение элементов алгебры и математической логики.
1. История возникновения математической логики и алгебры
Кто хочет ограничится настоящим, без знания
прошлого, тот никогда его не поймет …
Лейбниц.
Алгебра - один из больших разделов математики, принадлежащий к числу старейших ветвей этой науки. Задачи, а также методы алгебры, отличающие ее от других отраслей математики, создавались постепенно, начиная с древности. Алгебра возникла под влиянием нужд общественной практики.
Алгебре предшествовала арифметика. Характерное отличие алгебры от арифметики заключается в том, что в алгебру вводится неизвестная величина. Намек на такую трактовку арифметических задач есть уже в древне - египетском папирусе Ахмеса (2000 - 1700 до н. э.), где искомая величина называлась словом "куча" и обозначается соответствующим знаком-иероглифом.
В начале 20 века были расшифрованы многочисленные математические клинописи и другие из древнейших культур - вавилонской. Это открыло миру высоту математической культуры существовавшей уже за 4000 лет до наших дней.
Первые общие утверждения о тождественных преобразования встречаются у древнегреческих математиков, начиная с VI века до н. э.
Среди математиков Древней Греции было принято выражать все алгебраические утверждения в геометрической форме. Большинство задач решалось путем построений циркулем и линейкой.
В Египте решали задачи способом "аха", а в Вавилоне задачи решались по сути дела с помощью уравнений. Только в то время еще не умели применять в математике буквы. Поэтому вместо букв брали числа, показывали на числах, как решать задачу, а потом уже все похожие на нее задачи решали тем же способом.
Многие уравнения умел решать греческий математик Диофант, который даже применял даже букв для обозначения неизвестных. Но по-настоящему метод уравнений сформировался в руках арабских ученых, первым написал книгу на арабском языке о решении уравнений Мухаммед Ибн Муса ал - Хорезми. Название у нее было очень странное - "Краткая книга об исчислении ал - джабры и ал - мукабалы." В этом названии впервые прозвучало известное нам слово "алгебра".
Один персидский математик изложил в стихах обозначение слов "ал - джабра" и "ал - мукабала".
Ал - джабра.
При решении уравнения
Если в части одной,
Безразлично какой,
Встретится член отрицательный,
Мы к обеим частям,
С этим членом сличив,
Равный член придадим,
Только с знаком другим, -
И найдем результат нам желательный.
Ал - мукабала.
Дальше смотрим в уравнение,
Можно ль сделать приведенье,
Если члены в нем подобны,
Сопоставить их удобно,
Вычтя равный член из них,
К одному приводим их.
Таким образом, название "ал - джабра" носила операция переноса отрицательных членов из одной части уравнения в другую, но уже с положительным знаком. По-русски это слово означает "восполнение". Поэтому в Испании, которая долгое время была под арабским владычеством, слово "алгебрист" означало совсем не математика, а … костоправ.
А слово "ал - мукабала" означало приведение подобных членов. Оно не такое употребимое как "ал - джабра" и о нем помнят только историки науки.
Вскоре начали изучение более сложных уравнений, но их успешному решению мешало то, что не применяли букв. Но вскоре уравнения, которыми занимались итальянские и немецкие математики, стали настолько сложными, что без букв оказалось к ним подступится. И тут началось внедрение букв в алгебру.
С VI века центр математических исследований перемещается в Индию и Китай, страны Ближнего Востока и Средней Азии. Индийские математики использовали отрицательные числа и усовершенствовали буквенную символику.
В Западной Европе изучение алгебры началось в XIII веке. Одним из крупных математиков этого времени был итальянец Леонардо Пезанский. Его "Книга абака" - тракт, который содержал сведения об арифметике и алгебре до квадратных уравнений включительно. Первым крупным самостоятельным достижением западноевропейских ученых было открытие в XVI веке формулы для решения кубического уравнения. В конце XVI века французский математик Ф. Виета ввел буквенные обозначения не только для неизвестных, но и для произвольных постоянных.
Развитие буквенной символики позволило установить общие утверждения, касающиеся алгебраических уравнений. В конце XVIII века было доказано, что любое алгебраическое уравнение с комплексными коэффициентами имеет хотя бы один комплексный корень. Это утверждение носит название основной темы алгебры.
В начале XIX века алгебра получила самостоятельное обоснование, не опирающаяся на геометрические понятия. Таким образом, в течение XIX века в математике возникли разные виды алгебр.
В области преподавания арифметики Россия в XIX веке создала свою передовую математическую школу, далеко опередив в этом смысле западноевропейскую школу. Алгебра как дисциплина более абстрактная оказалась в сильной зависимости от формально - схоластических тенденций.
Программы курса алгебры в первой половине XIX века поражают своей громосткоcтью. Великий русский геометр с успехом преподавал математику в гимназии и, кроме учебника геометрии, создал учебное руководство по алгебре. В 1985 году Н. И. Лобачевский представил в Казанский университет рукопись "Алгебра". Также над алгебраическими вопросами работают и такие математики как В. А. Евтушевский ("Сборник арифметических задач") в первой части, которой ставится задача введение "алгебраического языка"; переход к буквенным обозначениям от числовых формул задач, П. Л. Чебышев ("Руководство алгебры") и т. д.
Начало нового века внесло существенные коррективы в преподавание алгебры. Передовая педагогическая мысль признала, что в курс алгебры должны быть включены: идеи переменной величины, понятие функции.
Историческую основу современной логики образуют две теории дедукции, созданные в IV веке до н. э. Древнегреческими мыслителями: одна - Аристотелем, другая - его современниками Мегарской школы. Преследуя одну цель - найти "общезначимые" законы логоса, о которых говорил Платон, они, столкнувшись, как бы поменяли исходные пути к этой цели.
Аристотель в сочинении "Топика" в качестве доказательства сформулировал основное правило исчисление высказываний - правила "отделения заключения". Именно на этом пути он ввел понятие высказывания как истинной или ложной речи, открыл атрибутивную форму речи - как утверждения или отрицания "чего-либо о чем-то", определил простое высказывание как атрибутивное отношение двух терминов, открыл изоморфизм атрибутивных и объектных отношений, аксиому и правило силлогизма.
Логические идеи мегариков были ассимилированы в философской школе стоиков. В сочинениях стоиков логические высказывания предшествуют аристотелевской силлогистики, оформляясь в систему правил построения и правил вывода высказываний.
Эпикура - последняя наиболее важная для истории логики школа в античности. В споре со стоиками эпикурейцы защищали опыт, аналогию, индукцию. Они положили начало индуктивной логике, указав, на роль противоречащего примера в проблеме обоснования индукции и, сформулировав ряд правил индуктивного обобщения.
Эпикурейской "каноникой" заканчивается история логической мысли ранней античности. На смену приходит поздняя античность. Ее вклад в логику ограничивается переводческой деятельностью поздних перипатетиков и неоплатоников.
Как самостоятельная наука логика развивается лишь в странах арабской культуры (VII - XI век). Оригинальная средневековая логика, известная под названием "logica modernorum" возникает лишь в XII - XIII веке.
Последующие два столетия - эпоха возрождения для дедуктивной логики были эпохой кризиса.
В XIX - XX веке в трудах Дж. Буля возникает алгебраическая логика. Развивалась она в работах Ч. Пирса, П. С. Порецкого, Б. Рассела, Д. Гильберта и др. Основным предметом алгебраической логики стали высказывания, рассуждения. Под высказыванием понимается каждое предложение, относительно которого имеет смысл утверждать, истинно оно или ложно.
В алгебраической логике для обозначения истинности вводится символ И, а для обозначения ложности - символ Л. Часто вместо этих символов употребляются числа 1 и 0.
Можно сказать, что математическая логика изучает основания математики, принципы построения математических теорий.
Основным предметом математической логики является построение и изучение формальных систем. Центральным результатом является, доказанная в 1931 году австрийским математиком Геделем теорем о неполноте, утверждающая, что для любой "достаточно разумной" формальной системы существуют неразрешимые в ней предложения, то есть такие формулы А, что ни сама формула А, ни ее отрицания не имеют вывода.
2 Математический язык. Понятие о математических словах и предложениях
Когда мы пишем сочинение, письмо, выступаем на собрании, то свои мысли выражаем при помощи предложений. Читая книгу, статью, мы опять встречаемся с тем, что рассуждения есть цепочка некоторых предложений.
Изучая математику мы тоже пользуемся предложениями, которые могут быть записаны как на естественно (русском) языке, так и на математическом, с использованием символов (3 + 4 · 7 = 31). Математические предложения характеризуются содержанием и логической структурой.
Но, как известно, любое предложение образуется из слов, а слова - из букв некоторого алфавита. Алфавит состоит из: десяти цифр, для записи чисел в десятичной системе (0,1,2,…,9); букв латинского алфавита, для обозначения переменных, множеств их элементов (a, b, c, …, z, A, B, C, …, Z); знаков, для записи действий (+, - , ·, :, , и др.); знаков отношений, для записи предложений ( =, >, < и др.). А также в символических записях встречаются скобки, запятая.
Из этих знаков конструируются слова и предложения. Слово - это такая конечная последовательность букв алфавита, которая имеет смысл. Например, запись 7 - : 8 + смысла не имеет, и, значит словом ее назвать нельзя.
В математике различаются элементарные и составные предложения. Например: "Число 56 делится на 8" - это элементарное предложение. А предложение "Число 56 четное и делится на 8" составное.
Среди суждений, устанавливающих различные отношения между понятиями, выделяют высказывания и высказывательные формы. Высказыванием называется предложение, относительно которого имеет смысл вопрос, истинно оно или ложно.
Например, предложение "число 8 четное" есть истинное высказывание, а предложение "3 + 3 = 32" ложное высказывание. Каждому высказыванию приписывают одно из двух значений: И (истина) и Л (ложь). Значения И и Л называют значениями истинности высказывания. Если высказывание элементарное, то его значение истинности определяется по его содержанию. А если оно составное, то значение истинности зависит от значения истинности составляющих его элементарных высказываний, соединенных при помощи слов: "и", "или", частицы "не", "если…, то…" и др., которые называются логическими связками.
Выясним смысл, который в математике имеет союз "и". Пусть А и В - произвольные высказывания. Образуем из них, с помощью союза "и", составное высказывание. Назовем его конъюнкцией и обозначим А ? В (читают: А и В).
Конъюнкицией высказываний А и В называется высказывание А ? В, которое истинно, когда оба высказывания истинны, и ложно, когда хотя бы одно из этих высказываний ложно.
Используя данное определение, найдем значение истинности высказывания "Число 102 четное и делится на 9". Высказывание имеет форму "А и В", где А - число 102 четное - И, а В - число 102 делится на 9 - Л. Следовательно, и все предложение ложно.
Выясним теперь, какой смысл в математике имеет союз "или". Пусть А и В - произвольные высказывания. Образуем из них с помощью союза "или" составное высказывание. Назовем его дизъюнкцией и обозначим А ? В (читают: А или В). Дизъюнкцией высказываний А и В называется высказывание А ? В, которое истинно когда истинно хотя бы одно из этих высказываний, и ложно, когда оба высказывания ложны.
Используя данное определение, найдем значение истинности высказывания "Число 15 четное или делится на 3", высказывание имеет форму "А или В", где А - Число 15 четное - Л, а В - число 15 делится на 3 - И. Следовательно, и все предложение истинное.
Очень важно знать какой из союзов "и" или "или" присутствует в предложении, иначе может получиться например такое недоразумение: Как-то раз Катя пошла гулять с собакой, и вернулась с прогулки взволнованная. Какой-то прохожий упрекнул ее в нарушении правил содержания собак в городе. Листок с правилами был наклеен на заборе, и одно из них гласило: собака на прогулке должна быть на поводке… в наморднике (кусочек бумаги после слов "на поводке" был оторван).
Она спустила собаку с поводка, но оставила в наморднике. На этом примере хорошо видна роль союза. Если бы был союз "и", прохожий оказался бы прав. Если бы союз "или" была бы пава Катя.
Часто в математике приходится строить высказывание, в которых что-либо отрицается. Например, дано высказывание "Число 12 простое". Это ложное высказывание. Построим его отрицание: "Неверно, что число 12 простое". Получили истинное высказывание. Отрицание высказывания А обозначают В читают: "Не А" или "Неверно, что А". Вообще, отрицанием высказывания А называется высказывание В, которое истинно, если высказывание А ложно, и ложно, когда А истинно.
Также составные высказывания можно получить при помощи слов "если…, то…". Например: "Если я куплю билеты, то пойду в театр", "Если ученик получил на экзамене положительную оценку, то он сдал этот экзамен". Высказывания имеет форму "Если А, то В" и называется импликацией высказываний А и В (от латинского слова implicatiomecho связывают). Импликацию высказываний А и В записывают так: А В и читают "Если А, то В". Высказывание А называют условие импликации, а высказывание В - ее заключением.
Считают, что импликация А В истинна во всех случаях, кроме случая, когда А истинно, а В ложно. Но существует еще и импликация обратная данной. Переставив местами импликацию двух высказываний А В получим В А. Ее называют импликацией, обратной импликации А В. Например, если дана импликация "Если вам больше 14 лет, то вы имеете паспорт", то импликация, обратная данной, такова: "Если вы имеете паспорт, то вам больше 14". Образуем конъюнкцию двух взаимно обратных импликаций А В и В А, то есть высказывание вида (А В) ? (В А). Это высказывание истинно только тогда, когда высказывания А и В оба истинны, либо оба ложны. Высказывания данного вида называют эквиваленцией высказываний А и В и обозначают: А В. Запись читают: а) А равносильно В; б) А тогда и только тогда, когда В; в) А, если и только, если В. Если из предложения А следует предложение В, а из предложения В следует предложение А, то говорят, что предложения А и В равносильны.
Например, эквиваленция "2 = 3 тогда и только тогда, когда 3 < 5" - ?, потому что ложно высказывание "2 = 3".
Все эти определения можно записать с помощью таблицы, называемой таблицей истинности.
А |
В |
А ? В |
А ? В |
В |
А В |
В А |
(АВ) ? (ВА) |
|
И |
И |
И |
И |
? |
И |
И |
И |
|
И |
? |
? |
И |
? |
И |
? |
||
? |
И |
? |
И |
И |
И |
? |
? |
|
? |
? |
? |
? |
И |
И |
И |
В математике часто встречаются предложения, содержащие одну или несколько переменных. Например: Х < 3; Х + У = 8. Эти предложения не являются высказываниями, т. к. относительно их не имеет смысла вопрос, истинны они или ложны. Но при подстановке значений переменных эти предложения в высказывания (истинные или ложные).
Предложения такого вида называния высказывательными формами или предикатами. Каждая высказывательная форма порождает высказывания одной и той же формы. Высказывательная форма содержащая одну переменную называется одноместной, а две двух местной.
И так, высказывательная форма - это предложение с одной или несколькими переменными, которое обращается в высказывание при подстановке в него конкретных значений переменных.
Среди всех возможных значений переменной существуют те, которые обращают высказывательную форму в истинное высказывание. Множество таких значений переменных называют множеством истинности высказывательной формы. Например, множеством истинности предиката Х > 5, заданного на множестве действительных чисел, буде промежуток (5;?).
Обозначим множество истинности высказывательной формы буквой Т. Тогда согласно определению, всегда Т Х.
Также как и высказывания, предикаты бывают элементарные и составные. Составные образуются из элементарных при помощи логических связок.
Пусть на множестве Х заданны два предиката А(х) и В(х). Предикат А(х) В(х), х Х называют импликацией данных предикатов. Он обращается в ложное высказывание лишь при тех значениях х из множества Х, при которых предикат А(х) В(х) истинен. Говорят что предикат В(х) логически следует из предиката А(х).
Вообще если на множестве Х заданны два предиката А(х) и В(х) и известно, что предикат В(х) логически следует из предиката А(х), то предикат В(х) называют необходимым условием для предиката А(х), а А(х) - достаточным условием для предиката В(х). Очень часто слова "необходимое условие" заменяют словами "только тогда", "только в том случае".
Мы выяснили, что при подстановки значений переменных в предикат, получаем истинное или ложное высказывание. Но это превращение можно осуществить и другим образом.
Если перед высказывательной формой "число х кратно 5" поставить слово "всякое", то получится предложение "всякое число х кратно 5". Относительно этого предложения можно задать вопрос, истинно оно или ложно. Значит предложение "всякое число х кратно 5" (х N) - высказывание, причем ложное.
Выражение "для всякого х" в логике называется квантором общности по переменной х и обозначается символом х.
Высказывание "существует х такое, что …" в логике называется квантором существования по переменной х и обозначается символом х.
Наряду со словом "всякий" употребляют слова "каждый", "любой", а вместо слова "существует" используют слова "некоторые", "найдется", "есть", "хотя бы один".
Используя слово "некоторый" в обычной речи имеют в виду "по меньшой мере один, но не все", в математике же слово "некоторые" обозначает "по меньшей мере один, но может быть, и все". И так, если задана одноместная высказывательная форма А(х), то чтобы превратить ее в высказывание, достаточно связать квантором общности или существования содержащуюся в ней переменную. Если же высказывательная форма содержит несколько переменных, то перевести ее в высказывание можно, если связать кванторм общности или существования содержащуюся в ней переменную. Если же высказывательная форма содержит несколько переменных, то перевести ее в высказывание можно, если связать квантором каждую переменную. Например, если дана высказывательная форма "х > у", то для получения высказывания надо связать квантором обе переменные. Например, (х)(у) х > у или (х)(у) х > у.
Одна важно уметь не только переходить от высказывательной формы к высказыванию с помощью кванторов, но и распознавать высказывания, содержащие кванторы, и выявлять их логическую структуру.
Часто в высказываниях квантор опускается; например, переместительный закон сложения чисел записывают в виде равенства а + в = в + а, которое означает, что для любых чисел а и в справедливо равенство а + в = в + а, то есть переместительный закон сложения есть высказывание с квантором общности.
Истинность высказывания с квантором общности устанавливается путем доказательства. Что бы убедиться в ложности таких высказываний, достаточно привести контр пример.
Истинность высказывания с квантором существования устанавливается при помощи конкретного примера. Чтобы убедится в ложности такого высказывания, необходимо привести доказательство.
Понятия: высказывания, предиката и операции над ними позволяют выяснить логическую структуру многих утверждений. Этому способствует и использование при их записи символов, применяемых в логике.
При изучение математики часто приходится рассматривать предложения, называемые теоремами. Каким бы ни было содержание теоремы, она всегда представляет собой высказывание, истинность которого устанавливается при помощи доказательства.
Итак, теорема - это высказывание о том, что из свойства А следует свойство В. Истинность этого высказывания устанавливается путем доказательства.
С логической точки зрения теорема представляет собой высказывание вида А В, где А и В - высказывательные формы с одной или несколькими переменными. Предложение А называют условием теоремы, а предложение В - ее заключением.
Теоремы из А В и В А называются обратными друг другу, а теоремы А В и В В называются противоположными друг другу.
Теорему В В называют обратной противоположной. Установлено, что теорема А В и B А равносильны, то есть всегда когда истинна теорема А В, будет истинна и теорема В А, и наоборот А В равносильно B А. Полученную равносильность называют законом контр позиции.
В математике кроме теорем используются предложения, называемые правилами и формулами.
Для того, чтобы теоремой было удобнее пользоваться на практике, ее формулируют в виде правила и записывают только формулу, опуская все условия, указанные в теореме. Такие упрощения позволяют быстрее запоминать правила и формулы.
3. Анализ учебника по математике 2-го класса М. И. Моро
Изучение числовых выражений во втором классе начинается со страницы 9. Здесь дети знакомятся с понятием числовые выражения. И для закрепления этой темы в учебнике предложены следующие упражнения:
Прочитай выражения и найди их значения 90 - 4; 38 + 20.
Данное упражнение развивает вычислительные навыки у детей, умение правильно читать выражения.
Запиши выражения и найди их значения:
а) Сумма чисел 2 и 9; 5 и 6.
б) Разность чисел 16 и 7; 14 и 6.
Задание формирует умение записывать числовые выражения и развивает вычислительные навыки.
Сравни выражения 45 - 10 * 45 - 8; 18 + 40 * 18 + 30.
При выполнение данного упражнения у детей развивается логическое мышление.
Сумма каких однозначных чисел равна 15, 16, 17?
Данное упражнение развивает логическое мышление, вычислительные навыки, активизирует мыслительную деятельность.
Слагаемые 18 и 80. Найди сумму.
При решении данного задания закрепляются знания таких компонентов как слагаемые и сумма, умение пользоваться ими.
Представь число 8 в виде суммы одинаковых слагаемых.
Развивает логическое мышление учащихся.
Составь задачи по выражениям: 2 · 4; 12 : 3.
Развивает логическое мышление.
В учебнике много заданий данных типов, они отрабатывают вычислительные навыки учащихся, помогают осознать понятие "числовые выражения", но они не содержат элементов занимательности. А так же, очень мало упражнений направленных на развитие логического мышления. Поэтому необходимо использовать дополнительные задания развивающего характера. Это могут быть следующие задания:
Найдется ли среди трех чисел такое, которое является разностью двух других: а) 4; 8; 4.б) 2; 4; 4.в) 2; 7; 5. г) 3; 3; 3.
Какие из выражений имеют одинаковые значения: 480 + 20; 75 + 25; 294 + 0; 480 - 20; 300 - 200; 294 + 0; 75 - 25; 300 + 200.
В данном задании формируется одновременно два понятия: нахождение значения выражения и сравнение полученных значений выражений.
Реши примеры по следующим программам:
а) 345 Ї> Ї> Ї>
в) 894 Ї> Ї> Ї>
Вставь подходящий знак действия "+" или "-", чтобы ответ был верным: 2 + 6 * 2 = 10; 20 - 9 * 7 = 18; 9 + 10 * 3 = 16; 10 - 3 * 4 = 12;
Распредели числа 2, 3, 4, 5, 6, 7, 8 на две группы так, чтобы сумма двух любых чисел в одной группе не был а равна никакому числу второй.
Составь выражения:
а) На представление в цирк пошли 12 мальчиков и 15 девочек 2 "А" класса. Сколько всего детей этого класса пошли в цирк?
б) На арену выбежали 5 пуделей, а болонок - на 3 больше. Сколько болонок на арене?
Все эти задания не только формируют вычислительные навыки, но и развивают логическое мышление и все это осуществляется с элементами занимательности, игры. Задания довольно разнообразны и отличаются друг от друга.
Далее, на странице 58, вводятся понятия "равенство и неравенство". А для закрепления данное темы Моро предлагает следующие задания:
Составь два верных равенства и два верных неравенства, используя выражения: 23 + 12; 40 - 16; 12 + 23; 40 - 5.
Выполняя данное упражнение дети хорошо видят отличие равенства от неравенства. В данном упражнении отрабатываются понятия равенство, неравенство, развивается логическое мышление.
Проверь верны ли следующие записи: 9 · 3 = 27; 16 - 8 =16; 6 + 9 = 9 + 6; 2 · 7 > 2 · 6; 2 · 9 < 9 · 2; 37 + 6 > 37.
Данное упражнение направленно на отработку вычислительных навыков.
Вставь вместо звездочек знаки плюс или минус, чтобы получились верные равенства: 76 * 4 * 7 = 73; 38 * 5 * 6 = 39.
Направленно на развитие вычислительных навыков, развитие логического мышления.
4. Подбери такие числа, чтобы получились верные равенства или верные неравенства: 9 · 6 = 6 · ; 8 · 2 > ; 6 : 3 < ; 56 - 8 < .
Поставь, где нужно, скобки так, что бы получились верные равенства: 76 - 20 + 5 = 51; 53 - 18 - 15 = 20.
Данное упражнение одновременно отрабатывает знания порядка действий.
Запиши неравенство:
а) Произведение чисел 6 и 2 больше их частного.
б) Сумма чисел 36 и 9 меньше разности этих чисел.
Данная в учебнике система упражнений довольно таки разнообразна, интересна присутствуют упражнения направленные на развитие логического мышления, на отработку вычислительных навыков, что очень важно в младших классах. Но не достаточно занимательности, игровой формы. И для повышения интереса у детей к математике можно использовать следующие задания:
Вставь вместо рожиц одну и ту же цифру так, чтобы равенство стало верным:1 + 3 + 5 = 111; 0 + 1 + 2 = 273.
2. Переставляя цифры, сделай равенство верным: 7 3 - 2 5 = 5 8.
3. В окошко по очереди показываются числа 3, 7, 6, 4. В каких случаях получается верное равенство и в каких не верное?
4. Зайцы играют в футбол. Хитрый вратарь решил пропустить в ворота мяч, который сделает равенство верным: 4 + = 11. Какой заяц забьет гол? Удастся ли забить гол игроку под номером 9?
Из чисел 56, 6, 18 составьте все возможные разности. Какие из этих разностей не имеют смысла?
Назовите все цифры, при подстановке которых вместо звездочки получается верное неравенство: 3 * 2 > 355; * 68 < 443; 875 > 87 *; 406 < 4 * 7; *68 < 268.
При выполнение данного упражнения закрепляются правила сравнения чисел.
Неравенство имеет вид 10 - х < 5. Какие значения может принимать х? Укажите все значения х, при которых получится:
а) Верное неравенство;
б) Не верное неравенство.
Здесь представлены задания повышенной трудности, но при выполнении которых происходит более глубокое усвоение темы, также ведется подготовка к изучению уравнений в частности это происходит при выполнении упражнения под номером 7. Но так как такие неравенства не вводятся в начальной школе объяснить его следует более подробно и помочь в случае затруднения. Так же во втором классе рассматриваются такие темы как: "Порядок действий в выражениях без скобок" (стр. 83), "Порядок действий в выражениях со скобками" ( стр. 86) и для закрепления данных тем в учебнике предложены следующие упражнения:
Решение задач путем составления выражений.
Составь задачу по выражению: 4 · 6 - 14; ( 12 + 16) : 4.
Данные два задания развивают логическое мышление у учащихся. Учат как оставлению задачи по выражению, так и обратно, составление выражения по задачи.
3. Объясни решение:
30 - 4 · 7 = 30 - 28 = 2 17 + 32 : 8 = 17 + 4 = 21
- (27 + 9) + 8 = 76 - 36 +8 = 48
49 + 9 · (20 - 17) = 43 +9 · 3 = 43 +27 = 70
Данное задание направленно как на отработку вычислительных навыков, так и на закрепление знаний правил порядка действий.
4. Вычисли значения выражений: 26 + 24:4; 71 - 16: 2; 10 · (30 - 24); (22 + 14) : 4.
Запиши выражения и вычисли их значения:
а) Из числа 82 вычесть произведение чисел 5 и 7.
б) Разность чисел 31 и 22 умножить на 4.
в) Сумму чисел 9 и 19 разделить на 7.
Данное упражнение хорошо использовать на математических диктантах. Оно направленно на развитие вычислительных навыков, закрепление таких понятий как сумма, произведение, разность и частное.
Найди значение выражений удобным способом: 15 - (5 + 3); 46 + ( 4+2). Направленно на развитие логического мышления.
Но данная система упражнений довольно "суха" и ее следует дополнить заданиями, например, такого типа:
Составь программу действий и найди значение выражения. Сделай вывод. 30 - 4 + 21 - 8 = ; 24 : 3 : 2 · 5 = ; 36 : 4 + ( 47 - 39) · 5 = + = .
Данное упражнение направленно не толь на отработку вычислительных навыков, а так же оно учит детей делать самостоятельные выводы, рассуждать, то есть не автоматически выполнять задание, а обдуманно.
Составь по схемам выражения и найди их значения. Чем они отличаются друг от друга? В каком порядке следует выполнять действия, если в выражении есть скобки?
Задание содержит элемент занимательности, что повышает интерес к выполнению задания. Развивает внимание ребенка, наблюдательность.
Выберете значение выражения 96 - 24 + 12 : 6 из чисел: 90, 74, 70, 14.
Выберите выражения значения которых равны 80: 20 + 20 · 2; 95 - 10 + 5; 84 - 12 + 48 : 6; 5 + 90 : 6 · 5.
Из схем выбрать те, в которых умножение надо выполнять вторым действием:
а)----+----?----?)----+--(-----)?--
?)----?----+--(--+--)?)----:----?----:--
?)----+----?----+--?)----:--(----+--)--?--
Данные упражнения более разнообразны, в них используются элементы занимательности, они развивают внимание, логическое мышление, наблюдательность, повышают интерес.
Затем, на странице 129, изучают тему "Выражения с переменными" и закрепляют при помощи следующего ряда заданий:
Прочитай выражение: в - 9. Найди его значение, если в = 20, 18, 12, 9.
В данном задании происходит не только письменное, но и устное знакомство с выражениями с переменной, то есть при произношении выражения дети воспринимают не только зрительно, но и при помощи слуховых анализаторов.
2. Заполни таблицу:
В |
0 |
1 |
2 |
3 |
4 |
5 |
|
20·в |
В упражнении дается понятие о переменной, а так же о значениях переменной.
Запиши выражение а + в. Вычисли значение выражения, если а = 16, в = 37.
В данном задание вводится выражение с двумя переменными, но оно не продуктивно тем, что в нем присутствует только одно, из четырех, арифметическое действие - сложение.
Вычисли значения выражения а : с при значениях букв, указанных в таблице:
а |
23 |
34 |
84 |
0 |
36 |
36 |
|
с |
23 |
17 |
28 |
81 |
1 |
12 |
Данное задание аналогично предыдущему.
То есть, видно, что в учебнике предложены однотипные задания, прием, необходимо выполнить целых четыре упражнения, чтобы использовать все четыре арифметических действия, так как формирование вычислительных навыков - это одна из важнейших задач начальной школы. И поэтому необходимо использовать более разнообразные и продуктивные задания:
Расшифруй фамилию известного писателя сказочника, расположив ответы примеров в порядке убывания.
Данное задание направленно не только на формирование представлений о переменных, но кроме этого оно содержит в себе несколько заданий: расположить в порядке убывания, два арифметических действия, сравнение чисел. Так же упражнение развивает внимательность и предложено в занимательной форме, что привлекает детей и вызывает интерес к заданию.
Сравни: а + 301 … а + 103; в - 408 … в + 48; с - 206 … с - 260; 97 - х … 79-х.
Упражнение направленно на развитие логического мышления, так как дети сравнивают выражение, содержащие переменную, отрабатываются правила сравнения.
Можно ли назвать все числа, которые обращают неравенство в верное: х > 5; y < 15; х + 1 < 1.
Данное задание как и предыдущие, содержат в себе несколько заданий. во-первых, отрабатывается тема "выражения с переменной", а так же значение переменной, так как для ответа на поставленный вопрос ребенок может подставлять различные значения переменной. Во-вторых, необходимо выполнить сравнение и данное упражнение развивает логическое мышление, так как ответить на поставленный вопрос можно, не подставляя значения переменных.
Задача: Платье стоит а рублей, а костюм - в рублей. На сколько платье дешевле костюма?
Решение данной задачи заключается в составление буквенного выражения. Так же во втором классе изучается тема "Уравнения". И для закрепления данной темы Моро предлагает следующие задания:
Прочти уравнение и реши их: х + 5 = 9; 12 - х = 7; х -3 = 6; 7 + х = 13.
Реши уравнения и сделай проверку.
В данных заданиях детям предлагается решить уравнения. Даны простейшие уравнения без дополнительных заданий, то есть задание направленно только на закрепление темы, без какой либо занимательности.
Найди уравнения и реши их: х - 8 = 9; 5 + 7 = 12; а + 17; 8 + х = 14.
Это задание учит детей отличать уравнения от числовых выражений.
Назови уравнения, в которых неизвестное число равно 8: х · 2 = 20; 6 · х = 48; х : 2 = 5; 40 : х = 5.
Задание развивает не только умение решать уравнения, но и внимательность. Заданий на данную тему очень мало, они все однообразны, не содержат элементов занимательности, поэтому их необходимо дополнять:
1. Какими числами можно заменить фигурки:
? + = 1 : = 25
- ? = 25 ? · = 0
(? - 0; - 1; - 25).
Задание очень хорошо развивает логическое мышление учащихся, внимательность, а так же содержит элемент занимательности. Его можно испоьзовать, как подготовительное к изучению темы "Уравнения". Содержит примеры на все арифметические действия.
2. В записи каких уравнений допущена ошибка? Найди неизвестное делимое: х :
5 = 3 (ост. 2)с : 2 = 7 (ост. 1)
а : 7 = 4 (ост. 1) р : 6 = 9 (ост. 7)
в : 9 = 2 (ост. 9) к : 3 = 12 (ост. 2)
Данное задание формирует умение не только решать уравнения, но и решать примеры с остатком.
3. Объясни, почему при любом значении х значение выражения х + 2 больше значения х.
Задание развивает логическое мышление, формирует вычислительные навыки.
4. Подбери пропущенные числа: > > > >
Задание направленно на формирование умения находить значение переменной.
Наташа задумала число, умножила его на два, прибавила 5. Затем она разделила результат на 7, прибавила 49 и получила 52. Какое число задумала Наташа?
Этот способ помогает детям быстро и правильно решать любые уравнения, даже длинные, с большим количеством арифметических действий. А так же присутствует элемент занимательности. Таким образом, можно сделать вывод о том, что в учебнике Моро второго класса мало упражнений развивающих логическое мышление, внимательность.Практически отсутствуют задания с элементами занимательности. Упражнения однотипны. Поэтому просто необходимо дополнять данные в учебнике упражнения дополнительными заданиями развивающего характера.
Глава II. Методика изучения элементов алгебры и математической логики
1. Методика изучения числовых выражений, выражений с переменными, числовых равенств и неравенств, уравнений
Изучение числовых выражений, равенств и неравенств, а так же уравнений начинается еще с первого класса, в период изучения нумерации в пределах 10.
Так знакомство с равенствами и неравенствами начинается уже с девятой страницы. Дети учатся сначала сравнивать числа, затем выражения с целью установления отношений "больше", "меньше", "равно", учатся записывать результаты с помощью знаков "<", ">", "=" и читать полученные равенства и неравенства.
Сравнение чисел осуществляется сначала на основе сравнения множеств, которое выполняется с помощью установления взаимно однозначного соответствия. Попутно выполняется счет элементов множеств и сравнение полученных чисел:
в дальнейшем при сравнение чисел учащиеся опираются на знание их места в натуральном ряду: девять меньше, чем десять, потому что при счете число девять называют перед числом десять. Установленные отношения записываются с помощью знаков <, >, =, учащиеся упражняются в чтении и записи равенств и неравенств, но сами термины вводятся только во втором классе.
Переход к сравнению двух выражений осуществляется постепенно. Сначала дети знакомятся с самими выражениями.
При формировании понятия числового выражения необходимо учитывать, что знак действия, поставленный между числами имеет двоякий смысл: с одной стороны, он обозначает действия, которое надо выполнить над числами; с другой стороны, знак действия служит для обозначения выражения (6 + 4 - это сумма чисел 6 и 4).
Понятия о выражениях формируется в тесной связи с понятиями об арифметических действия и способствует лучшему их усвоению. В первом классе формируется представление о простейших выражениях (сумма и разность). Знакомство осуществляется при помощи метода изложения.
На доске записан пример на сложение: 5 + 2.
Назвать и подписать: это сумма.
Найти чему равна сумма: 7.
Записать и подписать - это тоже сумма.
Каждое из чисел имеет свое название (имя): 5 - первое слагаемое, 2 - второе слагаемое. Наш пример можно прочесть так: сумма чисел 2 и 5 равна 7; первое слагаемое 5, второе - 2, сумма - 7.
Так же знакомятся и с разностью. И только после этого дети сравнивают выражение с числом, а далее выражение с выражением.
На первом уроке можно дать упражнение на сравнение с опорой на рисунки, например, в двух рядах рисуются по 6 квадратов (6 = 6), затем в первом ряду дорисовывают два квадрата или зачеркивают два квадрата. И дается запись:
6 + 2 > 6 6 - 2 < 6
8 > 6 4 < 6
Дети говорят: "Слева было 6 и справа 6. Справа так и осталось 6, а слева прибавили (отняли) 2. Там стало больше (меньше)". Для проверки выполняются вычисления и сравниваются полученные числа.
Затем переходят к сравнению двух выражений. Сравнить два выражения - значит, сравнить их значения. Например, надо сравнить суммы 6 + 4 и 6 + 3. Рассуждение: первая сумма равна 10, вторая - 9, 10 больше, чем 9, значит сумма чисел 6 и 4 больше, чем сумма чисел 6 и 3.
6 + 4 > 6 +3
10> 9
Так же в первом классе осуществляется знакомство с записью и чтением выражений со скобками и некоторыми случаями в которых нужно установить порядок действий. Например, 70 - 26 + 10, 42 + 18 -19 и т. д. Выполняют тождественные преобразования, опираясь на свойства арифметических действий (прибавление числа к сумме и суммы к числу).
Например, продолжи запись: 76 - (20 + 4) = 26 - 20… Кроме этого, в первом классе проводится подготовительная работа к ознакомлению с уравнениями.
Неизвестно число появляется впервые уже в связи с решением примеров вида 1 + 1 = 2, которые решаются при изучении нумерации в пределах десяти. В этом примере два известных числа 1 и 1, а третье число, которое получится, надо найти. Число которое требуется найти, называют неизвестным.
Постепенно задания усложняются. Так, детям предлагается, пользуясь рисунком, имеющимся в учебнике, составить пример, в котором надо прибавить 1: + 1 = .
В рассмотренных примерах неизвестным числом являлся результат действия. В дальнейшем дети встречаются и с такими случаями, когда неизвестным оказывается один из компонентов действия. Например, спишите пример, заполняя пропуск: 3 + = 5.
Далее, изучение выражений с переменными, равенств и неравенств, уравнений продолжается во втором классе.
Здесь дети знакомятся с терминами "равенство" и "неравенство". Учащимся предлагается проверить, верны ли записи (даны два столбика равенств и неравенств). Учитель поясняет, что, если между выражениями стоит знак равно, - это равенство, а если знак больше или меньше это неравенство. Равенства и неравенства бывают верными и неверными. Учащиеся выбирают верные равенства и верные неравенства из предложенных. Затем решают большое количество заданий такого типа на закрепление.
Так же во втором классе дети знакомятся с темой "Порядок действий" в сложных выражениях. Формулируют правило: если в выражении без скобок есть только сложение и вычитание или умножение и деление, то они выполняются по порядку слева направо. Учитель обращает внимание детей на то, что при не соблюдении этих правил получатся не верное равенство.
Затем изучается порядок действий в выражении без скобок, в которых есть умножение и деление, сложение и вычитание: в выражениях без скобок умножение и деления выполняются раньше, чем сложение и вычитание.
После этого изучается правило порядка действий в выражениях со скобками, причем в скобках одно действие. Знакомятся с такими тождественными преобразованиями как умножение и деление суммы на число.
Вводится новое понятие, выражение с переменной. В подготовительной работе нужно повторить название чисел в математических выражениях: "сумма чисел", "разность чисел", "произведение чисел", а так же зависимость между компонентами и результатом действий.
Хорошим упражнением для подготовки к введению буквенной символики являются задачи с пропущенными числами.
В начале вводятся выражения с одно переменной. Для этого можно использовать пособие - прямоугольник с вырезанным "окошком" и продвижной лентой. На ленте записаны числа, например, 2, 6, 8, 15, а на картоне за "окошком" записано +8. Учитель передвигает ленту, а дети называют и записывают соответствующие выражения: 2 + 8, 6 + 8 и т. д. Учитель сообщает, что в математике вместо "окошка" записывают латинские буквы. Учитель объясняет: "Запишем вместо "окошка", например, букву с, тогда получим выражение с + 8, которое читают так: "сумма чисел с и 8". Найдем значение этой суммы , подставляя значения записанные на этой ленте ( учитель передвигает ленту, а дети записывают на доске и в тетрадях выражение: с + 8, с = 2, 2 + 8 = 10; с = 6, 6 + 8 = 14 и т. д."
Числа 2, 6 , 8, 15 - это обозначения буквы с, а числа 10, 14 … - это значение выражения с + 8 приданных значениях буквы.
Можно ли букве с придать другие значения? Назовите их. Дети называют несколько значений, записывают числовые выражения и находят их значения. Учитель замечает, что букве с можно придать очень много различных значений.
Для ознакомления с выражениями с двумя переменными можно использовать специальное пособие - прямоугольник с двумя "окошечками" и провести работу, аналогичную той, что при введении выражения с одной. Начать можно и с рассмотрения простой задачи, например, такой:
"На одной полке 3 книги, а на другой - 5 книг. Сколько всего книг на этих полках?"
Дети знают, что такие задачи решаются сложением.
На доске запись:
Затем в задаче меняются числовые данные: "На одной полке 6 книг, а на другой - 4". Вопрос тот же, запись данных и решение проводится по той же таблице.
С целью закрепления знаний приобретенных при первом знакомстве с буквенными выражениями, выполняются упражнения, связанные с вычислением значений данного выражения при заданных значениях букв. Полезны и упражнения на заполнение таблиц, где компоненты действий обозначен буквами.
И еще один элемент алгебры, который дети изучают во втором классе - это уравнения.
При введении уравнений они решаются подбором используя знания состава чисел, табличных случаев сложения, вычитания умножения и деления. После решения нескольких примеров подбором учитель дает уравнение х + 28 = 40, предлагает прочесть: первое слагаемое неизвестно, второе - 28, сумма - 40, надо найти первое слагаемое. Дети говорят правило нахождения неизвестного слагаемого: чтобы найти первое слагаемое, надо из суммы 40 вычесть известное слагаемое - 28.
Вычисляем: 40 -28 = 12, т. е. х = 12.
Проверяем: 12 + 28 = 40, значит уравнение решено правильно. Запись на доске и в тетрадях: х + 28 = 40
Проверка:
х = 40 - 28 12 + 28 = 40
х = 1240 = 40.
Затем аналогично изучаются уравнения видов:
Х - 5 = 27 - нахождение неизвестного уменьшаемого;
32 - х = 8 - нахождение неизвестного вычитаемого;
14 · х = 28 - нахождение неизвестного множителя;
х : 6 = 12 - нахождение неизвестного делимого;
48 : х = 4 - нахождение неизвестного делителя.
Овладение понятием "уравнение" способствует и решение задач способом составления уравнения. Необходимым требованием для этого является умение составлять выражения по их условиям.
В третьем классе решаются задачи с помощью составления уравнения, в которых надо найти неизвестный компонент действия.
Для решения задачи с помощью уравнения обозначают буквой искомое число, выделяют в условии задачи связи, которые позволяют составить равенство, содержащее неизвестное, записывают его. Полученное уравнение решают, используя знания, связи между компонентами и результатом действия. Затем дается ответ на вопрос задачи.
Так же с помощью уравнений решаются задачи на нахождение одной из сторон прямоугольника по известным площади и длине смежной стороны.
Задачи на составление уравнений решаются систематически - это хорошее упражнение на отработку понятия уравнения.
Кроме решения уравнений учащиеся в третьем классе продолжают работу над выражениями с переменной, а так же с изучением порядка действий.
Подобные документы
Понятие логического мышления. Особенности развития логического мышления младших школьников. Педагогические условия развития логического мышления на уроках математики. Принципы изучения геометрического материала. Анализ учебной математической литературы.
дипломная работа [241,5 K], добавлен 16.05.2017Особенности развития логического мышления младших школьников. Разработка комплекса заданий по математике, направленных на развитие логического мышления младших школьников. Методические рекомендации и результаты констатирующего, формирующего эксперимента.
курсовая работа [1,1 M], добавлен 30.03.2016Особенности логического мышления младших школьников, его развитие на уроках математики. Теоретические основы использования дидактических игровых заданий в развитии логического мышления младших школьников, определение его уровней в условиях эксперимента.
дипломная работа [894,4 K], добавлен 09.07.2011Содержание мышления и его виды. Особенности логического мышления младших школьников. Теоретические основы использования дидактических игровых заданий в развитии логического мышления младших школьников. Возможности формирования приемов мышления.
курсовая работа [462,2 K], добавлен 23.01.2015Уравнение как общематематическое понятие. Направления изучения линии уравнений в школьном курсе алгебры. Методика изучения квадратных уравнений. Характеристика форм уроков. Разработка и практическое использование различных форм уроков математики.
дипломная работа [4,0 M], добавлен 29.01.2011Особенности развития мышления младших школьников в процессе учебной деятельности. Сущность дидактических игр и их роль в развитии младших школьников. Система упражнений, направленных на развитие логического мышления, диагностика уровня его развития.
дипломная работа [116,6 K], добавлен 25.06.2011Психолого-педагогические аспекты развития логического мышления школьников младших классов. Особенности психологического развития учеников начальных классов. Современный урок математики в начальной школе и его роль в развитии логического мышления детей.
дипломная работа [303,8 K], добавлен 09.09.2017Методика обучения понятию неравенства и решению неравенств в начальной школе. Содержание и роль линии уравнений и неравенств в школьном курсе математики. Классификация преобразований неравенств и их систем. Общая последовательность изучения материала.
курсовая работа [320,8 K], добавлен 08.04.2009Особенности логического мышления учащихся младшего школьного возраста, педагогические условия его формирования. Диагностика сформированности логического мышления школьников, опытно-экспериментальная работа по его развитию. Апробация системы заданий.
курсовая работа [1,4 M], добавлен 15.06.2015Понятие квадратного трехчлена и квадратичной функции, их место в школьном курсе алгебры. Определение порядка раскрытия темы по решению квадратных уравнений и неравенств на уроках математики. Разработка методики по изучению квадратного трехчлена в школе.
дипломная работа [1,6 M], добавлен 18.07.2013