Реникса, вред лженауки

Надо ли вести борьбу с легковерием и чем это чревато. Психологический аспект легковерия. Софистика и зарождение пустословия. Парадоксы или абсурдные суждения. Как верить в бога в 20 веке. Лженаука и ее влияние на массы. Реникса, вред лжи и заблуждений.

Рубрика Разное
Вид книга
Язык русский
Дата добавления 22.04.2010
Размер файла 358,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Нельзя логически обосновать незыблемость законов природы. Имеется и имелось множество любителей схоластических рассуждений по этому поводу. Выводы их сводятся к одному: я знаю, что я ничего не знаю; или -- я знаю лишь одно свое существование.

Не надо вступать в спор со вздорными софистами (об этой категории "прогрессистов" мы поговорим позже). Отвернитесь лучше. Помните, что человек не имеет права забывать об эмпирической природе своих знаний. Нерушимость законов природы доказывается человеческой практикой. На протяжении многих поколений люди имели возможность убедиться в том, что если солнце всходило на востоке миллион раз, то оно выглянет в миллион первый. Если миллиарды людей сотни раз убеждались в том, что камень, выпущенный из рук, падает на землю, то нет места сомнению в этом правиле. То, что является обобщением человеческого опыта, незыблемо, и на этом построено наше существование.

Что день грядущий...

"Беспредельные возможности науки" -- эти крылатые словечки беззаботно порхают по страницам романов и газетных статей.

Да, в некотором смысле наука беспредельна. Здание науки находится в состоянии непрерывного строительства. Входят в строй и подводятся под общую крышу отдельные секции. Но никто не возьмется назвать срок окончания всего строительства. Вот в таком смысле наука действительно беспредельна.

Но это совсем не означает, что наука способна переварить любую комбинацию фактов. И из сказанного ни в малейшей степени не следует, что научное здание находится в состоянии перестройки и что инженеры, строящие это здание, по первому возгласу любого дилетанта готовы сломать любой из возведенных корпусов и на его месте воздвигать новый. А именно так, к сожалению, думают многие. И таких людей нисколько не смущает утверждение любой рениксы.

-- Подумаешь! -- рассуждают они. -- Пройдут десятилетия, и наука доберется до понимания сегодняшних тайн.

Или:

-- Противоречия с современным уровнем знания?! Что за печаль! На то вы и ученые с широким кругозором. Ломайте ваше здание, чего его жалеть, стройте новое.

Разумеется, им не жалко, не они строили.

А вот ученым действительно жалко. И не только на перестройку, даже на замену одного треснувшего кирпича исследователи идут с превеликой осторожностью. И пойдут лишь тогда, когда будет достаточно неоспоримых фактов, свидетельствующих о необходимости такой замены.

Что же касается полной перестройки, то пока в ней нужды нет. И нет опасности, что за сколько-нибудь фундаментальную реконструкцию придется взяться когда бы то ни было впредь!

-- Как так! -- воскликнет иной читатель научно-популярной литературы. -- Что это за консерватизм! Как это не придется перестраивать, когда наука только и делает, что перестраивается! Вы что? Забыли про теорию относительности, про квантовую механику?

Нет, не забыл. А, напротив, остановлюсь сейчас на этих вещах подробней. Моей целью будет показать, что наука развивается поступательно, что предыдущие ее завоевания не отменяются последующими, что новые приобретения науки относятся к новым условиям, с которыми не сталкивалась "старая" наука.

Лучше всего познакомимся с этой важной особенностью науки на примере механики.

Совсем-совсем давно великий Исаак Ньютон сформулировал свои законы механики. Записанные по латыни крупным шрифтом, они украшали сумрачную физическую большую аудиторию старого Московского университета на Моховой улице, где я учился. Они напоминали о вечности и незыблемости науки, о великих ее свершениях, о ее могуществе -- способности предвидеть события, предвычислять траектории комет. Они были флагом, знаменем, символом того отряда человечества, к которому мне хотелось принадлежать.

Сотни, тысячи задач решались с помощью этих законов. Достаточно задать систему тел, силы, которые действуют на эти тела, их направление и изменение во время движения, и вы будете знать про движение этих тел все. Вот, скажем, данное тело: направится ли оно вправо или влево, ускорится или замедлится, в какой момент доберется вот до этого места и в каком направлении продолжит отсюда свое путешествие.

Правда, десятки страниц, исписанных формулами, должны лечь на стол одна за другой, но ответ будет найден -- ответ на все вопросы, которые вам только захочется поставить. Не верите? Пожалуйста, проверяйте. Расхождения с опытом не будет. А будет предсказано движение во всех деталях.

Первое предсказание такого рода и его триумф хорошо известны. (Я сейчас представляю себе, как поморщится мой редактор. "Бог мой! -- воскликнет он. -- Опять пример с Леверье, описанный во всех книгах и даже в другой книге того же автора".)

Хорошо, деталей не будет. Но все же, дорогой читатель, знайте и помните. С помощью законов механики Ньютона было рассчитано, в какое время и в каком месте должна находиться неизвестная до тех пор планета, и потом (чувствуете -- потом!), планета была обнаружена именно там и именно тогда, где и когда это предписали законы Ньютона.

Бесчисленным является количество задач, решенных при помощи законов Ньютона.

Бесчисленным является число механизмов и машин, которые построены и успешно действуют на основе этих законов.

Да, ускорение тела строго пропорционально действующей на него сумме сил. Да, силы в природе встречаются только равными и противоположно направленными парами. Да, тело, предоставленное самому себе, будет двигаться прямолинейно и равномерно, и только вмешательство сил может вывести его из этого состояния.

Нет числа примерам из других областей наук, которые строго логическим рассуждением выводятся из этих законов.

Механика Ньютона -- величайшее завоевание человеческой мысли -- вечна и непоколебима.

Почему не" может быть такого положения дела, чтобы механика Ньютона оказалась неверной? Я ответил на это несколькими страницами раньше. Потому что она есть не что иное, как обобщение человеческого опыта. -- А как же?..

Да, да! Все знаю, одну минутку.

Общий закон природы, которым пользуются естествоиспытатели, сервируется всегда под некоторым соусом. Сущность закона останется неизменной, но его обрамление, толкование, подача читателю меняются с каждым десятилетием. И ньютоновская механика, которую преподают сегодня в вузе, мало похожа на механику, созданную самим Ньютоном.

В чем же неизменная сущность закона?

Она состоит в тех правилах, которые являются руководством для решения задач. Она состоит в описании и предсказании явлений, которые должны произойти в таких-то и таких-то условиях. Она состоит в указании процедур измерений некоторых величин и в описании тех графиков, которые получатся, если некий игрек откладывать в функции икса.

А обрамление?

Оно содержит ряд определений, с помощью которых сокращается разговор и предмет делается более наглядным. Скажем, траектория -- это кривая, по которой движется тело. Кроме определений, имеются некоторые утверждения о свойствах пространства и времени, далеко не всегда имеющих прямое отношение к делу, и из которых не всегда понятно, что хотел сказать автор теории или ее комментатор.

Так что в обрамление входят всяческие слова и фразы, не имеющие отражения в опытных процедурах.

Отделение сущности от фестончиков далеко не всегда является простой задачей.

После смерти Ньютона прошло много времени. Родилась электродинамика. Было доказано, что световые волны являются электромагнитным излучением. Измерение скорости света стало интересной задачей, служащей для проверки электромагнитной теории света. Майкельсон ставит свои знаменитые опыты по измерению скорости света и обнаруживает неприятную деталь, нарушающую безупречность теории: скорость света в направлении движения Земли и в направлении, перпендикулярном движению Земли, оказывается одинаковой.

Это не укладывалось в существующие представления. Большинство ученых думало, что пространство странство ведь абсолютно, так сказано у Ньютона), а земной шар движется по отношению к эфиру. Если так, то Земля как бы догоняет луч света, посланный по движению, и убегает от луча, посланного "назад". Ясно, что такой эффект должен сказаться на скорости светового луча. А он не сказывается. Неприятность? Темное пятнышко? Или, как было сказано одним крупнейшим физиком того времени, облачко, омрачающее синее небо науки конца XIX века?

Да! Это нетерпимо, как зубная боль. И много лучших умов искало выхода из противоречия. Решение пришло в 1905 году. Так родилась теория относительности Альберта Эйнштейна -- гения, равного Ньютону.

Вот здесь-то и понадобилось очистить орех от скорлупы. Признание абсолютности пространства и времени -- это обрамление закона Ньютона. А сущность закона совсем не здесь, а в соотношениях между силой и ускорением, в утверждении независимости массы тела от скорости движения. Эти положения не могут быть опровергнуты; они есть обобщение человеческого опыта.

Но опыт касался тел, движущихся со скоростями, несравненно меньшими, чем скорость света. Значит, теперь мы вправе вносить в законы Ньютона любые поправки, но с одним непременным условием: при малых значениях отношения v/c -- скорости тела к скорости света -- новая теория должна оставить законы Ньютона в целости и сохранности. Иными словами, новая теория должна быть неким обобщением, из которого прежняя теория (незыблемое завоевание науки!) должна вытекать как частный случай.

Откинув утверждение Ньютона об абсолютности времени, объявив независимость скорости света от системы координат, в которой ведется наблюдение, законом природы, Эйнштейн формулирует теорию относительности, которая решает сразу много задач.

Во-первых, она разрубает гордиев узел противоречий, связанных с опытом Майкельсона. Во-вторых, она дает естественное объяснение возрастанию массы электрона со скоростью его движения.

Но отказ от привычного обрамления механики сопряжен с большой ломкой, и поэтому, чтобы теория завоевала признание, нужно сделать предсказания таких явлений, которые еще не наблюдались. Теория относительности выдержала такое испытание.

Из постулатов новой теории строго вытекает знаменитое уравнение взаимосвязи массы и энергии. Сущность его следующая. Если в результате какого-либо процесса система выделяет энергию, то масса системы должна уменьшиться на легко рассчитываемую величину. К сожалению, этот эффект слишком мал для химической реакции, но очень значителен при реакции атомных ядер. А такие реакции удалось осуществить в наши дни.

Окончательный триумф теории можно формально отнести к этому моменту. Но на самом деле физики "признали" ее задолго до непосредственной проверки с помощью уравнения, связывающего массу с энергией. Были проверены, в частности, некоторые астрономические следствия теории. Эти проверки плюс исключительная стройность и изящность теории и, наконец, прозрение того, что лишь ограниченность мышления и метафизические предрассудки заставляют ученых цепляться за фальшивую скорлупу, облекавшую известные до 1905 года общие законы природы, обеспечили теории относительности стопроцентное признание здравомыслящих физиков.

Таким образом, произошла настоящая революция в мировоззрении исследователей. Но смены одного закона природы другим не произошло, как это часто принято думать.

Еще раз и еще раз стоит повторить: новый закон природы не может отменить старого. Новый закон является (если он, конечно, истинно новый) обобщением, он не зачеркивает, а лишь обводит четкой линией область применимости старого закона. Открытие нового закона означает, что наука овладела такой областью, которая была ей ранее недоступна.

Новый закон -- это расширение старого, но не разрушение его. Ошибочные представления связаны, вероятно, с бурными дискуссиями, не имевшими прямого отношения к науке. В этих спорах происходило назойливое противопоставление механики И. Ньютона и механики А. Эйнштейна. Это было искажением, дезориентировавшим лиц, далеких от естествознания. Спорил не А. Эйнштейн с И. Ньютоном. Спорили между собой метафизики, обсуждавшие с темпераментом, заслуживавшим лучшего применения, к каким совпадениям или противоречиям с высказываниями тех или иных философов можно прийти, если считать, что время абсолютно или время относительно.

Тонны бумаги были истрачены на то, чтобы исследовать право энергии быть связанной с массой. При этом на щитах борющихся были начертаны имена И. Ньютона и А. Эйнштейна! А корень недоразумения крылся в смешении воедино совсем разных вещей: соотношения общих законов природы, установленных Ньютоном и Эйнштейном, и сопоставления некоторых определений и модельных представлений, существовавших до 1905 года и получивших становление после этого срока.

Может быть, еще более поучительно такое же смешение в одну кучу разных вещей, происшедшее при открытии квантовой механики. Здесь события развивались следующим образом.

Когда в 1913 году Н. Бор сформулировал законы движения электрона около атомного ядра, стало очевидным, что если желаешь разобраться в атомных спектрах, то придется отказаться от мысли, что движение электрона в атоме подчиняется механике И. Ньютона. Убежденность в том, что микрочастицы ведут себя как-то по-особенному, продолжала крепнуть. События закончились созданием в середине двадцатых годов новой механики для микрочастиц, получившей название квантовой, или волновой.

Да, такая механика была действительно необходимой. Без нее можно было бы стать в тупик, так как множество обнаруженных к тому времени новых явлений не объяснялось классической механикой. Чего только стоит дифракция электронов! Электроны (их представляли частицами, тельцами), падая на кристалл, ведут себя так же, как рентгеновы лучи (а это волны). И законы И. Ньютона в этом явлении бессильны что-либо предсказывать. Что делать? Появилась мысль -- отказаться от привычных представлений об электроне как частице.

Уже первые работы на этом пути Луи де Бройля, Э. Шредингера и В. Гейзенберга вызывали чувство уверенности у грамотного читателя, что найдено нужное направление для объяснения каверзных явлений. Было сразу же установлено, что новые теории выдерживают первое испытание: они не опровергают механику И. Ньютона, а впитывают ее как частный случай.

Микрочастицы в фантастическое число раз легче самой крошечной пылинки. От новой теории надо потребовать, чтобы она переходила в законы И. Ньютона при некотором определенно большом размере частиц. Такое условие в совершенно явной форме было сформулировано В. Гейзенбергом. И оказалось, новая механика нужна лишь в том случае, если требуется рассчитывать движение электронов, атомов, иногда небольших молекул.

Мы еще поговорим о формуле В. Гейзенберга в своем месте, а именно тогда, когда пойдет речь о строгом смысле, который физики вкладывают в определение понятия траектории. Сейчас же весь этот разговор нам понадобился лишь опять для той же цели -- подчеркнуть, что новая механика ни в малейшей степени не отменила старой. Открытие законов движения микрочастиц только еще более четко выделило ту область применения (поистине грандиозную), где законы механики И. Ньютона играют и будут вечно играть свою роль господина и пророка.

Соусы, под которыми может быть подана на стол читателю квантовая механика, могут отличаться весьма сильно. И споры между интерпретаторами квантовой механики, сторонниками классической точки зрения, лицами, разделяющими сомнения Эйнштейна, и т. д. и т. п. продолжаются по сей день.

Но, как говорится, "а Васька слушает да ест". Физики либо пропускают мимо ушей эти споры, либо с интересом к ним прислушиваются; однако сами продолжают применять квантовую механику для расчетов и интерпретации явлений. И при этом с огромным успехом. Ведь квантовая механика однозначно связывает условия постановки опыта с его результа-тами. А больше ничего и не требуется от общего закона природы для его использования.

Таким образом, революции в мировоззрении естествоиспытателей не затрагивают спокойной глубокой воды -- общего закона природы, который должен быть сформулирован таким обоазом, чтобы не зависеть от метафизических наслоений. Эта сущность общего закона природы не подлежит изменениям и является завоеванием науки на вечные времена.

Почему? Потому что общий закон природы есть не что иное, как обобщение человеческой практики.

Итак, общие законы природы не отменяются последующим развитием науки. А нельзя ли, отталкиваясь от этого утверждения, поразмышлять над тем, что может и что не может быть открыто грядущими веками? Дело это, конечно, сложное. Но рискнуть тем не менее стоит.

Столбовая дорога науки -- это изучение природы в новых условиях: либо таких, которые редко возникают, и потому исследователи не смогли еще изучить то или иное явление в этих необычных условиях; либо таких, которые искусственно создаются с помощью современной мощной техники. Как будет вести себя вещество при давлениях в миллионы тонн? Как будут протекать химические реакции при температурах, близких к абсолютному нулю? Как будут сталкиваться элементарные частицы, разогнанные в фантастически мощных ускорителях? Каково поведение человеческого организма в условиях длительного одиночества и невесомости? Как происходит деление клетки при мощном воздействии радиации?..

Нельзя сказать, столкнемся ли мы, шествуя по этим дорогам, с необходимостью отказа от наших старых законов. Но это, во всяком случае, не исключено.

Поскольку законы, которые нам известны, установлены для более скромных условий, то может оказаться, ЧТО ОНИ ПРИГОДНЫ лишь в границах сегодняшнего опыта. А за пределами этих границ, возможно, существует немало не открытых еще законов. Однако мы знаем, что такие неоткрытые законы не должны перечеркивать все то, что известно нам сейчас. Напротив, неоткрытые законы природы должны содержать в себе как частные случаи те общие законы, которые находятся сегодня на вооружении науки.

Вполне возможна, что вступление в новые области вызовет отказ от принятых сегодня наглядных моделей, потребует изменения формулировок и определений, модернизации научного языка. Впереди сколько угодно споров о природе вещей, жарких взаимных обвинений в непонимании принципов устройства мира. Это все будет. Но то, что наукой завоевано в виде обобщения человеческого опыта, войдет в науку будущего. Во всяком случае, того будущего, в которое еще есть смысл заглядывать.

О непонятном

Как известно, семь мудрецов могут встать в тупик от вопросов одного...

Да, много вопросов можно задать: и почему у верблюда горб, и зачем на небе Луна, и почему листья зеленые, и почему у собаки хвост, а у человека его нет, и почему у Ивана Никифоровича голова редькой хвостом книзу, а у Ивана Ивановича редькой хвостом кверху, и почему на другой стороне земного шара люди вверх ногами ходят и не падают, и почему свет движется так быстро, что уж быстрее нельзя?.. Можно спросить и про то, а что было перед тем, как создалась солнечная система, а перед тем, как образовалась Галактика, куда она входит, а еще раньше что было? Можно полюбопытствовать о том, что будет через миллиард миллиардов...

А вот и другие вопросы: чем объясняется сверхпроводимость, почему луч лазера способен проходить большие расстояния, почему от родителей к детям передаются наследственные признаки?...

Многое можно спросить. Но не на все вопросы можно ответить.

Что же это за вопросы, на которые нельзя ответить? Во-первых, это вопросы, лишенные смысла, или лишенные содержания, или лишенные права на постановку. Во-вторых, есть вопросы не бессмысленные, но ответ на которые практически дать невозможно, а потому они неинтересны. И наконец, есть вопросы, правильно поставленные; на некоторые из них можно дать ответ, но на другие пока еще ответа дать нельзя.

Вот в поисках ответа на правильно поставленные вопросы и работают сподвижники науки.

Во всем этом нам нужно разобраться. И прежде всего надо условиться, что значит объяснить явление.

Почему брошенный камень падает на землю? Почему бывают океанские приливы? Почему космический снаряд, движущийся со скоростью меньше восьми километров в секунду, не удастся превратить в спутник Земли? Что такое гравитационные методы разведки?

Ответить на все вопросы, которые я перечислил, объяснить явления, о которых шла речь, -- значит показать, что все они являются следствиями общего закона природы -- закона всемирного тяготения. Объяснение -- это сведение частного к общему, это нахождение для явления его полочки в здании, увенчанном крышей общего закона природы. Ясно, не правда ли?..

Да, но... почему все-таки тела притягивают друг друга?

Увы, дорогой читатель? Вот на это не могу ответить, не могу удовлетворить вашего любопытства. Так уж устроена природа. На сегодня закон всемирного тяготения есть общий закон природы. И называется он так именно по той причине, что нет никаких более общих положений, из которых его можно было бы получить как следствие.

Значит, объяснение имеет потолок? Совершенно верно. И всегда его будет иметь. Другое дело, что потолок этот имеет тенденцию повышаться. Возможно, когда-либо будет найден такой закон природы, из которого как частные следствия будут вытекать и закон всемирного тяготения, и законы электромагнитного взаимодействия. А может быть, даже и будет когда-либо найдена одна величественная формула, из которой рассуждениями или расчетами можно будет вывести все наблюдаемые в мире явления. Тогда это будет потолок потолков. Но это фантазия.

Что же касается сегодняшней науки, то она естественным образом распадается на ряд областей, - где в каждой имеется свой генерал -- закон.

Разобраться в явлении, понять его, получить объяснение, получить ответ на вопрос -- это значит показать, что явление однозначно следует из генерал-закона и беспрекословно ему подчиняется во всех деталях своего поведения.

Не надо думать, что все вопросы такого типа получили уже ответ. Есть и без ответов, и их немало. Некоторые очень долго раздражали физиков своей непонятностью. Вот, например, явление сверхпроводимости. Открыто оно было более 50 лет назад. Заключается оно в практически полной потере сопротивления электрическому току ряда металлов и сплавов при очень низких температурах (близких к абсолютному нулю, то есть к минус 273 градусам Цельсия). В замкнутой цепи из сверхпроводящего кабеля электрический ток может циркулировать часами при отсутствии источника тока.

В том, что это поразительное явление не нашло себе объяснения сразу после обнаружения, нет ничего удивительного. Просто ученые еще мало знали. Хотя в конце двадцатых годов общие законы движения электронов были установлены вполне надежно и это давало стопроцентную уверенность, что нет никакого чуда, нет "сверхпроводящего чертика" и что явление будет объяснено уже установленными общими законами природы, которые на сотнях и тысячах примеров доказали с блеском свою справедливость.

Примерно тридцать лет отделили открытие квантовой механики от создания теории сверхпроводимости. Отсутствие объяснения сверхпроводимости тридцать лет раздражало физиков. И не удивительно, что тем, кто избавил мир от этой неприятности, немедленно была присуждена одна из высших наград ученого -- Нобелевская премия.

Разумеется, этот большой интервал был не случайным. Много наблюдений п теоретических расчетов сделано предшественниками, чтобы создать тот строй мыслей, родить ту догадку, которая привела к созданию теории. Совсем не лежало на поверхности то следствие из общих законов природы, которое объясняло сверхпроводимость.

Оказалось, что причина сверхпроводимости -- в способности электронов образовывать пары, легко передвигающиеся благодаря взаимодействию с тепловыми колебаниями атомов в кристаллической решетке. Объединенные два электрона напрочь лишены тормозных качеств. Если что-либо замедлило один электрон, то его напарник меняет свое движение таким образом, что вклад пары в силу текущего тока остается неизменным.

Ну как, поняли? Нет? Не огорчайтесь. В данном случае причина непонимания совершенно очевидна -- недостаток знаний. И большой недостаток моего объяснения! Оно должно было бы заключаться в строгом логическом выводе возможности сверхпроводимости из общих законов природы -- законов квантовой механики. Но из-за невозможности это сделать я сказал несколько смутных для вас фраз, претендующих лишь на то, чтобы дать представление о неожиданности результатов, хранившихся долгие годы в скрытом виде в аппарате квантовой механики.

Сверхпроводимость является примером явления, долго мучившего физиков своей непонятностью, но в конце концов покорно подчинившегося генерал-законам. Впрочем, иначе и быть не могло.

Но бывают случаи, когда долгое время остается скрытым не только объяснение, но и само явление. Так обстояло дело с открытием лазеров.

Законы испускания и поглощения света были очевидны и ясны еще задолго до того, как кроваво-красные рубины появились в лабораториях оптиков. Видимо, до 1958 года мало кому ввиду своей кажущейся нереальности приходил в голову вопрос: а нельзя ли заставить возбужденные атомы "подождать" друг друга с тем, чтобы излучение произошло, так сказать, одним махом -- чтобы все атомы сразу отдали бы запасенную энергию.

Самая первая, можно сказать пионерская, работа, говорившая о такой возможности, появилась (кстати говоря, у нас в Советском Союзе) еще до войны. Но она оказалась преждевременной. Надо было пройти порядочному числу лет, пока технический уровень не стал реальным для осуществления этой мысли. И не случайно, что практически задача была решена независимо и одновременно в Советском Союзе и США. Открытия такого рода закономерно подготавливаются развитием науки и промышленности.

Открытие лазеров оказалось неожиданным. Но надо ясно представлять, что явилось оно не в результате находки какого-либо неизвестного ранее принципа. Нет, нужно было "всего лишь" догадаться, как надо сделать. А после этого уже любой физик, используя старые, хорошо известные законы природы, мог приняться за расчеты интенсивностей излучения, достижение которых казалось ранее совершенно немыслимым, так как скидывалась со счетов возможность накачки энергией атомов излучателя.

Вероятно, были преподаватели физики, которые лет тридцать назад решали задачи вроде: "Допустим, что все атомы, заключенные в теле размером один кубический сантиметр, одновременно излучат квант красного света. Какая интенсивность света будет излучена и на какое расстояние сможет пройти такой луч, чтобы быть обнаруженным чувствительным болометром?"

Прекрасная физическая задача! И те астрономические цифры, которые стали теперь будничными, появлялись в ученических тетрадях с возгласами: "Ну и ну, вот если бы это стало возможно".

Таких задач я, правда, не решал в юности. А вот сколько энергии выделилось бы согласно уравнению Эйнштейна из одного грамма атомов водорода -- такое "пустяковое" вычисление я делал в то время, когда почти все без исключения физики, включая и самого Эйнштейна, говорили о полной невозможности раздобыть энергию, спрятанную в атомном ядре.

Мораль из сказанного такая. Если какое-то явление следует из установленных общих законов природы, то весьма велика вероятность того, что это явление будет осуществлено. В этом отношении нет более мощного импульса к техническим открытиям, чем законы науки.

В законах природы, сейчас нам известных, спрятано немало объяснений еще непонятному. И нет сомнений, что с их помощью человечество сделает великолепнейшие открытия, не уступающие лазеру. До сих пор у нас шла речь о явлениях, которые объясняются или могут быть в принципе объяснены.

Еще раз повторим: объяснить явление - значит показать, что оно представляет собой следствие общих законов природы.

Но еще не все общие законы природы установлены исследователями. Есть явления, еще не имеющие объяснения. Речь идет об области науки, которая изучает поведение микрочастиц, движущихся со скоростями, очень близкими к скорости света. Законы поведения элементарных частиц в таких условиях находятся в стадии выяснения. Лишь в самое последнее время забрезжил слабенький свет некоторых успехов. Кое-что удалось предсказать; у некоторых исследователей есть уверенность, что разгадка близка, хотя немало еще и сомнений.

От этой еще не существующей теории ожидаются ответы на такие вопросы, как, например, почему электрический заряд всех частиц по абсолютной величине не отличается от заряда электрона; почему элементарных частиц столько-то, а не иное количество; исчерпался ли список элементарных частиц или, может быть, он никогда не закроется и будет возрастать по мере увеличения энергии столкновения.

Вот вам примеры осмысленных вопросов, на которые пока что еще ответить нельзя.

Совершенно правильно поступает естествоиспытатель, разнося вопросы по следующим полкам,

Вопросы, на которые есть ответы. Явления из этой категории относятся к области, где генерал-законы известны, а также ясна логическая цепочка, ведущая от закона к этому явлению.

Вопросы, на которые можно ответить. Речь идет о явлениях, попадающих в "управляемую страну" (генерал-закон имеется), но логическая нить закрыта туманом.

Вопросы, на которые еще нет ответа. К этой группе явлений относятся те, для которых отсутствуют общие законы.

И вопросы, на которые нельзя ответить. Это те самые, с которых мы начали разговор... Про семь мудрецов.

Этим в какой-то степени сказано, чего мы должны ждать от дальнейшего развития науки. Ответы на вопросы, на которые нельзя ответить; есть интересная разновидность рениксы -- о них у нас разговор впереди. Говорить о вопросах, на котооые пока что нет ответа, значит заниматься пророчествами. К этому у автора нет вкуса, да и область элементарных частиц далека от его научных занятий.

Остается сказать несколько слов о вопросах, на которые можно ответить, то есть об области, где имеется командование в виде генерал-закона.

Законы, управляющие движением атомов и электронов, пребывающих при обычных температурах и давлениях, установлены твердо и проверены человеческой практикой. Одним из тезисов современного естествознания является утверждение, что все явления живой и неживой природы подчинены этим законам.

Разумеется, никто не спорит, что законы эволюции, согласно которым изменяется, скажем, биологический вид жирафов, являются особенностью лишь жизой природы. Но то, что видоизменения жирафов с веками несравненно сложней процесса, скажем, выветривания камней, вовсе не означает, что камни и жирафы подсудны разным законам природы.

Как бы ни отличались объекты физика, химика и биолога, все равно речь идет о системах, построенных из тех же электронов и протонов, и мы не можем отказаться от уверенности в праве пользоваться этими законами для объяснения всех природных явлений.

А как же все-таки законы биологической эволюции? Они не применяются для камней по той простой причине, что атомы камня сложены в простую регулярную постройку и не сорганизовались в нерегулярные цепи огромной длины (молекулы белков и нуклеиновых кислот представляют собой как раз такие цепи). Значит, разницу между камнем и живой клеткой мы видим тогда, когда сравниваем большие группы атомов. Так как эти группы в камнях и клетках устроены по-разному, то ясно, что и законы, по которым протекают их жизни, будут отличаться друг от друга. Но если, так сказать, взять увеличительное стекло посильнее и понаблюдать за поведением групп из двух-трех атомов или тем более за поведением электронов в атомах, входящих в состав камня или жирафовой клетки, то разницы в их поведении мы не найдем. Все атомы устроены одинаково, все электроны и протоны взаимодействуют по одинаковым правилам независимо от того, входят ли они в состав живой или неживой материи.

Итак, наиболее бурно развивающееся направление естествознания --биологическая физика, молекулярная биология, бионика -- строится на основе предположения о возможности и необходимости распространения законов природы, установленных для более простых случаев, на сложные биологические системы. Пока этот процесс приносит огромные успехи, и у пишущего эти строки нет сомнения в том, что это единственно верная дорога.

В этой области мы ждем потока новых открытий. Но они все будут типа сверхпроводимости и лазера. Мы увидим, сколько еще нераскрытых явлений, сколько еще ответов на непонятное таится в законах природы, венчающих уже современное здание науки.

-- Значит, -- спросит разочарованный читатель, -- вы не ждете в будущем открытия каких-нибудь сигма-лучей или какого-нибудь биопазитового поля, которые свойственны только живому существу, а еще лучше -- только лишь людям?

-- Не жду. И попытаюсь объяснить почему. Пусть сигма-лучи или что-то в этом роде имеются. Как вам больше хочется: чтобы они действовали на физические приборы или нет?

-- Чтобы действовали, -- предположим, скажет читатель.

-- Хорошо. Существующие приборы обладают предельной чувствительностью по отношению к электромагнитному излучению, электронам, атомам. Они считают отдельные частички. Таким образом, если им не удастся уловить сигма-лучи...

-- Подождите, -- перебьет меня читатель, -- а может быть, удастся.

-- Совсем нехорошо. Если удастся, то, значит, существуют какие-то силы, дополнительные к тем, которые мы знаем, действующие на атомы или электроны.

-- Ну и что же, значит, сделаем шаг вперед к познанию истины.

-- Знаете, вы лучше... Поймите, что если бы так оказалось, то это означало бы лишь одно: те законы природы, которые сейчас установлены, оказались бы неверными. А ведь они, как мы знаем, позволяют предсказать все силы, действующие на частицы, а эти самые сигма-лучи ликвидировали бы предсказательную силу законов природы.

-- Наука беспредельна...

-- Ну, тогда позвольте прекратить с вами разговор. Вы не удосужились сколько-нибудь внимательно прочесть то, что было написано. Те общие законы природы, которыми мы сейчас пользуемся, подтверждены всей человеческой практикой, и они незыблемы, как скала. Так что я вас прошу...

-- Подождите, не выходите из себя, -- успокаивает меня собеседник. -- Ведь есть же еще один вариант. Допустим, сигма-лучи не улавливаются современными физическими приборами. Но ведь они исходят из живого и воспринимаются только живым.

-- Да, вы правы. Это, во всяком случае, логичное предположение. Но тем не менее я его решительно отвергаю.

-- Почему?

-- Подобное утверждение означает признание, что мир состоит из двух сущностей, двух материй, или, скажем яснее, возвращаясь к официальной терминологии, души и материи. Я не верю в это. Я верю в то, что мир един.

-- Нельзя исходить из веры или из высоких принципов в суждении об истине, -- скажет читатель.

-- Это верно. Нельзя. Верховным судьей является практика. Если вы поставите убедительные опыты, которые продемонстрировали бы мне, что человек состоит из тела и души, я перейду в другую веру. Но полагаю, что не придется этого делать ни мне, ни моим потомкам. Успехи науки каждый день и каждый час демонстрировали торжество представлений о единстве природы, то есть о том, что весь мир -- живой и неживой -- построен из тех же строительных камней и жизнь всех построек подчиняется одним и тем же законам.

Случай

Есть еще одна линия противления рациональному объяснению жизни. Если послушать физика, то все в мире происходит в согласии со строгими законами. А если присмотреться к жизни, то сколько вней таинственных случайностей и странных совпадений! Наверное, за этим что-нибудь да кроется.

-- Не люблю глазеть на прохожих. А тут словно что-то меня толкнуло. Подошла к окну, вижу -- идет Петя, товарищ моего детства, ведь десять лет не виделись! -- рассказывает одна гражданка.

Другая делится иным:

-- Решила приобрести лотерейный билет. Думаю, возьму номер, который заканчивается Сережиным днем рождения. И что же? Выиграла ведь! Замечательный ковер получила.

Так что же это за событие -- случай? Может быть, наука не интересуется случайным?

Нет, интересуется. Забыть про случай значило бы резко ограничить, а то и уничтожить завоевания естественных наук. Но как же прописать случайные явления в доме, где все построено на законах?

Сейчас расскажем, как это сделать. Нам придется познакомиться с особым сортом закономерностей, которые называются статистическими.

Один мой приятель любил играть в такую игру. Едем на автомобиле по шоссе, обгоняем грузовики и спорим о цифрах на номерном знаке. Можно выдумать разные игры -- и на последнюю цифру, и на сумму цифр...

Наша встреча с грузовиком -- типичное случайное событие. Это значит -- нет никакой связи между его и нашей поездками. На нашем пути с одинаковым успехом может очутиться грузовик, номерной знак которого оканчивается на семерку, восьмерку или любую другую цифру. Всего десять возможностей. Каждая из них -- так говорит естествоиспытатель -- осуществляется с равной вероятностью.

Мы едем и один за другим обгоняем пять грузовиков с цифрой семь на конце, потом долгое время нет ни одной тройки. Попытки угадать цифру большей частью оканчи" ваются неудачей. А иногда вдруг повезет, и несколько раз ваши прорицания оказываются успешными. О какой же закономерности здесь может идти речь? Случай -- он случай и есть!

Итак, мы с приятелей отправились в Крым. Делать все равно нечего: до Симферополя ехать еще весь день. Возьмем лист бумаги и начнем записывать последние цифры номеров всех машин, которых мы обогнали. К вечеру их набралось несколько тысяч: дело в том, что мой приятель вел автомобиль со скоростью, не встречающей особого одобрения у представителей автоинспекции. Мы остановились на отдых, теперь можно приступить, выражаясь языком науки, к обработке наблюдений: сколько насчитали нулей, сколько единиц, сколько двоек... Подсчет закончен, и статистическая закономерность начинает проглядывать из-за леса цифр.

Прежде всего установлено, что каждая цифра появлялась у нас перед глазами примерно одинаковое число раз. Число наблюдений было десять тысяч -- следовательно, отклонения от одной тысячи для каждой цифры вряд ли больше, чем полсотни. Иными словами, отношение числа появлений какой-то определенной цифры к общему числу наблюдений будет близко к одной десятой.

А теперь посмотрим, какие варианты вообще могли бы быть.

Если число наблюдений невелико, например сто, то отклонение от одной десятой будет больше чем если число наблюдений тысяча. Можно убедиться на опыте, что с ростом числа наблюдений процентное отклонение от одной десятой будет становиться все меньше. Таким способом и устанавливается, что вероятность появления нуля, единицы или любой другой цифры равняется одной десятой.

Опыт в нашей игре, строго говоря, нужен лишь для того, чтобы убедиться, что милиция действительно выдает грузовикам все номера с любыми последними цифрами. Если в этом нет сомнения, а также есть уверенность, что встречи с грузовиками действительно случайные, то можно безбоязненно отважиться на предсказание вероятности. Для этого надо прикинуть, какая доля от всех возможностей ложится на интересующий вас вариант.

Всего возможностей десять. Вас интересует одна из них. Значит, вероятность этой интересующей вас возможности -- одна десятая. Так же точно вы без колебаний скажете, что вероятность цифр, делящихся на четыре, будет равна двум десятым (четверка и восьмерка) .

А чему равняется вероятность появления подряд двух одинаковых цифр?

И это сообразить нетрудно. Вероятность появления, скажем, тройки равна одной десятой. Вслед за ней могут с одинаковыми шансами появиться все десять цифр. Значит, искомая вероятность равна одной десятой от одной десятой, то есть одной сотой.

Так же точно выясняется, что шанс на три тройки подряд равен одной тысячной, а на пять троек подряд -- одной стотысячной.

Эти закономерности и называются статистическими. Они проявляются тогда, когда обрабатывается большое количество наблюдений. А могут ли они помочь в предугадывании отдельного случая?

Вот одно из наивных заблуждений, которое разорило уже не одного игрока. Предположим, из десяти возможных цифр пятерка выпала пять раз подряд. Невероятно, чтобы она появилась еще раз, рассуждает игрок и предлагает соответствующее пари. И проигрывает.

Случайные события не могут зависеть от предыдущей партии, и потому вероятность появления пятерки (так же как и любой другой цифры) каждый раз равна одной десятой. Это заключение -- я знаю это из разговоров с любителями карт -- зачастую удивляет.

Но подумаем как следует. Ведь иначе и быть не может. Пусть за большое время десять тысяч раз пятерка выпадала пять раз сряду. Разве не ясно, что среди этих десяти тысяч случаев имеется примерно одна тысяча вариантов 555551, столько же 555552 и т. д; Следовательно, шестая пятерка появится на том же основании, то есть примерно в одном случае из десяти.

Это непонимание или забывчивость того, что случайные события не зависят от прошлого, распространено не только среди картежников. Достаточно вспомнить, что на войне стараются спрятаться в воронку от снаряда: второй раз-де, мол, не попадет в то же место.

Если по окончании артобстрела подсчитать число одиночных и двойных попаданий, то, разумеется, вторых будет много меньше, точно так же, как пять пятерок подряд будет встречаться в десять раз чаще, чем шесть пятерок подряд. Но тем не менее прятаться в воронку по статистическим соображениям нет ни малейшего смысла. Разумеется, дело меняется (но это уже не имеет отношения к статистике), если ведется "стрельба по площади". В том случае поле обстреливается орудием точка за точкой.

В связи с этим вспоминается занятный рассказ Вересаева. На заре авиации некто попал в аварию. Остался ночевать на аэродроме и на следующий день полетел опять.

-- Вы рассуждали, что мала вероятность двух аварий кряду? -- "догадались" одни.

-- Да нет, -- последовал разумный ответ. -- Я считал, что после аварии технический состав удвоит свое внимание и тщательнее обычного подготовит следующий полет.

Итак, одно из правил в использовании вероятностных суждений о случайных событиях -- это забыть о прошлой истории.

Теперь другое. Сама по себе малая вероятность события еще не означает, что вы не будете с ними сталкиваться. Все зависит от того, насколько часто в вашей жизни бывают случаи, при которых это событие может возникнуть.

Случайные совпадения иногда кажутся совершенно поразительными. Если вы их увидели своими глазами, значит, так и есть. А если о невероятном случае рассказывает очевидец? Верить или нет?

Есть вполне разумный способ отличить правду от выдумки. Надо сказать, что интуитивная оценка возможности того или иного случая, которая развита у каждого разумного человека жизненной практикой, хорошо совпадает с простыми подсчетами вероятностей.

Положим, в автомобильной гонке за грузовиками вы обгоняете подряд десять машин, номера которых оканчиваются одной и той же цифрой. Даже не зная, что такое вероятность, вы ощутите, что вряд ли это случайно. Скорее всего движется колонна машин из одного гаража, которому зачем-то выдали номера с одинаковой последней цифрой.

Или еще. У вас свидание с девушкой на площади Пушкина в семь часов вечера. Девушки пока нет, но мимо, для вас некстати, проходит сокурсник. "Привет, Володя, -- слышите вы. -- Ты что здесь делаешь?"

Досадный случай. Но что это! Появляется второй приятель. Но теперь уже вы задаете вопрос: "Вы что тут, ребята, прохаживаетесь?"

А сами думаете: "Что за черт, совершенно невероятный случай!"

Но тут вдалеке показывается фигура еще одного приятеля.

Мысль о случайности у вас исчезает. "Разыграли, гады", -- решаете вы. И если друзья будут клясться и божиться, что никакого сговора не было, и о вашем свидании никто и представления не имел, и что это просто случай -- мол, мало ли чего на свете не бывает, -- то вы сумеете вывести их на чистую воду с помощью простой арифметики.

Пусть в городе миллион жителей, а друзей у вас десять человек. Вероятность того, что случайный прохожий окажется вашим другом, равна одной стотысячной. Хотя эта цифра и мала, она не исключает возможности случайной встречи.

За полчаса ожидания мимо вас пройдет, скажем, тысяча человек (для площади Пушкина в Москве такая оценка для семи часов вечера совершенно реальная). Вероятность встречи с другом повышается уже до одной сотой.

Сотня свиданий за время обучения в университете у вас уж, наверное, была. Значит, вероятность досадной встречи становится равной единице.

Эта прикидка показывает, что неприятный случай отнюдь не фантастичен.

А какова вероятность встречи одновременно с двумя приятелями? Вероятность этого сложного события равняется одной стотысячной.

Дальнейшее рассуждение остается тем же самым, и оказывается, что вероятность "тройного столкновения" станет равной единице лишь при увеличении срока университетского обучения (с сохранением частоты свиданий) до четырех-пяти сотен тысяч лет.

Итак, уже тройное столкновение является чудом, не говоря уже о четверном. Вы подверглись розыгрышу и можете считать, что привели этому абсолютно строгое доказательство.

Я хотел показать, что о реальности случая надо судить не только по вероятности единичного события, но оценивать полное число событий, которое могло произойти за жизнь человека, за время существования цивилизации, за время существования земного шара...

В игорном доме в Монте-Карло идет игра на красное и черное. Вероятность появления красного равна одной второй, появления этого цвета два раза подряд -- одной четвёртой, три раза подряд -- одной восьмой... пятнадцать раз подряд -- единице, деленной на 32 768. Как не трудно догадаться, это число есть два в пятнадцатой степени (215).

Я не был в Монте-Карло и совсем не знаю "технологии" игры. Но допустим, что одна игра занимает минут пять (пока поставят деньги, пока банк расплатится с выигравшими и загребет деньги проигравших). За час двенадцать игр, за пять часов -- совершенно произвольно посчитаем, что для напряженной работы крупье рабочий день такой продолжительности вполне достаточен -- шестьдесят. Казино, - наверное, работает без выходных. Значит, за год 21 900 игр. Получается, что появление пятнадцать раз подряд красного цвета -- событие реальное. Оно в среднем будет происходить раз в два года.

Так что можете поверить очевидцу, который рассказывает вам драматическую историю об игре графа Сен-Жермена или герцога Сен-Потена, которые пятнадцать раз не снимали своей ставки с красного цвета. выиграли несметные деньги и разорили армию игроков.

Казалось бы, нет особенно качественного различия между ситуациями, когда события повторяются пятнадцать раз подряд и тридцать раз подряд. Однако это не так. С той же уверенностью, с которой вы подтверждаете возможность появления кряду пятнадцати "красных" цифр, пятнадцати четов, пятнадцати решек при бросании монеты, вы можете сказать, что тридцать раз подряд -- это либо выдумка, либо жульничество. Действительно, вероятность тридцатиразового события есть единица, поделенная на квадрат от цифры, приведенной на предыдущей странице, -- 32 768. Получится совсем малое число. Ясно, что подобное событие могло бы произойти от силы один разочек, если бы казино работало ежедневно с момента, когда наши прародители научились разжигать костры.

Значит, если события какого-то класса происходят достаточно часто, то надо считаться с возможностями случаев, вероятности которых измеряются стотысячными и миллионными долями.

Если же речь идет о мире атомов, то наблюдаемыми становятся случайности и еще более редкие.

Многие химические реакции состоят в том, что молекула разваливается на две половинки под ударами соседей. Таким атакам молекула может подвергаться тысячи миллиардов раз в секунду. В настоящее время мы располагаем аналитическими средствами, которые позволяют нам заметить реакцию даже в том случае, если развалится какой-нибудь миллион молекул (напомню, что это ничтожно мало, так как в грамме содержатся миллиарды миллиардов молекул). Элементарная арифметика показывает, что при вероятности "удачного" столкновения молекул, равной всего лишь одной миллиардной, мы уже через несколько часов сумеем обнаружить продукт реакции,

Напротив, можно сомневаться в реалистичности событий и с вероятностью порядка сотых долей, если речь идет о редко наблюдаемых событиях.

Скажем, вероятность выбрасывания трех шестерок игральной кости подряд около одной сотой. Если, однако, рассматривать лишь только те броски, которые делаются в момент двенадцатого удара часов в ночь на Новый год, то реалистичность события становится небольшой -- такое событие будет в среднем происходить раз в сто лет.

Наличие в природе случайных событий ни в малейшей степени не означает, что есть какая-то возможность выбраться из подчинения законам природы.

Случайные явления -- это те, которые обусловлены очень большим числом факторов.

Практически невозможно учесть все обстоятельства, которые привели к интересующему нас событию. Ничего не поделаешь. Придется согласиться с тем, что такое событие непредсказуемо.

На первый взгляд кажется, что подобное признание противоречит тому, что сказано тремя строками выше: если непредсказуемо, то, значит, вышло из повиновения законам.

Многие великие умы прошлого такого мнения и придерживались. Бескомпромиссно веря в законы природы, они не находили в ней места случайному. Механики и математики гордо заявляли: "Задайте нам координаты и скорости всех молекул, и мы сумеем вычислить будущее мира".

Что и говорить, точка зрения последовательная, стройная, красивая, но... лишенная практического смысла.

Детерминисты не обращали внимания на то, что достаточно выпустить из виду одну молекулу, одну-единственную из миллиарда миллиардов, чтобы потребовалось перестроиться на позицию вероятностных предсказаний. В справедливости сказанного убедиться совершенно несложно. Хорошо известно, что молекулы газа при нормальных условиях сталкиваются друг с другом примерно миллиард раз в секунду. Как только не учтенная нами молекула натолкнется на соседку, число молекул, про которые мы ничего не знаем, сразу удвоится. В следующую миллиардную долю секунды уже про поведение четырех молекул мы не сможем сказать чего бы то ни было. В третью миллиардную секунды молекул, движущихся неизвестно как, станет уже восемь. Через четыре миллиардных доли секунды -- шестнадцать. А через одну секунду число неизвестных молекул будет уже равно двум в миллиардной степени. Мы провели, правда, несколько упрощенное рассуждение. Но тем не менее должно быть ясно, что сведения о поведении молекул в самых больших объемах теряются немедленно, если только в сделанном реестре координат и скоростей пропущена хотя бы одна молекула.

Итак, механический детерминизм лишен смысла. Он практически невозможен, а для нас это равносильно признанию безоговорочной невозможности, так как в этой книге мы решили не признавать слов, оторванных от дел.

Именно на этом пути мы найдем выход из парадокса "свободы воли", мучившего философов многие века. В чем же этот выход?

Никак нельзя спорить с тем, что каждый поступок, даже самый мельчайший, предопределен внешними условиями, нашим опытом, нашим разумом. Все это так. Но мозг, нервная система человека -- машины исключительной сложности. Поэтому каждое конкретное решение связано со всеми нашими воспоминаниями, с оценкой возможных последствий поступка, о которых мы судим по рассказам и по прочитанным книгам, при помощи логики, которой нас научили, на основании этических принципов, которые в нас воспитали.


Подобные документы

  • Общая характеристика обуви на высоких каблуках: история появления высоких каблуков, виды, преимущества и недостатки. Изящные шпильки - самые опасные каблуки. Актуальные советы по удачному выбору и покупке женской обуви на каблуках. Виды женских походок.

    реферат [45,8 K], добавлен 21.08.2011

  • Современные решения документооборота надо рассматривать на пересечении электронных и бумажных технологий. Композитная сущность этого предопределяет противоречивый характер, две составляющие влияют друг на друга в поиске эффективного решения.

    статья [25,5 K], добавлен 19.04.2006

  • Зарождение и развитие декоративной косметики, классификация ассортимента. Рабочее место визажиста, инструменты и расходный материал. Общая коррекция лица, виды макияжа. Главные особенности создания образа, его описание. Техника выполнения макияжа.

    курсовая работа [2,2 M], добавлен 02.07.2012

  • Промышленный переворот и положение Англии в 18 веке. Причины и последствия приватизации в странах Запада в 1970-1980 годах. Проблемы сознания в истории философии. Тоталитарные политические режимы. Воспитание и социализация, сходство и различие процессов.

    шпаргалка [65,0 K], добавлен 06.10.2009

  • Понятия "масса" и "величина" в костюме. Характеристика и разновидности фактуры материала. Влияние фактуры на зрительное восприятие формы. Сущность и значение силуэта для разработки моделей одежды. Разработка четырех эскизов моделей различных силуэтов.

    контрольная работа [941,0 K], добавлен 10.09.2016

  • История развития обувной отрасли, основные тенденции современной моды для обуви и кожгалантерейных изделий. Обувь как объект внимания художников и конструкторов, признак социального различия владельцев. Влияние обувной моды на повседневную жизнь.

    реферат [19,4 K], добавлен 19.02.2012

  • Заболеваемость растений трипсом и методы борьбы с ним. Негативное влияние ядов на здоровье человека, правила обращения с ними. Особенности действия Акарина, преимущества и апробация, отличительные черты. Общие положения по защите растений от насекомых.

    реферат [23,9 K], добавлен 05.04.2009

  • Численность населения в Харьковской области на 1 января 2007 г. Распределение населения по национальной принадлежности. Анализ рождаемости и смертности. Показатели миграции, ее причины и влияние на демографическую ситуацию в Харьковской области.

    практическая работа [36,0 K], добавлен 05.01.2008

  • Актуальные тенденции сезона весна-лето 2014 в сфере свадебных причесок. Анализ внешних данных модели, их влияние на выполнение прически. Разработка технологической карты колорирования. Оценка стоимости услуг. Варианты оформления свадебной прически.

    дипломная работа [1,8 M], добавлен 24.03.2015

  • Общие сведения о химической завивке. Влияние химического состава на волосы. Нетрадиционные методы: химическая завивка на пластиковые спицы или шпильки, завивка на "косичку", завивка с применением шапочки. Уход за волосами после химической завивки.

    курсовая работа [2,1 M], добавлен 01.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.