Математическое развитие детей дошкольного возраста

Сущность методики и понятие о математическом развитии младших дошкольников. Игры и упражнения по развитию умственных и мыслительных способностей, логического мышления у детей. Современные требования к математическому развитию детей дошкольного возраста.

Рубрика Педагогика
Вид контрольная работа
Язык русский
Дата добавления 19.09.2009
Размер файла 29,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

Введение

1. Сущность методики математического развития младших дошкольников

2. Понятие о математическом развитии младших дошкольников

3. Современные требования к математическому развитию детей дошкольного возраста

Заключение

Список литературы

Введение

Актуальность темы обусловлена тем, что дети дошкольного возраста проявляют спонтанный интерес к математическим категориям: количество, форма, время, пространство, которые помогают им лучше ориентироваться в вещах и ситуациях, упорядочивать и связывать их друг с другом, способствуют формированию понятий.

Детские сады и подготовительные классы учитывают этот интерес и пытаются расширить знания детей в этой области (25,26,39). Однако знакомство с содержанием этих понятий и формированием элементарных математических представлений не всегда систематично, и зачастую, хочется желать лучшего.

Концепция по дошкольному образованию, ориентиры и требования к обновлению содержания дошкольного образования очерчивают ряд достаточно серьёзных требований к познавательному развитию младших дошкольников, частью которого является математическое развитие. В связи с этим нас заинтересовала проблема: как обеспечить математическое развитие детей 4-5 лет, отвечающее современным требованиям.

Цель работы: выявление особенностей математического развития детей 4-5 лет в свете современных требований.

Задачи исследования: выявить уровень математического развития детей 4-5 лет; определить систему работы с детьми 4-5 лет по математическому развитию в свете современных требований.

Объект - учебно-воспитательный процесс в ДОУ.

Предмет - формирование элементарных математических представлений детей младшего дошкольного возраста.

1. Понятие о математическом развитии младших дошкольников

И.Г.Песталоцци в книге "Как Гертруда учит своих детей" (35), говорит о том, что арифметика - это искусство, целиком, возникающее из простого соединения и разъединения нескольких единиц. Его первоначальная форма, по существу, следующая: один да один- два, от двух отнять один - остаётся один. Таким образом, первоначальная форма всякого счёта глубоко запечатлевается детьми, и для них становятся привычными с полным сознанием их внутренней правды средства, служащие для сохранения счёта, то есть числа. В истории педагогики достаточно широкое применение получила система математического развития детей М. Монтессори. Суть её в том, что когда трёхлетние дети приходят в школу, они уже умеют считать до двух или трёх. Потом они легко научаются нумерации. Одним из способов обучения нумерации М. Монтессори использовала монеты. "...Размен денег представляет первую форму нумерации, довольно интересную для возбуждения живого внимания ребёнка ..."(26). Далее она обучает с помощью методических упражнений, применяя, как дидактический материал одну из систем, уже использованную в воспитании чувств, то есть серию из десяти брусков различной длины. Когда дети разложат бруски один за другим по их длине, им предлагают считать красные и синие отметки. Теперь к упражнениям чувств для распознавания более длинных и более коротких брусков присоединяются упражнения в счёте.

Математическая подготовка детей к школе предполагает не только усвоение детьми определённых знаний, формирование у них количественных пространственных и временных представлений. Наиболее важным является развитие у дошкольников мыслительных способностей, умение решать различные задачи.

Воспитатель должен знать не только как обучать дошкольников, но и то, чему он их обучает, то есть ему должна быть ясна математическая сущность тех представлений, которые он формирует у детей. Широкое использование специальных обучающих игр так же важно для пробуждения у дошкольников интереса к математическим знаниям, совершенствования познавательной деятельности, общего умственного развития.

Методика формирования элементарных математических представлений в системе педагогических наук призвана оказать помощь в математике - одного из важнейших учебных предметов в школе, способствовать воспитанию всесторонне развитой личности.

Счёт необходим как один из процессов изучения чисел. Это видно из того, что его не отвергают и сторонники непосредственного восприятия чисел.

Сказанное даёт нам основание полагать, что оба метода должны целесообразно дополнять друг друга. В пользу нашего мнения говорит и то психическое явление, что непосредственное восприятие числа опирается преимущественно на пространственные элементы, а счёт - на временные элементы числа и действий над числами.

Что касается взгляда на число как результат измерения, то это тоже правильный взгляд, но он не исключает собою понятия о числе, как результате счёта, а лишь расширяет и углубляет понятие числа. Но как более трудный вид для понимания детей, чем предыдущий, он должен не предшествовать ему, а следовать за ним.

Вопрос о числовых фигурах считается одним из спорных вопросов в методике арифметики.

Больше всего этот вопрос, как большинство методических вопросов, обсуждался в немецкой литературе - родине числовых фигур. По их мнению, числовые фигуры могут иметь четыре различных назначения. Одно из них то, что числовые фигуры способствуют возникновению у детей числовых представлений. Второе по важности назначение числовых фигур - это облегчение производства действий над однозначными числами. Третье назначение числовых фигур заключается в том, что они могут служить предметом для счёта. Четвёртое назначение - они могут облегчать переход от числа к цифре, ибо числовая фигура, подобно цифре, является знаком для числа, явно показывающим число единиц в данном числе.

Картинки должны быть одним из наглядных пособий, хотя и важным, но не главным при обучении арифметике. Главным наглядным пособием должны быть действительные, вещественные предметы, ибо они, как подлежащие осязанию, а не указыванию только как картинки, могут быть действительно отнимаемы и прибавляемы по одному и по группам, чего нельзя сказать про картинки, где подобные действия можно производить только мысленно, в воображении (5).

Почему необходимо знакомить детей с сравнением величины предметов? Существует мнение, что дети приходят в школу с готовыми понятиями о величине предметов. На практике получается совсем другая картина. Прежде чем научить детей сравнивать величину предметов, их надо научить эти предметы видеть и рассматривать(10).

Ф.Н. Блехер предложила общие пути работы по формированию математических представлений (4, 6, 15). Она выделила два основных пути в работе с детьми:

1. Использование всех многочисленных поводов, которые в изобилии доставляет повседневная жизнь детей в коллективе и различные виды детской деятельности.

2. Путь, тесно связанный с первым - игры и занятия со специальным заданием по счёту.

Если в первом случае усвоение счёта происходит попутно, то во втором - работа по счёту носит самостоятельный характер. В работе с детьми указанные пути перекрещиваются и применяются в каждой возрастной группе детского сада.

Так же Ф.Н. Блехер разработала основной дидактический материал, необходимый на занятиях по формированию элементарных математических представлений для всех возрастных групп.

2. Сущность методики математического развития младших дошкольников

Выделившись из дошкольной педагогики, методика формирования элементарных математических представлений стала самостоятельной научной и учебной областью. Предметом её исследования является изучение основных закономерностей процесса формирования элементарных математических представлений у дошкольников в условиях общественного воспитания. Круг задач, решаемых методикой, достаточно обширен:

- научное обоснование программных требований к уровню развития количественных, пространственных, временных и других математических представлений детей в каждой возрастной группе;

- определение содержания материала для подготовки ребёнка в детском саду к усвоению математики в школе;

- совершенствование материала по формированию математических представлений в программе детского сада;

- разработка и внедрение в практику эффективных дидактических средств, методов и разнообразных форм и организация процесса развития элементарных математических представлений;

- реализация преемственности в формировании основных математических представлений в детском саду и соответствующих понятий в школе;

- разработка содержания подготовки высококвалифицированных кадров, способных осуществлять педагогическую и методическую работу по формированию и развитию математических представлений у детей во всех звеньях системы дошкольного воспитания;

- разработка на научной основе методических рекомендаций родителям по развитию математических представлений у детей в условиях семьи.

Теоретическую базу методики формирования элементарных математических представлений у дошкольников составляют не только общие, принципиальные, исходные положения философии, педагогики, психологии, математики и других наук. Как система педагогических знаний она имеет и свою собственную теорию, и свои источники. К последним относятся:

- научные исследования и публикации, в которых отражены основные результаты научных поисков (статьи, монографии, сборники научных трудов и т.д.);

- программно-инструктивные документы ("Программа воспитания и обучения в детском саду", методические указания и т.д.);

- методическая литература (статьи в специализированных журналах, например, в "Дошкольном воспитании", пособия для воспитателей детского сада и родителей, сборники игр и упражнения, методические рекомендации и т.д.);

- передовой коллективный и индивидуальный педагогический опыт по формированию элементарных математических представлений у детей в детском саду и семье, опыт и идеи педагогов-новаторов.

Методика формирования элементарных математических представлений у детей постоянно развивается, совершенствуется и обогащается результатами научных исследований и передового педагогического опыта.

В настоящее время благодаря усилиям ученых и практиков создана, успешно функционирует и совершенствуется научно-обоснованная методическая система по развитию математических представлений у детей. Её основные элементы - цель, содержание, методы, средства и формы организации работы - теснейшим образом связаны между собой и взаимообуславливают друг друга.

Ведущим и определяющим среди них является цель, так как она ведёт к выполнению социального заказа общества детским садом, подготавливая детей к изучению основ наук (в том числе и математики) в школе.

Дети четырёх лет активно осваивают счёт, пользуются числами, осуществляют элементарные вычисления по наглядной основе и устно, осваивают простейшие временные и пространственные отношения, преобразуют предметы различных форм и величин. Ребёнок, не осознавая того, практически включается в простую математическую деятельность, осваивая при этом свойства, отношения, связи и зависимости на предметах и числовом уровне.

Объём представлений следует рассматривать в качестве основы познавательного развития. Познавательные и речевые умения составляют как бы технологию процесса познания, минимум умений, без освоения которых дальнейшее познание мира и развитие ребёнка будет затруднительно.

Упор в методике работы с детьми данного возраста делается на образном начале, а также сделан шаг в направлении" реабилитации" в глазах педагогов ассоциативного мышления, которое, как известно, является одним из механизмов творческого процесса. Однако, увлеченные идеалами научности, строгости, логичности, мы нередко забываем, что мышлению для того, чтобы быть по-настоящему продуктивным, необходимы такие качества, как подвижность и гибкость, способность устанавливать неожиданные связи, находить неожиданные аналогии и таким путём двигаться по пути познания нового.

Говоря о развитии творческого мышления, мы часто забываем о таком важном его факторе, как умение образовывать ассоциации. Эта способность (в разумных пределах) развивается у детей данного возраста в процессе занятий по программе "Радуга". Л.А.Венгер, О.М.Дьяченко (7) предлагают осуществлять математическое развитие на занятиях и закреплять в разных видах детской деятельности, в том числе, в игре.

В процессе игр закрепляются количественные отношения (много, мало, больше, столько же), умение различать геометрические фигуры, ориентироваться в пространстве и времени.

Особое внимание уделяется формированию умения группировать предметы по признакам (свойствам), сначала по одному, а затем по двум (форма и размер).

Игры должны быть направлены на развитие логического мышления, а именно на умение устанавливать простейшие закономерности: порядок чередования фигур по цвету, форме, размеру. Этому способствуют и игровые упражнения на нахождение пропущенной в ряду фигуры. Должное внимание уделено развитию речи. В ходе игры воспитатель не только задаёт заранее подготовленные вопросы, но и непринуждённо разговаривает с детьми по теме и сюжету игры, содействует вхождению ребёнка в игровую ситуацию. Педагог использует потешки, загадки, считалки, фрагменты сказок. Игровые познавательные задачи решаются с помощью наглядных пособий. Необходимым условием, обеспечивающим успех в работе, является творческое отношение воспитателя к математическим играм: варьирование игровых действий и вопросов, индивидуализация требований к детям, повторение игр в том же виде или с усложнением. Необходимость современных требований вызвана высоким уровнем современной школы к математической подготовке детей в детском саду в связи с переходом на обучение в школе с шести лет.

Математическая подготовка детей к школе предполагает не только усвоение детьми определённых знаний, формирование у них количественных пространственных и временных представлений. Наиболее важным является развитие у дошкольников мыслительных способностей, умение решать различные задачи. Воспитатель должен знать не только как обучать дошкольников, но и то, чему он их обучает, то есть ему должна быть ясна математическая сущность тех представлений, которые он формирует у детей. Широкое использование специальных обучающих игр так же важно для пробуждения у дошкольников интереса к математическим знаниям, совершенствования познавательной деятельности, общего умственного развития.

Методика формирования элементарных математических представлений в системе педагогических наук призвана оказать помощь в математике- одного из важнейших учебных предметов в школе, способствовать воспитанию всесторонне развитой личности.

Обучение ведёт за собой развитие. В условиях рационально построенного обучения, учитывая возрастные возможности дошкольников, можно сформировать у них полноценные представления об отдельных математических понятиях. Обучение при этом рассматривается как непременное условие развития, которое в свою очередь становится управляемым процессом, связанным с активным формированием математических представлений и логических операций. При таком подходе не игнорируется стихийный опыт и его влияние на развитие ребёнка, но ведущая роль отводится целенаправленному обучению.

3. Современные требования к математическому развитию детей дошкольного возраста

Современное состояние математического развития дошкольников предусматривается в разных программах. Одна из них - программа "Детство" заключается в следующем:

1. Цель- развитие познавательных и творческих способностей детей (личностное развитие).

2. Содержание классическое: доматематические математические виды деятельности: виды деятельности:

- сравнение - счёт

- уравнивание - измерение

- комплектование - вычисление плюс элементы логики и математики.

3. Методы и приёмы:

- практические (игровые);

- экспериментирование;

- моделирование;

- воссоздание;

- преобразование;

- конструирование.

4. Дидактические средства:

Наглядный материал (книги, компьютер):

- блоки Дьенеша,

- палочки Кюизенера,

- модели.

5. Форма организации детской деятельности:

- индивидуально-творческая деятельность,

- творческая деятельность в малой подгруппе(3-6 детей),

-учебно-игровая деятельность (познавательные игры, занятия),

- игровой тренинг.

Всё это опирается на развивающую среду, которую можно построить следующим образом:

1. Математические развлечения:

- игры на плоскостное моделирование (Пифагор, Танграм и т.д.),

- игры головоломки,

- задачи-шутки,

- кроссворды,

- ребусы.

2. Дидактические игры:

- сенсорные,

- моделирующего характера,

- специально придуманные педагогами для обучения детей.

3. Развивающие игры - это игры, способствующие решению умственных способностей. Игры основываются на моделировании, процессе поиска решений. Никитин, Минскин «От игры к знаниям».

Таким образом, наука математического развития в свете современных требований изменилась, стала более ориентированной на развитие личности ребёнка, развитие познавательных знаний, охране его физического и психического здоровья. Если при учебно-дисциплинарном подходе воспитания она сводится к исправлению поведения или предупреждению возможных отклонений от правил посредством «внушений», то личностно-ориентированная модель взаимодействия взрослого с ребёнком исходит из кардинально иной трактовки процессов воспитания: воспитывать - значит приобщать ребёнка к миру человеческих ценностей.

Заключение

Познание свойств детьми 4-5 лет происходит наиболее успешно в активных действиях по сравнению, группировке, видоизменению и воссозданию геометрических фигур, силуэтов, предметов разной формы, величины. Уместны игры типа "Цвет и форма", "Форма и размер" и другие, в которые непосредственно включены разнообразные обследовательские действия. Использование логических блоков Дьенеша или набора логических геометрических фигур даёт возможность приобщить детей к выполнению простых игровых действий на классификацию по совместным свойствам, причём как по наличию, так и по отсутствию свойства. Игры и упражнения с цветными счетными палочками Кюизенера наиболее успешно способствуют познанию величинных и числовых отношений. Практическая деятельность взрослых совместно с детьми по изготовлению печенья, салата, уборке помещения, посадке и уходу за растениями, уходу за животными, сопровождаемая познавательными разговорами успешно способствует освоению элементарных математических отношений. Игры на освоение счёта очень разнообразны: подвижные, конструктивные, настольно-печатные и другие. Для освоения сравнения, обобщения групп предметов по числу следует специально, с учётом уровня развития детей, подбирать игры и варьировать их.

Для закрепления представлений детей о сохранении количества, его независимости от формы расположения, хорошо использовать игру "Точечки". Дети любят общаться, их радует одобрение старших, это поощряет их к освоению новых действий. Для эффективного повышения уровня математических знаний предлагается методика использования различных видов детской деятельности преимущественно игрового характера.

Целенаправленное развитие элементарных математических представлений должно осуществляться на протяжении всего дошкольного периода.

Список литературы

1. Асмолов А.Г. "Психология личности".- М.: Просвещение 1990г.

2. Альтхауз Д. , Дум Э. "Цвет, форма, количество". - М.: Просвещение

3. 1984 г. стр. 11 -16, 40.

4. Волковский Д Л."Руководство к "Детскому миру" в числах". -

5. М.: 1916г. стр.7-11,13,24.

6. Венгер Л.А. , Дьяченко О.М. "Игры и упражнения по развитию умственных способностей у детей дошкольного возраста". - М.: Просвещение 1989 г.

7. Гальперин П.Я. " О методе формирования умственных действий".

8. Глаголева Л.В. "Сравнение величин предметов в нулевых группах школ" Л-М. : Работник просвещения 1930г. стр. 4-6, 12-13.

9. Дошкольное воспитание , 1969г. № 9 стр. 57-65.

10. Ерофеева Т.И. и другие. "Математика дня дошкольников",- М.: Просвещение 1992г.

11. 3вонкин А. "Малыш и математика, непохожая на математику". Знание и сила, 1985г. стр. 41-44.

12. Логинова В.И. "Формирование у детей дошкольного возраста (3-6 лет) знаний о материалах и признаках, свойствах и качествах". - Л.: 1964г

13. Логинова В.И. "Формирование умения решать логические задачи в дошкольном возрасте. Совершенствование процесса формирования элементарных математических представлений в детском саду". - Л.: 1990г. стр.24-37.

14. Леушина А.М. "Обучение счёту в детском саду". - М.: Учпедиз. 1961г. стр. 17-20.

15. Менчинская Н.А. "Психология обучения арифметике". АПН РСФСР 1955г. -М. стр. 164-182.

16. Метлина Л.С. "Математика в детском саду". - М.: Просвещение 1984г. стр. 11-22, 52-57, 97-110, 165-168.

17. Использование игровых методов при формировании у дошкольников математических представлений". - Л.: 1990г. стр.47-62.

18. Носова Е.А. "Формирование умения решать логические задачи в дошкольном возрасте. Совершенствование процесса формирования элементарных математических представлений в детском саду". - Л.: 1990г. стр.24-37.

19. Непомнящая Н.Н. "Психологический анализ обучения детей 3-7 лет (на материале математики)".- М.: Педагогика 1983г. стр.7-15.

20. Смоленцева А.А. "Сюжетно- дидактические игры с математическим содержанием ".- М.: Просвещение 1987г. стр. 9-19.

21. Тарунтаева Т.В. "Развитие элементарных математических представлений дошкольников", - М.6 Просвещение 1980г. стр.37-40.

22. Федлер М. "Математика уже в детском саду". - М.: Просвещение 1981г. стр. 28-32,97-99.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.