Искусственный интеллект

Основные понятия термина знание. Понятие рефлексии. Рефлексия как одна из составляющих интеллектуальной деятельности. Математико-технические аспекты реализации систем искусственного интеллекта. Искусственный интеллект и теоретические проблемы психологии.

Рубрика Педагогика
Вид реферат
Язык русский
Дата добавления 15.11.2008
Размер файла 37,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

28

Московская государственная академия тонкой химической технологии

им. М.В. Ломоносова

РЕФЕРАТ

по курсу:

Методы психолого-педагогического исследования

на тему:

«Искусственный интеллект» - содержание понятия, история возникновения, состояние разработок

Выполнил: студент группы БМ-55Степанов В.Н.

Проверил: Логина Н.В.

Москва 2008г.

Оглавление

  • 1.Введение3
  • 2.Взгляды на термин “знание”4
    • 2.1.Знание как основа5
  • 3.Рефлексия как одна из составляющих интеллектуальной деятельности8
    • 3.1.Понятие рефлексии8
    • 3.2.Неотъемлемость рефлексии10
  • 4.Математическо-технические аспекты реализации систем искусственного интеллекта11
    • 4.1.Природа обработки естественного языка13
    • 4.2.Распознавание речи14
  • 5.Практическая реализация16
    • 5.1.Семантические сети18
  • 6.Искусственный интеллект и теоретические проблемы психологии19
  • 7.Заключение21
  • Использованная литература23

1. Введение

Современные философы и исследователи науки часто рассматривают междисциплинарные науки как одно из выдающихся достижений заново открытых в 20 веке. Искусственный интеллект и искусственная жизнь представляют прекрасный пример такой интеграции многих научных областей. Конечно, междисциплинарность тоже имеет свою цену. Химики, биологи, специалисты в области вычислительных наук и многие другие изучают различные аспекты живых систем, пользуясь при этом сходными методами. Основными методами изучения искусственной жизни являются: синтез искусственных систем с аналогичным живым системам поведением, изучение динамики развития процесса, а не конечного результата, конструирование систем демонстрирующих феномен созидания. То что объединяет исследователей в области искусственной жизни (ИЖ) - это методы, в отличие от их целей. Конечно, существует общий интерес к жизни как к феномену для изучения. К сожалению, жизнь слишком сложна, чтобы можно было наметить общие направления в исследованиях. Доказательствам последнего утверждения может служить тот факт, что некоторые заинтересованы в исследовании “систем, демонстрирующих феномены живых систем”, другие изучают природу химического репродуцирования или пытаются решить философские проблемы самосознания. В то же время совершенно другой вид исследователей, относящихся к области роботики, пытаются создавать физические системы, демонстрирующие некоторое поведенческое сходство с животными. По современным научным данным человеческий мозг содержит около 240 основных “вычислительных” узлов нейронов, которых соединяют около 250 связей синапсов. Современные вычислительные системы стремительно приближаются по своим вычислительным возможностям к мозгу. Искусственные нейронные сети контролируют сложнейшие системы управления и слежения, проявляют способности в области распознавания изображения вплоть до возможности создания интеллектуальных автопилотов. Уже активно занимается искусственными системами область, считавшаяся прерогативой человека - компьютеры стали лучше людей играть в шахматы. В таких условиях приобретает особую значимость рассмотрение основных философских вопросов, связанных с искусственным интеллектом и искусственной жизнью. При этом, очевидно, возможно взаимовлияние искусственного интеллекта и искусственной жизни на философские проблемы мышления и жизни вообще.

Взгляды на термин “знание”

В последние годы термин “знание” все чаще употребляется в информатике. Он встречается в таких словосочетаниях, как “база знаний”, “банк знаний”, язык представления знаний”, “системы представления знаний” и других. Специалисты подчеркивают, что совершенствование так называемых интеллектуальных систем (информационно-поисковых систем высокого уровня, диалоговых систем, базирующихся на естественных языках, интерактивных человеко-машинных систем, используемых в управлении, проектировании, научных исследованиях) вот многом определяется тем, насколько успешно будут решаться задачи представления знаний.

Неудивительно, что перед теми, кто занимается проблемой представлении знаний, встает вопрос о том, что такое знание, какова его природа и основные характеристики. В связи с этим предпринимаются, например, попытки дать такое определение знания, из которого можно было бы исходить в решении задач представления знаний в компьютерных системах. Подчеркивается, что для разработки средств и методов представления знаний необходимо использовать результаты когнитивной психологии - науки, выявляющей структуры, в виде которых человек хранит информацию об окружающем его мире. Высказывается мнение, что язык и представление знаний в системах искусственного интеллекта должны рассматриваться в рамках особого научного направления - когитологии. Предметом когитологии должно стать знание как самостоятельный аспект реальности.

Во многих случаях подлежащие представлению знания относятся к довольно ограниченной области, для характеристики которой говорят об “области рассуждений” или “области экспертизы”. Численная формализация таких описаний в общем малоэффективна. Напротив, использование символического языка, такого, как язык математической логики, позволяет формулировать описания в форме, одновременно близкой и к обычному языку, и к языку программирования. Впрочем, математическая логика позволяет рассуждать, базируясь на приобретенных знаниях: логические выводы действительно являются активными операциями получения новых знаний из уже усвоенных.

1.1. Знание как основа

Вместе с тем вопрос, что такое знание, каковы его основные свойства и способы получения, - это исконно философский вопрос. Закономерно поэтому стремление дать философское осмысление вопросов компьютерного представления знаний, выявляя прежде всего их гносеологические и философско-логические аспекты.

Принципиальная мировоззренческая установка состоит в рассмотрении ЭВМ как предмета-посредника в человеческой познавательной деятельности. Компьютерная система, подобно другим предметам-посредникам (орудиям труда и предметам быта, инструментам, приборам, знаково-символическим системам, научным текстам и т. д.), играя инструментальную роль в познании, является средством объективизации накопленного знания, воплощением определенного социально-исторического опыта практической и познавательной деятельности. Ее важнейшая теоретико-познавательная роль и обусловлена тем, что выделение человеком во вновь познаваемых объектов черт, которые оказываются существенными с точки зрения общественной практики, становится возможным именно при помощи предметов-посредников. “ЭВМ, - подчеркивает акад. Г. С. Поспелов, - представляет собой инструмент для интеллектуальной деятельности людей, а научное направление “искусственный интеллект” придает этому инструменту новые качества и обеспечивает новый, более перспективный стиль его использования. Спор между сторонниками и противниками искусственного интеллекта оказывается в связи с этим совершенно беспредметным.

Проблема представления знаний возникла как одна из проблем искусственного интеллекта. Она связана с переходом исследований в этой области в некоторую новую фазу. Речь идет о создании практически полезных систем (прежде всего так называемых экспертных систем), применяемых в медицине, геологии, химии. Создание такого рода систем требует интенсивных усилий по формализации знания, накопленного в соответствующей науке.

С термином “представление знаний” связывается определенный этап в развитии математического обеспечения ЭВМ. Если на первом этапе доминировали программы, а данные играли вспомогательную роль своеобразной “пищи” для “голодных” программ, то на последующих этапах роль данных неуклонно возрастала. Их структура усложнялась: от машинного слова, рамещенного в одной ячейке памяти ЭВМ, происходил переход к векторам, массивам, файлам, спискам. Венцом этого развития стали абстрактные типы данных, обеспечивающие возможность создания такой структуры данных, которая наиболее удобна при решении задачи. Последовательное развитие структур данных привело к их качественному изменению и к переходу от представления данных к представлению знаний. Уровень представления знаний отличается от уровня представления данных не только более сложной структурой, но и существенными особенностями: интерпретируемость, наличие классифицируемых связей (например, связь между знаниями, относящихся к элементу множества, и знаниями об этом множестве), которые позволяют хранить информацию, одинаковую для всех элементов множества, записанную одноактно при описании самого множества, наличие ситуативных отношений (одновременности, нахождения в одной точке пространства и т. п., эти отношения определяют ситуативную совместимость тех или иных знаний, хранимых в памяти). Кроме того, для уровня знаний характерны такие признаки, как наличие специальных процедур обобщения, пополнения имеющихся в системе знаний и ряда других процедур.

В последние годы все чаще стал употребляться термин “компьютерное моделирование”. Очевидно, имеет смысл обозначать им построение любого из составляющих компьютерной системы - будь то знаковая модель или материальная.

С введением термина “знание” появляется свойство “осознавать”, т. е. “понимать” свои интеллектуальные возможности. В свою очередь это означает не что иное, как рефлексию.

2. Рефлексия как одна из составляющих интеллектуальной деятельности

2.1. Понятие рефлексии

Исследования в области искусственного интеллекта возникли под влиянием идей кибернетики - прежде всего идеи общности процессов управления и передачи информации в живых организмах, обществе и компьютерах. Примечательно, что снятие идеологических запретов на кибернетику в период “оттепели” повлекло за собой бурное развитие исследований по кибернетике, и та ее область, которая впоследствии была осознана как проблематика создания систем искусственного интеллекта, сформировалась особенно быстро.

Интересно отметить, что реабилитация кибернетики и, в частности, проблемы искусственного интеллекта (или как тогда говорили, создание “мыслящих маши”) отнюдь не была сопряжена с общим процессом деидеологизации науки. “Оправдание” кибернетики произошло стараниями нескольких крупных ученых, искренне доказывавшими материалистический характер кибернетического воззрения на мир. Вслед за учеными эту задачу взяли на себя профессиональные философы.

Данная гипотетическая способность интерпретировалась как возможность машинного творчества, как основа создания будущих “мыслящих машин”. И, хотя в реально разрабатывавшихся системах достижение цели осуществлялось на основе человеческого опыта с помощью алгоритмов, основанных на теоретическом анализе создаваемых моделей и результатов проводимых на них экспериментов, идеи построения самообучаемых систем многим казались наиболее перспективными. Лишь к 80-му году была осознана значимость проблемы использования в интеллектуальных системах человеческих знаний о действительности, повлекшая серьезную разработку баз знаний и методов извлечения личных знаний экспертов.

С развитием изучения данного направления возникла идея рефлексивного управления. До этого момента в кибернетике управление рассматривалось как передача объекту сигналов, непосредственно воздействующих на его поведение, а эффективность управления достигалась с помощью обратной связи - получения информации о реакциях управляемого объекта. Рефлексивное же управление - есть передача информации, воздействующей на имеющийся у объекта образ мира. Тем самым обратная связь излишняя - состояние субъекта известно передающему информацию.

Интересными оказались компьютерные модели, в которых успех достигался за счет включения рефлексии о противодействующих намерениях партнеров.

Сам факт рефлексии означает, что деятельность человеческого сознания отнюдь не ограничивается созданием моделей, воспроизводящих (“отражающих”) внешнюю действительность. Рефлексия - мнение субъекта об имеющемся у него образе действительности, т. е. критический образ этого образа, подразумевающий оценку создаваемых в воображении моделей. Классическая парадигма искусственного интеллекта игнорирует данное обстоятельство и поэтому не интересуется рефлексией. Вероятно, что такое игнорирование связано с бытующим взглядом на рефлексию как на критическое сомнение, которое мешает последовательному проведению эффективных действий. Классическая парадигма искусственного интеллекта предполагала наличие жесткого целеполагания, т. е. ясной и не подлежащей сомнению цели, достижение которой означает решение проблемы независимо от используемых средств (если последнее обстоятельство не противоречит основным принципам построения самой интеллектуальной системы). В системе с развитой рефлексией цель также может оказаться предметом критической рефлексии. Человек, способный к глубокой рефлексии, не может быть абсолютно целеустремленным, ибо он способен усомниться в безоговорочной ценности поставленной перед ним цели.

Традиционные системы искусственного интеллекта основаны на идеологии целеориентированного поведения типа шахматной игры, где цель обоих партнеров состоит в том, чтобы поставить мат другому ценой любых жертв. Не случайно именно шахматные программы оказались столь важными для отработки методов искусственного интеллекта.

2.2. Неотъемлемость рефлексии

Стоит ли считать рефлексию неотъемлемой частью систем искусственного интеллекта? Иначе говоря - должен ли “мыслящий” аппарат понимать, что он мыслит, и контролировать этот процесс?

Ответом с технической точки зрения может служить следующее. Как и любая компьютерная программа, наделенная средствами самодиагностики и самоисправления (а такие средства уже становятся стандартном), т. е. средствами повышения надежности, системы искусственного интеллекта должны контролировать происходящие процессы - как внешние, так и внутренние. Однако, может показаться, что в этом смысле будет достаточным просто развитая структура обратных связей. Сразу надо оговориться, что под обратной связью следует понимать только ответную реакцию (или получение информации о ней) после какого-то конкретного действия системы. Обратная связь лишь предоставляет данные, информацию, но ни в коей мере не интерпретирует их. Норбертом Винером в книге “Кибернетика, или управление и связь в животном и машине” были приведены примеры нарушений нервной системы людей и их последствия. Так люди с нарушением системы ориентации собственных конечностей в пространстве (не чувствующие своих рук и ног, случай, когда конечности “немеют”) должны были визуально контролировать свои действия. Это было типичное нарушение обратной связи. Рефлексия же подразумевает анализ полученной картины.

3. Математическо-технические аспекты реализации систем искусственного интеллекта

С конца 40-х годов ученые все большего числа университетских и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров, действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума.

Терпеливо продвигаясь вперед в своем нелегком труде, исследователи, работающие в области искусственного интеллекта (ИИ), обнаружили, что вступили в схватку с весьма запутанными проблемами, далеко выходящими за пределы традиционной информатики. Оказалось, что прежде всего необходимо понять механизмы процесса обучения, природу языка и чувственного восприятия. Выяснилось, что для создания машин, имитирующих работу человеческого мозга, требуется разобраться в том, как действуют миллиарды его взаимосвязанных нейронов. И тогда многие исследователи пришли к выводу, что пожалуй самая трудная проблема, стоящая перед современной наукой - познание процессов функционирования человеческого разума, а не просто имитация его работы. Что непосредственно затрагивало фундаментальные теоретические проблемы психологической науки. В самом деле, ученым трудно даже прийти к единой точке зрения относительно самого предмета их исследований - интеллекта. Здесь, как в притче о слепцах, пытавшихся описывать слона, пытается придерживаться своего заветного определения.

Некоторые считают, что интеллект - умение решать сложные задачи; другие рассматривают его как способность к обучению, обобщению и аналогиям; третьи - как возможность взаимодействия с внешним миром путем общения, восприятия и осознания воспринятого. Тем не менее многие исследователи ИИ склонны принять тест машинного интеллекта, предложенный в начале 50-х годов выдающимся английским математиком и специалистом по вычислительной технике Аланом Тьюрингом. Компьютер можно считать разумным,- утверждал Тьюринг,- если он способен заставить нас поверить, что мы имеем дело не с машиной, а с человеком.

Обеспечение взаимодействия с ЭВМ на естественном языке (ЕЯ) является важнейшей задачей исследований по искусственному интеллекту (ИИ). Базы данных, пакеты прикладных программ и экспертные системы, основанные на ИИ, требуют оснащения их гибким интерфейсом для многочисленных пользователей, не желающих общаться с компьютером на искусственном языке. В то время как многие фундаментальные проблемы в области обработки ЕЯ (Natural Language Processing, NLP) еще не решены, прикладные системы могут оснащаться интерфейсом, понимающем ЕЯ при определенных ограничениях.

Существуют два вида и, следовательно, две концепции обработки естественного языка:

для отдельных предложений;

для ведения интерактивного диалога.

3.1. Природа обработки естественного языка

Обработка естественного языка - это формулирование и исследование компьютерно-эффективных механизмов для обеспечения коммуникации с ЭВМ на ЕЯ. Объектами исследований являются:

собственно естественные языки;

использование ЕЯ как в коммуникации между людьми, так и в коммуникации человека с ЭВМ.

Задача исследований - создание компьютерно-эффективных моделей коммуникации на ЕЯ. Именно такая постановка задачи отличает NLP от задач традиционной лингвистики и других дисциплин, изучающих ЕЯ, и позволяет отнести ее к области ИИ. Проблемой NLP занимаются две дисциплины: лингвистика и когнитивная психология.

Традиционно лингвисты занимались созданием формальных, общих, структурных моделей ЕЯ, и поэтому отдавали предпочтение тем из них, которые позволяли извлекать как можно больше языковых закономерностей и делать обобщения. Практически никакого внимания не уделялось вопросу о пригодности моделей с точки зрения компьютерной эффективности их применения. Таким образом, оказалось, что лингвистические модели, характеризуя собственно язык, не рассматривали механизмы его порождения и распознавания. Хорошим примером тому служит порождающая грамматика Хомского, которая оказалась абсолютно непригодной на практике в качестве основы для компьютерного распознавания ЕЯ.

Задачей же когнитивной психологии является моделирование не структуры языка, а его использования. Специалисты в этой области также не придавали большого значения вопросу о компьютерной эффективности.

Различаются общая и прикладная NLP. Задачей общей NLP является разработка моделей использования языка человеком, являющихся при этом компьютерно-эффективными. Основой для этого является общее понимание текстов, как это подразумевается в работах Чарняка, Шенка, Карбонелла и др. Несомненно, общая NLP требует огромных знаний о реальном мире, и большая часть работ сосредоточена на представлении таких знаний и их применении при распознавании поступающего сообщения на ЕЯ. На сегодняшний день ИИ еще не достиг того уровня развития, когда для решения подобных задач в большом объеме использовались бы знания о реальном мире, и существующие системы можно называть лишь экспериментальными, поскольку они работают с ограниченным количеством тщательно отобранных шаблонов на ЕЯ.

Прикладная NLP занимается обычно не моделированием, а непосредственно возможностью коммуникации человека с ЭВМ на ЕЯ. В этом случае не так важно, как введенная фраза будет понята с точки зрения знаний о реальном мире, а важно извлечение информации о том, чем и как ЭВМ может быть полезной пользователю (примером может служить интерфейс экспертных систем). Кроме понимания ЕЯ, в таких системах важно также и распознавание ошибок и их коррекция.

3.2. Распознавание речи

По мере развития компьютерных систем становится все более очевидным, что использование этих систем намного расширится, если станет возможным использование человеческой речи при работе непосредственно с компьютером, и в частности станет возможным управление машиной обычным голосом в реальном времени, а также ввод и вывод информации в виде обычной человеческой речи.

Существующие технологии распознавания речи не имеют пока достаточных возможностей для их широкого использования, но на данном этапе исследований проводится интенсивный поиск возможностей употребления коротких многозначных слов (процедур) для облегчения понимания. Распознавание речи в настоящее время нашло реальное применение в жизни, пожалуй, только в тех случаях, когда используемый словарь сокращен до 10 знаков, например при обработке номеров кредитных карт и прочих кодов доступа в базирующихся на компьютерах системах, обрабатывающих передаваемые по телефону данные. Так что насущная задача - распознавание по крайней мере 20 тысяч слов естественного языка - остается пока недостижимой. Эти возможности пока недоступны для широкого коммерческого использования. Однако ряд компаний своими силами пытается использовать уже существующие в данной области науки знания.

Для успешного распознавания речи следует решить следующие задачи:

обработку словаря (фонемный состав),

обработку синтаксиса,

сокращение речи (включая возможное использование жестких сценариев),

выбор диктора (включая возраст, пол, родной язык и диалект), тренировку дикторов,

выбор особенного вида микрофона (принимая во внимание направленность и местоположение микрофона),

условия работы системы и получения результата с указанием ошибок.

Существующие сегодня системы распознавания речи основываются на сборе всей доступной (порой даже избыточной) информации, необходимой для распознавания слов. Исследователи считают, что таким образом задача распознавания образца речи, основанная на качестве сигнала, подверженного изменениям, будет достаточной для распознавани, но тем не менее в настоящее время даже при распознавании небольших сообщений нормальной речи, пока невозможно после получения разнообразных реальных сигналов осуществить прямую трансформацию в лингвистические символы, что является желаемым результатом.

4. Практическая реализация

Разработки в области искусственного интеллекта ведутся и в Новосибирском Государственном Техническом Университете. На факультете Прикладной Математики и Информатики (ФПМиИ) элементы теории искусственного интеллекта входят в базовую программу подготовки специалистов. Одним из ведущих специалистов в данной области является профессор Хабаров В.И., зав. кафедрой Программных Систем и Баз Данных (ПСиБД). Одно из направлений его исследований связано с внедрением семантических и нейронных сетей в системы управления и анализа данных, систем накопления и представления знаний. В качестве примера можно назвать разработку CASE-технологии, базированной на ультрасетях.

Тенденции развития современных информационных технологий приводят к постоянному возрастанию сложности информационных систем (ИС), создаваемых в различных областях экономики. Современные крупные проекты ИС характеризуются, как правило, следующими особенностями:

сложность описания (достаточно большое количество функций, процессов, элементов данных и сложные взаимосвязи между ними), требующая тщательного моделирования и анализа данных и процессов;

наличие совокупности тесно взаимодействующих компонентов (подсистем), имеющих свои локальные задачи и цели функционирования (например, традиционных приложений, связанных с обработкой транзакций и решением регламентных задач, и приложений аналитической обработки (поддержки принятия решений), использующих нерегламентированные запросы к данным большого объема);

отсутствие прямых аналогов, ограничивающее возможность использования каких-либо типовых проектных решений и прикладных систем;

необходимость интеграции существующих и вновь разрабатываемых приложений;

функционирование в неоднородной среде на нескольких аппаратных платформах;

разобщенность и разнородность отдельных групп разработчиков по уровню квалификации и сложившимся традициям использования тех или иных инструментальных средств;

существенная временная протяженность проекта, обусловленная, с одной стороны, ограниченными возможностями коллектива разработчиков, и, с другой стороны, масштабами организации-заказчика и различной степенью готовности отдельных ее подразделений к внедрению ИС.

Несмотря на высокие потенциальные возможности CASE-технологии (увеличение производительности труда, улучшение качества программных продуктов, поддержка унифицированного и согласованного стиля работы) далеко не все разработчики информационных систем, использующие CASE-средства, достигают подобных результатов. Применение семантических сетей для проектирования данного вида систем является по своей сути шагом в абсолютно новом направлении, что позволяет проектировать и внедрять интеллектуальные обучаемые системы для поддержки принятия решений.

4.1. Семантические сети

Семантическая сеть - структура для представления знаний в виде узлов, соединенных дугами. Самые первые семантические сети были разработаны в качестве языка-посредника для систем машинного перевода, а многие современные версии до сих пор сходны по своим характеристикам с естественным языком. Однако последние версии семантических сетей стали более мощными и гибкими и составляют конкуренцию фреймовым системам, логическому программированию и другим языкам представления.

Начиная с конца 50-ых годов были создано и применены на практике десятки вариантов семантических сетей. Несмотря на то, что терминология и их структура различаются, существуют сходства, присущие практически всем семантическим сетям:

узлы семантических сетей представляют собой концепты предметов, событий, состояний;

различные узлы одного концепта относятся к различным значениям, если они не помечено, что они относятся к одному концепту;

дуги семантических сетей создают отношения между узлами-концептами (пометки над дугами указывают на тип отношения);

некоторые отношения между концептами представляют собой лингвистические падежи, такие как агент, объект, реципиент и инструмент (другие означают временные, пространственные, логические отношения и отношения между отдельными предложениями;

концепты организованы по уровням в соответствии со степенью обобщенности так как, например, сущность, живое существо, животное, плотоядное.

Однако существуют и различия: понятие значения с точки зрения философии; методы представления кванторов общности и существования и логических операторов; способы манипулирования сетями и правила вывода, терминология. Все это варьируется от автора к автору. Несмотря не некоторые различия, сети удобны для чтения и обработки компьютером, а также достаточно мощны, чтобы представить семантику естественного языка.

5. Искусственный интеллект и теоретические проблемы психологии

Можно выделить две основные линии работ по ИИ. Первая связана с совершенствованием самих машин, с повышением "интеллектуальности" искусственных систем. Вторая связана с задачей оптимизации совместной работы "искусственного интеллекта" и собственно интеллектуальных возможностей человека.

Переходя к психологическим проблемам искусственного интеллекта, можно отметить три позиции по вопросу о взаимодействии психологии и искусственного интеллекта.

"Мы мало знаем о человеческом разуме, мы хотим его воссоздать, мы делаем это вопреки отсутствию знаний" - эта позиция характерна для многих зарубежных специалистов по ИИ.

Вторая позиция сводится к констатации ограниченности результатов исследований интеллектуальной деятельности, проводившихся психологами, социологами и физиологами. В качестве причины указывается отсутствие адекватных методов. Решение видится в воссоздании тех или иных интеллектуальных функций в работе машин. Иными словами, если машина решает задачу ранее решавшуюся человеком, то знания, которые можно подчерпнуть, анализируя эту работу и есть основной материал для построения психологических теорий.

Третья позиция характеризуется оценкой исследования в области искусственного интеллекта и психологии как совершенно независимых. В этом случае допускается возможность только потребления, использования психологических знаний в плане психологического обеспечения работ по ИИ.

Популярные идеи системного анализа позволили сделать сравнение принципов работы искусственных систем и собственно человеческой деятельности важным эвристическим приемом выделения именно специфического психологического анализа деятельности человека.

В работах по искусственному интеллекту постоянно используется термин "цель". Анализ отношения средств к цели А.Ньюэлл и Г.Саймон называют в качестве одной из "эвристик". В психологической теории деятельности "цель" является конституирующим признаком действия в отличии от операций (и деятельности в целом). В то время как в искусственных системах "целью" называют некоторую конечную ситуацию к которой стремится система. Признаки этой ситуации должны быть четко выявленными и описанными на формальном языке. Цели человеческой деятельности имеют другую природу. Конечная ситуация может по разному отражаться субъектом: как на понятийном уровне, так и в форме представлений или перцептивного образа. Это отражение может характеризоваться разной степенью ясности, отчетливости. Кроме того, для человека характерно не просто достижение готовых целей но и формирование новых.

Также работа систем искусственно интеллекта, характеризуется не просто наличием операций, программ, "целей", но и оценочными функциями. И у искусственных систем есть своего рода "ценностные ориентации". Специфику человеческой мотивационно-эмоциональной регуляции деятельности составляет использование не только константных, но и ситуативно возникающих и динамично меняющихся оценок, существенно также различие между словесно-логическими и эмоциональными оценками. В существовании потребностей и мотивов видится различие между человеком и машиной на уровне деятельности. Этот тезис повлек за собой цикл исследований, посвященных анализу специфики человеческой деятельности. Позже была показана зависимость структуры мыслительной деятельности при решении творческих задач от изменения мотивации.

Как в действительности показала история, психология и искусственный интеллект как научное направление могут находится в достаточно тесном сотрудничестве, взаимно базируясь на достижениях друг друга.

6. Заключение

Природа мышления, загадка сознания, тайна разума, все это, безусловно, одна из наиболее волнующих человека проблем. Популярность кибернетики, неослабевающий интерес к ней со стороны самых широких кругов во многом объясняется именно ее тесной связью с этой "вечной" проблемой. С того самого момента, как человек стал задумываться над проблемой мышления, в подходе к ней существуют два основных диаметрально противоположных направления: материализм и идеализм. Идеализм исходит из признания мышления некой особой сущностью, в корне отличной от материи, от всего того, с чем мы имеем дело во внешнем мире. Материализм, напротив, утверждает, что "...тот вещественный, чувственно воспринимаемый нами мир, к которому принадлежим мы сами, есть единственный действительный мир и наше сознание и мышление, как бы ни казалось оно сверхчувствительным, являются продуктом вещественного, телесного органа.

Можно пытаться объяснить, что так как кибернетика позволяет моделировать некоторые функции мозга, то сознание или разум имеет чисто материальную основу. Однако данная область может считаться слабо изученной, несмотря на труд не одного поколения ученых, и делать подобные выводы еще более чем рано. Данное утверждение не есть поддержка сторонников идеализма, оно лишь является мнением человека, немного занимающегося математикой.

Инструментом кибернетики является моделирование. С точки зрения теории моделирования вообще не имеет смысла говорить о полном тождестве модели и оригинала. Поэтому нельзя стопроцентно смоделировать разумное поведение, объект способный мыслить, и поместить его все в тот же сундук. Все это вполне согласуется с понятием знания.

Использованная литература

Алексеева И.Ю. Искусственный интеллект и рефлексия над знаниями. // “Философия науки и техники”: журнал 1991 №9, с. 44-53.

Алексеева И.Ю. Знание как объект компьютерного моделирования. // “Вопросы философии”: журнал 1987 №3, с. 42-49.

Анисов А.М. ЭВМ и понимание матемматических доказательств. // “Вопросы философии”: журнал 1987 №3, с. 29-40.

Будущее искусственного интеллекта: М., Наука 1991, ред: Карл, Левитин, Поспелов, Хорошевский.

Вендров А.М. CASE-технологии. Современные методы и средства проектирования информационных систем: М., Финансы и статистика 1998.

Винер Н. Киберентика или управление и связь в животном и машине. Второе издание: М., Наука 1983.

Лефевр В.А. От психофизики к моделированию души. // “Вопросы философии”: журнал 1990 №7, с. 25-31.

Лефевр В.А. “Непостижимая“ эффективность математики в исследованиях человеческой рефлексии. // “Вопросы философии”: журнал 1990 №7, с. 51-58.

Поспелов Д.А. Философия или наука. На пути к искусственному интеллекту: М., Наука 1982.

Поспелов Д.А. Искусственный интеллект: новый этап развития. // “Вестник АН СССР”: журнал 1987 №4.

Петрунин Ю.Ю. Искусственный интеллект как феномен современной культуры. // “Вестник Московского университета”: журнал 1994 №8, с. 28-34.

Тьюринг А. Может ли машина мыслить?: М., Наука 1960.

Шрейдер Ю.А. Искусственный интеллект, рефлексивные структуры и антропный принцип. // “Вопосы философии”: журнал 1995 №7, с. 163-167.

Шрейдер Ю.А. Человеческая рефлексия и две системы этического сознания. // “Вопосы философии”: журнал 1990 №7, с. 32-41.

Корниенко Е. Механизмы сознания: www.glasnet.ru 1998 (электронная публикация)


Подобные документы

  • Этапы и специфика развитяе психических процессов в предшкольной подготовке детей. Исследование причин утомляемости современных младших школьников (нейропсихологический аспект), теоретические основы и направления изучения их эмоционального интеллекта.

    контрольная работа [24,9 K], добавлен 18.01.2013

  • Сущность социального интеллекта и его структура, существующие модели и подходы к исследованию. Особенности учебной деятельности подростков, возрастные особенности и проблемы мотивации. Характеристики групп учащихся по показателям социального интеллекта.

    дипломная работа [230,3 K], добавлен 18.09.2016

  • Определение понятия "социальный интеллект" в работах ученых-психологов. Изучение особенностей общения в подростковом возрасте. Характеристика выборки и этапов исследования. Анализ результатов уровня коммуникативного контроля в "Лицей №11" г. Новокузнецка.

    курсовая работа [3,0 M], добавлен 03.05.2019

  • Психолого-педагогические предпосылки использования рефлексии в учебном процессе. Рефлексия как инструмент мышления. Методические рекомендации и разработки уроков с использованием рефлексии на уроках английского языка в младших классах средней школы.

    курсовая работа [1,3 M], добавлен 20.02.2012

  • Проблемы эмоционального интеллекта и актуальность их исследования. Методика Н. Холла на определение уровня эмоционального интеллекта. Опросник эмоционального интеллекта "ЭмИн" (Д.В. Люсин). Анализ и интерпретация опытно-экспериментальной работы.

    отчет по практике [150,7 K], добавлен 03.03.2013

  • Понятие, функции, основные подходы рефлексии. Этапы процесса рефлексии. Сущность и особенности педагогического мастерства. Опросник на выявление доминирующего уровня решения педагогических проблемных ситуаций. Программа организационно-деятельностной игры.

    дипломная работа [74,5 K], добавлен 16.11.2010

  • Теоретические основы психолого-физического развития дошкольников с нарушением интеллекта, нарушение интеллекта как психолого-педагогическая проблема. Роль трудового воспитания в решении коррекционных, воспитательных и образовательных задач педагогики.

    курсовая работа [35,6 K], добавлен 21.08.2011

  • Субъективность творческого обучения. Дифференциально-психологическая теория. Сферы применения тестов. Основные виды тестов и их содержание. Полярности проявления интеллекта. Структура сформированности интеллекта. Тест интеллектуального развития "УМКа".

    курсовая работа [58,0 K], добавлен 22.12.2014

  • Клинико-психолого-педагогическая характеристика школьников с нарушением интеллекта. Практическая экспериментальная работа по реализации развития познавательных интересов младших школьников с нарушением интеллекта на уроках русского языка и математики.

    дипломная работа [85,6 K], добавлен 24.06.2011

  • Социокультурные изменения и положения теории развивающего обучения. Развитие теоретического мышления ребенка. Разделение форм рефлексии. Развивающее обучение по системе Эльконина-Давыдова. Становление рефлексии в качестве высшей формы поведения.

    дипломная работа [259,7 K], добавлен 23.08.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.