Основные положения теории вероятностей

Предмет теории вероятностей. Достоверные, случайные и невозможные события. Испытания и события. Виды случайных событий. Предмет комбинаторики и ее основные формулы. Относительная частота и ее устойчивость. Статистическая и геометрическая вероятности.

Рубрика Разное
Вид реферат
Язык русский
Дата добавления 04.12.2008
Размер файла 18,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

17

Содержание

  • Введение 3
  • 1. Предмет теории вероятностей 4
  • 2. Основные понятия теории вероятностей 6
    • 2.1 Испытания и события. Виды случайных событий 6
    • 2.2 Классическое определение вероятности 7
    • 2.3 Основные формулы комбинаторики 9
    • 2.4 Относительная частота. Устойчивость относительной частоты 11
    • 2.5 Ограниченность классического определения вероятности. Статистическая вероятность 12
    • 2.6 Геометрические вероятности 14
  • Заключение 16
  • Литература 17
  • Введение

Знание закономерностей, которым подчиняются массовые случайные события, позволяет предвидеть, как эти события будут протекать.

Методы теории вероятностей широко применяются в различных отраслях естествознания и техники: в теории надежности, теории массового обслуживания, в теоретической физике, геодезии, астрономии, теории стрельбы, теории ошибок наблюдений, теории автоматического управления, общей теории связи и во многих других теоретических и прикладных науках. Теория вероятностей служит также для обоснования математической и прикладной статистики, которая в свою очередь используется при планировании и организации производства, при анализе технологических процессов, предупредительном и приемочном контроле качества продукции и для многих других целей.

В последние годы методы теории вероятностей все шире и шире проникают в различные области науки и техники, способствуя их прогрессу.

Задача данной работы заключается в том, чтобы рассмотреть основные положения теории вероятностей.

1. Предмет теории вероятностей

Наблюдаемые нами события (явления) можно подразделить на следующие три вида: достоверные, невозможные и случайные.

Достоверным называют событие, которое обязательно произойдет, если будет осуществлена определенная совокупность условий S. Например, если в сосуде содержится вода при нормальном атмосферном давлении и температуре 20°, то событие «вода в сосуде находится в жидком состоянии» есть достоверное. В этом примере заданные атмосферное давление и температура воды составляют совокупность условий S.

Невозможным называют событие, которое заведомо не произойдет, если будет осуществлена совокупность условий S. Например, событие «вода в сосуде находится в твердом состоянии» заведомо не произойдет, если будет осуществлена совокупность условий предыдущего примера.

Случайным называют событие, которое при осуществлении совокупности условий S может либо произойти, либо не произойти. Например, если брошена монета, то она может упасть так, что сверху будет либо герб, либо надпись. Поэтому событие «при бросании монеты выпал «герб» -- случайное. Каждое случайное событие, в частности выпадение «герба», есть следствие действия очень многих случайных причин (в нашем примере: сила, с которой брошена монета, форма монеты и многие другие). Невозможно учесть влияние на результат всех этих причин, поскольку число их очень велико и законы их действия неизвестны. Поэтому теория вероятностей не ставит перед собой задачу предсказать, произойдет единичное событие или нет, -- она просто не в силах это сделать.

По-иному обстоит дело, если рассматриваются случайные события, которые могут многократно наблюдаться при осуществлении одних и тех же условий S, т. е. если речь идет о массовых однородных случайных событиях. Оказывается, что достаточно большое число однородных случайных событий независимо от их конкретной природы подчиняется определенным закономерностям, а именно вероятностным закономерностям. Установлением этих закономерностей и занимается теория вероятностей.

Итак, предметом теории вероятностей является изучение вероятностных закономерностей массовых однородных случайных событий.

2. Основные понятия теории вероятностей

2.1 Испытания и события. Виды случайных событий

Выше событие названо случайным, если при осуществлении определенной совокупности условий S оно может либо произойти, либо не произойти. В дальнейшем, вместо того чтобы говорить «совокупность условий S осуществлена», будем говорить кратко: «произведено испытание». Таким образом, событие будет рассматриваться как результат испытания.

Пример. Стрелок стреляет по мишени, разделенной на четыре области. Выстрел -- это испытание. Попадание в определенную область мишени -- событие.

События называют несовместными, если появление одного из них исключает появление других событий в одном и том же испытании.

Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие. В частности, если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий. Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.

События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.

Пример несовместных событий. Из ящика с деталями наудачу извлечена деталь. Появление стандартной детали исключает появление нестандартной детали. События «появилась стандартная деталь» и «появилась нестандартная деталь» -- несовместные.

Пример полной группы. Приобретены два билета денежно - вещевой лотереи. Обязательно произойдет одно и только одно из следующих событий: «выигрыш выпал на первый билет и не выпал на второй», «выигрыш не выпал на первый билет и выпал на второй», «выигрыш выпал на оба билета», «на оба билета выигрыш не выпал». Эти события образуют полную группу попарно несовместных событий.

Пример равновозможных событий. Появление «герба» и появление надписи при бросании монеты -- равновозможные события. Действительно, предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндрическую форму и наличие чеканки не оказывает влияния на выпадение той или иной стороны монеты.

2.2 Классическое определение вероятности

Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Далее укажем слабые стороны этого определения и приведем другие определения, позволяющие преодолеть недостатки классического определения.

Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них - красные, 3 - синие и 1 - белый. Очевидно, возможность вынуть наудачу из урны цветной (т. е. красный или синий) шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

Поставим перед собой задачу дать количественную оценку возможности того, что взятый наудачу шар цветной. Появление цветного шара будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовем элементарным исходом (элементарным событием). Элементарные исходы обозначим через ?????????? и т.д. В нашем примере возможны следующие 6 элементарных исходов: ?? - появился белый шар; ?????? - появился красный шар; ?????????? - появился синий шар. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможны (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере благоприятствуют событию A (появлению цветного шара) следующие 5 исходов: ??????????????????.

Таким образом, событие А наблюдается, если в испытании наступает один, безразлично какой, из элементарных исходов, благоприятствующих A; в нашем примере А наблюдается, если наступит ??, или ??, или ??, или ??, или ??. В этом смысле событие А подразделяется на несколько элементарных событий (??????????????????); элементарное же событие не подразделяется на другие события. В этом состоит различие между событием А и элементарным событием (элементарным исходом).

Отношение числа благоприятствующих событию А элементарных исходов к их общему числу называют вероятностью события А и обозначают через Р (А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, вероятность того, что взятый шар окажется цветным, равна Р (A) = 5 / 6. Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой

Р (A) = m / n,

где m - число элементарных исходов, благоприятствующих A; n - число всех возможных элементарных исходов испытания.

Здесь предполагается, что элементарные исходы несовместны, равновозможны и образуют полную группу. Из определения вероятности вытекают следующие ее свойства:

Свойство 1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m = n, следовательно,

Р (A) = m / n = n / n = 1.

Свойство 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m = 0, следовательно,

Р (А) = m / n = 0 / n = 0.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0 < m < n, значит, 0 < m / n < 1, следовательно,

0 < Р (А) < 1.

Итак, вероятность любого события удовлетворяет двойному неравенству

0 <= Р (A) < 1.

2.3 Основные формулы комбинаторики

Комбинаторика изучает количества комбинаций, подчиненных определенным условиям, которые можно составить из элементов, безразлично какой природы, заданного конечного множества. При непосредственном вычислении вероятностей часто используют формулы комбинаторики. Приведем наиболее употребительные из них.

Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок

Pn = n!,

где n! = 1 * 2 * 3 ... n.

Заметим, что удобно рассматривать 0!, полагая, по определению, 0! = 1.

Размещениями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются либо составом элементов, либо их порядком. Число всех возможных размещений

Amn = n (n - 1)(n - 2) ... (n - m + 1).

Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются хотя бы одним элементом. Число сочетаний

С mn = n! / (m! (n - m)!).

Пример перестановок. Сколько трехзначных чисел можно составить из цифр 1, 2, 3, если каждая цифра входит в изображение числа только один раз?

Р е ш е н и е. Искомое число трехзначных чисел

P3 = 3! = 1 * 2 * 3 = 6.

Пример размещений. Сколько можно составить сигналов из 6 флажков различного цвета, взятых по 2?

Р е ш е н и е. Искомое число сигналов

А26 = 6 * 5 = 30.

Пример сочетаний. Сколькими способами можно выбрать две детали из ящика, содержащего 10 деталей?

Р е ш е н и е. Искомое число способов

С 210 = 10! / (2! 8!) = 45.

Подчеркнем, что числа размещений, перестановок и сочетаний связаны равенством

Amn = PmC mn.

При решении задач комбинаторики используют следующие правила:

Правило суммы. Если некоторый объект А может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А, либо В можно m + n способами.

Правило произведения. Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А, В) в указанном порядке может быть выбрана mn способами.

2.4 Относительная частота. Устойчивость относительной частоты

Относительная частота наряду с вероятностью принадлежит к основным понятиям теории вероятностей.

Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний. Таким образом, относительная частота события А определяется формулой

W (А) = m / n,

где m - число появлений события, n - общее число испытаний.

Сопоставляя определения вероятности и относительной частоты, заключаем: определение вероятности не требует, чтобы испытания производились в действительности; определение же относительной частоты предполагает, что испытания были произведены фактически. Другими словами, вероятность вычисляют до опыта, а относительную частоту - после опыта.

Пример. Отдел технического контроля обнаружил 3 нестандартных детали в партии из 80 случайно отобранных деталей. Относительная частота появления нестандартных деталей

W (А) = 3 / 80.

Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свойство состоит в том, что в различных опытах, относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Оказалось, что это постоянное число есть вероятность появления события.

Таким образом, если опытным путем установлена относительная частота, то полученное число можно принять за приближенное значение вероятности.

Подробнее и точнее связь между относительной частотой и вероятностью будет изложена далее. Теперь же проиллюстрируем свойство устойчивости на примере:

Пример. По данным шведской статистики, относительная частота рождения девочек за 1935 г. по месяцам характеризуется следующими числами (числа расположены в порядке следования месяцев, ничиная с января): 0,486; 0,489; 0.490; 0,471; 0,478; 0,482; 0,462; 0,484; 0,485; 0,491; 0,482; 0,473.

Относительная частота колеблется около числа 0,482, которое можно принять за приближенное значение вероятности рождения девочек.

Заметим, что статистические данные различных стран дают примерно то же значение относительной частоты.

2.5 Ограниченность классического определения вероятности. Статистическая вероятность

Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных исходов которых бесконечно. В таких случаях классическое определение неприменимо. Уже это обстоятельство указывает на ограниченность классического определения. Отмеченный недостаток может быть преодолен, в частности, введением геометрических вероятностей и, конечно, использованием аксиоматической вероятности.

Наиболее слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Еще труднее указать основания, позволяющие считать элементарные события равновозможными. Обычно о равновозможности элементарных исходов испытания говорят из соображений симметрии. Так, например, предполагают, что игральная кость имеет форму правильного многогранника (куба) и изготовлена из однородного материала. Однако задачи, в которых можно исходить из соображений симметрии, на практике встречаются весьма редко. По этой причине наряду с классическим определением вероятности используют и другие определения, в частности статистическое определение: в качестве статистической вероятности события принимают относительную частоту или число, близкое к ней. Например, если в результате достаточно большого числа испытаний оказалось, что относительная частота весьма близка к числу 0,4, то это число можно принять за статистическую вероятность события.

Легко проверить, что свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности. Действительно, если событие достоверно, то m = n и относительная частота

m / n = n / n = 1,

т. е. статистическая вероятность достоверного события (так же как и в случае классического определения) равна единице.

Если событие невозможно, то m = 0 и, следовательно, относительная частота

0 / n = 0,

т. е. статистическая вероятность невозможного события равна нулю.

Для любого события 0 <= m <= n и, следовательно, относительная частота

0 <= m / n <= 1,

т. е. статистическая вероятность любого события заключена между нулем и единицей.

Для существования статистической вероятности события А требуется:

а) возможность, хотя бы принципиально, производить неограниченное число испытаний, в каждом из которых событие А наступает или не наступает;

б) устойчивость относительных частот появления А в различных сериях достаточно большого числа испытаний.

Недостатком статистического определения является неоднозначность статистической вероятности; так, в приведенном примере в качестве вероятности события можно принять не только 0,4, но и 0,39; 0,41 и т. д.

2.6 Геометрические вероятности

Чтобы преодолеть недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности -- вероятности попадания точки в область (отрезок, часть плоскости и т. д.).

Пусть отрезок l составляет часть отрезка L. На отрезок L наудачу поставлена точка. Это означает выполнение следующих предположений: поставленная точка может оказаться в любой точке отрезка L, вероятность попадания точки на отрезок l пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L. В этих предположениях вероятность попадания точки на отрезок l определяется равенством

Р = Длина l / Длина L.

Пример. На отрезок ОА длины L числовой оси Ох наудачу поставлена точка В(х). Найти вероятность того, что меньший из отрезков ОB и ВА имеет длину, большую L / 3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси.

Р е ш е н и е. Разобьем отрезок ОА точками С и D на 3 равные части. Требование задачи будет выполнено, если точка В (х) попадет на отрезок CD длины L / 3. Искомая вероятность

P = (L / 3) / L = l / 3.

Пусть плоская фигура g составляет часть плоской фигуры G. На фигуру G наудачу брошена точка. Это означает выполнение следующих предположений: брошенная точка может оказаться в любой точке фигуры G, вероятность попадания брошенной точки на фигуру g пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G, ни от формы g. В этих предположениях вероятность попадания точки в фигуру g определяется равенством

Р = Площадь g / Площадь G.

Пример. На плоскости начерчены две концентрические окружности, радиусы которых 5 и 10 см соответственно. Найти вероятность того, что точка, брошенная наудачу в большой круг, попадет в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади этой фигуры и не зависит от ее расположения относительно большого круга.

Р е ш е н и е. Площадь кольца (фигуры g)

Sg = p (102 -- 52) = 75p.

Площадь большого круга (фигуры G)

SG = p102 = 100p.

Искомая вероятность

Р = 75p / (100p) = 0,75.

Заключение

В заключение хотелось бы еще раз подчеркнуть, что подавляющее большинство природных и рукотворных явлений, а также явлений повседневной жизни содержат в себе элементы случайности. Окружающий нас мир насыщен случайными событиями: номера выигравших билетов в лотереях, результаты спортивных состязаний, состояние погоды, количество солнечных дней в течение года и так далее.

Знание закономерностей, которым подчиняются случайные явления, позволяет предвидеть, как эти явления будут протекать. Теория вероятностей не ставит перед собой задачу предсказать, произойдет или не произойдет некоторое событие. Однако если данное событие многократно наблюдается (или повторяется), то оно подчиняется определенным закономерностям, а именно вероятностным закономерностям. Установлением этих закономерностей и занимается теория вероятностей.

Итак, в теории вероятностей изучаются реально существующие независимо от нашего сознания законы случайных явлений. Теория вероятностей предлагает математический аппарат для описания этих законов.

Литература

1. Гнеденко Б. В. Курс теории вероятностей. М.,1988.

2. Зеленцов Б.П.Основы теории вероятностей. // Соросовский Образовательный Журнал, 2001, № 10. www.journal.issep.rssi.ru

3. Колмогоров А.Н. Основные понятия теории вероятностей. М.: ФАЗИС, 1998.

4. Математические методы в экономике / О. О. Замков, А. В. Толстопятенко, Ю. Н. Черемных ; под общ. ред. А. В. Сидоровича. 4-е изд., стер. М.: Дело и Сервис, 2004.


Подобные документы

  • Основные составляющие теории и методики архивоведения. Становление архивного дела. Принятие основ законодательства РФ и его основные идеи и принципы реализации. Классификация архивного фонда РФ. Комплектование архивов.

    шпаргалка [49,5 K], добавлен 03.06.2008

  • Предмет экономической демографии, ее основные разделы, формирование современного теоретического подхода. Особенности применения математических, статистических и экономических методов анализа и интерпретации их результатов в экономической демографии.

    реферат [40,2 K], добавлен 19.12.2008

  • Основные виды предпринимательской деятельности. Основные группы документов организации. Документы по снабжению и сбыту. Виды правовой документации и требования к ее составлению и оформлению. Договора купли-продажи. Протокол разногласий как документ.

    курсовая работа [65,5 K], добавлен 29.05.2015

  • Штриховое кодирование как метод автоматизированного сбора данных самого различного характера, история его развития, источники информации и порядок расшифровки. Порядок применения штрихового кода для книг, журналов и газет, обслуживание читателей.

    контрольная работа [58,5 K], добавлен 21.03.2010

  • Объект социологического исследования. Уровни социального знания. Предмет социологии. Социология культуры. Социология досуга. Современный досуг. Социология искусства. Социология массовой коммуникации. Термины социологии.

    курс лекций [22,5 K], добавлен 10.06.2007

  • Мыло в античном мире. Основные производители и поставщики мыла в средние века. Главные центры мыловарения в России. Афродизиаки, их назначение и особенности действия на человека. Состав, принцип действия, основные виды и технология изготовления мыла.

    реферат [22,3 K], добавлен 03.05.2009

  • Ассортимент препаратов для химической завивки. Подготовительные и заключительные работы при химической завивке, основные ошибки и их причины. Современные виды химической завивки и уход за волосами после нее. Завивка на окрашенных и обесцвеченных волосах.

    курсовая работа [4,2 M], добавлен 02.05.2012

  • Российская образовательная система начала ХХI. Положения об организации научных исследований. Организация Министерством образования России научных исследований по проблемам образования. Основные формы организации научных исследований и финансирование.

    контрольная работа [34,5 K], добавлен 02.09.2008

  • Основные принципы окрашивания волос. Инструменты и приспособления. Группы красителей и основные технологии их применения. Обесцвечивающие и осветляющие препараты (I группа). Химические красители (II группа). Временные (тонирующие) красители (III группа).

    дипломная работа [66,7 K], добавлен 11.10.2002

  • История пионера воздухоплавания Лоренцо Гузмао. Изобретение Жозефа Монгольфье. Изобретение профессора Шарля, первые воздушные пассажиры. Начало полетов человека на монгольфьере. Испытания новой конструкции шарльеров. Воздухоплавание в Российской империи.

    реферат [16,2 K], добавлен 18.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.