Дистрофия и общая нозология
Определение причин и морфогенеза дистрофий. Оценка морфогенеза паренхиматозных белковых, углеводных и жировых дистрофий. Рассмотрение особенностей науки, которая изучает общие закономерности возникновения, развития и исхода заболеваний - нозологии.
Рубрика | Медицина |
Вид | курс лекций |
Язык | русский |
Дата добавления | 25.04.2023 |
Размер файла | 50,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция 1. Дистрофия
Дистрофия (от греч. dys -- нарушение и trophо -- питаю) -- это количественные и качественные структурные изменения в клетках и/или межклеточном веществе органов и тканей, обусловленные нарушением обменных процессов. Под трофикой понимают совокупность механизмов, определяющих метаболизм и структурную организацию ткани (клетки), которые необходимы для выполнения специализированной функции. При дистрофиях в результате нарушения трофики в клетках или в межклеточном веществе накапливаются различные продукты обмена (белки, жиры, углеводы, минералы, вода).
Причины и морфогенез дистрофий
Морфологическая сущность дистрофий выражается в:
1) увеличении или уменьшении количества каких-либо веществ, содержащихся в организме в норме (например, увеличение количества жира в жировых депо);
2) изменение качества, то есть физико-химических свойств веществ, присущих организму в норме (например, изменение тинкториальных свойств коллагеновых волокон при мукоидном набухании и фибриноидных изменениях);
3) появление обычных веществ в необычном месте (например, накопление жировых вакуолей в цитоплазме клеток паренхиматозных органов при жировой дистрофии);
4) появление и накопление новых веществ, которые не присущи для него в норме (например, белка амилоида). Таким образом, дистрофия является морфологическим выражением нарушений метаболизма клеток и тканей. Среди механизмов поддержания нормальной трофики выделяют клеточные и внеклеточные.
Клеточные механизмы обеспечиваются структурной организацией клетки и ее ауторегуляцией, обеспечивающейся генетическим кодом. Внеклеточные механизмы трофики обеспечиваются транспортными (кровь, лимфа) и интегративными (нервная, эндокринная, гуморальная) системами ее регуляции.
Непосредственной причиной развития дистрофий могут служить:
1. Различные факторы, повреждающие ауторегуляцию клетки, среди них:
А. Токсические вещества (в том числе токсины микроорганизмов). В. Физические и химические агенты: высокая и низкая температуры, определенные химические вещества (кислоты, щелочи, соли тяжелых металлов, многие органические вещества, ионизирующая радиация). С. Приобретенная или наследственная ферментопатия (энзимопатия). D. Вирусы. Цитопатогенные вирусы могут вызывать лизис клетки путем непосредственного прямого включения в клеточные мембраны. Другие вирусы могут встраиваться в клеточный геном и вызывать соответствующее нарушение белкового синтеза в клетке. Некоторые вирусы могут вызывать лизис клеточных мембран опосредованно путем иммунного ответа, вызванного вирусными антигенными детерминантами на поверхности инфицированной клетки.
2. Нарушения функции энергетических и транспортных систем, обеспечивающих метаболизм и структурную сохранность тканей (клеток), при которых имеет место:
1. Гипогликемия: Макроэргические связи АТФ представляют собой наиболее эффективный источник энергии для клетки. АТФ производится путем окислительного фосфорилирования АДФ; эта реакция связана с окислением восстановленных веществ в дыхательной цепи ферментов. Глюкоза -- основной субстрат для производства энергии в большинстве тканей и единственный источник энергии в мозговых клетках. Низкий уровень глюкозы в крови (гипогликемия) приводит к недостаточному производству молекул аденозинтри фосфата (АТФ), что наиболее выражено в головном мозге.
2. Гипоксия: Недостаток кислорода в клетках (гипоксия) может возникать при: (1) обструкции дыхательных путей или болезни, предотвращающей оксигенацию крови в легких; (2) ишемии, или нарушении тока крови в тканях в результате общих или местных нарушений циркуляции крови; (3) анемии (то есть, при снижении уровня гемоглобина в крови), что приводит к снижению транспорта кислорода кровью; (4) нарушении структуры гемоглобина (например, при отравлении угарным газом (СО)), при этом образуется метгемоглобин, не способный к переносу кислорода; это приводит к такому же результату, что и при анемии.
3.Нарушения эндокринной и нервной регуляции:
А. Заболевания эндокринных органов (тиреотоксикоз, диабет, гиперпаратиреоз и т.д.)
В. Болезни центральной и периферической нервной систем (нарушенная иннервация, опухоли головного мозга).
Морфогенез дистрофий. Среди механизмов, ведущих к развитию характерных для дистрофий изменений, различают инфильтрацию, декомпозицию (фанероз), извращенный синтез и трансформацию. Инфильтрация -- избыточное проникновение продуктов обмена из крови и лимфы в клетки или межклеточное вещество и/или нарушение включения их в метаболизм с последующим накоплением. Например, инфильтрация белком эпителия проксимальных канальцев почек при нефротическом синдроме, инфильтрация липопротеидами интимы аорты и крупных артерий при атеросклерозе.
Декомпозиция (фанероз) -- распад сложных в химическом отношении веществ. Например, распад липопротеидных комплексов и накопление в клетке жира в свободном состоянии (жировая дистрофия кардиомиоцитов при дифтерийной интоксикации). Распад полисахаридно-белковых комплексов лежит в основе фибриноидных изменений соединительной ткани при ревматических болезнях.
Трансформация -- переход одного вещества в другое. Такова, например, трансформация углеводов в жиры при сахарном диабете, усиленная полимеризация глюкозы в гликоген и др.
Извращенный синтез -- это синтез в клетках или в тканях веществ, не встречающихся в них в норме. К ним относятся: синтез аномального белка амилоида в клетке и образование аномальных белково-полисахаридных комплексов амилоида в межклеточном веществе, синтез белка алкогольного гиалинагепатоцитом, синтез гликогена в эпителии узкого сегмента нефрона при сахарном диабете.
Характерная морфология дистрофий выявляется, как правило, на тканевом и клеточном уровнях, причем для доказательства связи дистрофии с нарушениями того или иного вида обмена требуется применение гистохимических методов. Без установления качества продукта нарушенного обмена нельзя верифицировать тканевую дистрофию, т.е. отнести ее к белковым, жировым, углеводным или другим дистрофиям. Изменения органа при дистрофии (размер, цвет, консистенция, структура на разрезе) в одних случаях представлены исключительно ярко, в других -- отсутствуют и лишь микроскопическое исследование позволяет выявить их специфичность. В классификации дистрофий придерживаются нескольких принципов.
Выделяют дистрофии:
I. В зависимости от локализации нарушений обмена:
1) паренхиматозные;
2) стромально-сосудистые;
3) смешанные.
II. По преобладанию нарушений того или иного вида обмена:
1) белковые;
2) жировые;
3) углеводные;
4) минеральные.
III. В зависимости от влияния генетических факторов:
1) приобретенные;
2) наследственные.
IV. По распространенности процесса:
1) общие;
2) местные.
1.1 Паренхиматозные дистрофии
Паренхиматозные дистрофии -- это структурные изменения в высокоспециализированных в функциональном отношении клетках, связанные с нарушением обмена веществ. Поэтому при паренхиматозных дистрофиях преобладают нарушения клеточных механизмов трофики. Различные виды паренхиматозных дистрофий отражают недостаточность определенного физиологического (ферментативного) механизма, обеспечивающего выполнение клеткой специализированной функции (гепатоцит, нефроцит, кардиомиоцит и т.д.). В связи с этим в разных органах (печень, почки, сердце и т.д.) при развитии одного и того же вида дистрофии участвуют различные пато- и морфогенетические механизмы. Механизм повреждений клетки сводится к следующему:
Сначала происходят внутриклеточное накопление воды и электролиз, обусловленные нарушением функции энергозависимой К+-Na+-АТФазы в клеточной мембране. В результате приток К+, Na+ и воды в клетку ведет к “облачному” или “мутному” набуханию, что является ранним и обратимым (реверсивным) результатом повреждения клетки (этот эффект обусловлен набуханием цитоплазматических органелл, рассеянных в клетке). Происходят также изменения во внутриклеточных концентрациях других электролитов (особенно K+, Ca2+ и Mg2+), поскольку их концентрации также поддерживаются активностью энергозависимых процессов в клеточной мембране. Эти нарушения концентрации электролитов могут вести к беспорядочной электрической активности (например, в миокардиоцитах и нейронах) и ингибированию ферментов.
За притоком ионов натрия и воды следует набухание цитоплазматических органелл. При набухании эндоплазматического ретикулума происходит отделение рибосом, что приводит к нарушению синтеза белка. Митохондриальное набухание, которое является общим признаком для большого количества различных типов повреждений, вызывает физическое разобщение окислительного фосфорилирования.
В условиях гипоксии клеточный метаболизм изменяется от аэробного к анаэробному гликолизу. Преобразование ведет к производству молочной кислоты и вызывает уменьшение внутриклеточной pH. Хроматин конденсируется в ядре, происходит дальнейшее разрушение мембран органелл. Разрушение лизосомальных мембран ведет к выходу лизосомальных ферментов в цитоплазму, которые повреждают жизненно важные внутриклеточные молекулы.
В зависимости от нарушений того или иного вида обмена паренхиматозные дистрофии делят на белковые (диспротеинозы), жировые (липидозы) и углеводные.
1.2 Морфогенез паренхиматозных белковых дистрофий (диспротеинозов)
Большая часть белков цитоплазмы (простых и сложных) находится в соединении с липидами, образуя липопротеидные комплексы. Эти комплексы составляют основу мембран митохондрий, эндоплазматической сети, пластинчатого комплекса и других структур. Помимо связанных белков в цитоплазме клетки содержатся и свободные белки.
Сущность паренхиматозных диспротеинозов состоит в изменении физико-химических и морфологических свойств белков клетки: они подвергаются либо коагуляции, то есть свертыванию с увеличением количества химических связей (например, S--S мостиков между полипептидными цепями), либо, наоборот, колликвации (разжижению) (от слова liquor -- жидкость), то есть распаду полипептидных цепей на фрагменты, что ведет к гидратации цитоплазмы. После повреждения любой этиологии в клетке сразу увеличивается синтез белков целого семейства -- это, так называемые белки температурного (теплового) шока.
Среди белков температурного шока наиболее изучен убиквитин, который, как предполагается, защищает другие белки клетки от денатурации (от англ. ubiquitous -- вездесущий) - небольшой консервативный белок эукариот, участвующий в регуляции процессов внутриклеточной деградации других белков, а также их функций. Он был открыт в 1975 году Гидеоном Голдштейном и охарактеризован в 70--80-х годах XX века. В геноме человека есть четыре гена, кодирующих убиквитин: UBB, UBC, UBA52 и RPS27A.
Убиквитин играет роль "домашней хозяйки" по наведению порядка в клетке. Соединяясь с поврежденными белками он способствует их утилизации и восстановлению структурных компонентов внутриклеточных органелл. При тяжелом повреждении и избыточном накоплении комплексы убиквитин-- белок могут формировать цитоплазматические включения (например, тельца Маллори в гепатоцитах -- убиквитин/кератин; тельца Луи в нейронах при болезни Паркинсона -- убиквитин/нейрофиламенты).
К паренхиматозным белковым дистрофиям со времен Р.Вирхова многие патологи причисляли и продолжают причислять так называемую зернистую дистрофию, которую сам Р.Вирхов обозначил как “мутное набухание”. Так принято обозначать процесс, при котором в цитоплазме клеток паренхиматозных органов появляется выраженная зернистость. При этом клетки имеют вид мутных, набухших. Сами органы увеличиваются в размерах, становятся дряблыми и тусклыми на разрезе, как бы ошпаренные кипятком. Предполагалось, что зернистость, наблюдаемая в клетках, обусловлена накоплением в клетке зерен белка. Однако электронно-микроскопическое и гистоферменто-химическое изучение «зернистой дистрофии» показало, что в ее основе лежит не накопление белка в цитоплазме, а либо гиперплазия (т.е. увеличение количества) ультраструктур клеток паренхиматозных органов как выражение функционального напряжения этих органов в ответ на различные воздействия; гиперплазированные ультраструктуры клетки выявляются при светооптическом исследовании как белковые гранулы, либо увеличение размеров ультраструктур за счет их набухания при повышенной проницаемости мембран.
В одних паренхиматозных клетках (кардиомиоциты, гепатоциты) происходит гиперплазия и набухание митохондрий и эндоплазматического ретикулума, в других, например, в эпителии извитых канальцев, гиперплазия лизосом, поглощающих низкомолекулярные (в проксимальном отделе) и высокомолекулярные (в дистальном отделе) белки. Клиническое значение мутного набухания во всех его разновидностях различно. Но даже выраженные его морфологические проявления, что доказано при помощи биопсий паренхиматозных органов, обычно не влекут за собой недостаточности органа, а сопровождаются некоторым снижением функции органа. Это проявляется приглушенностью тонов сердца, появлением следов белка в моче, снижением силы сокращения мышц. В принципе это процесс обратимый. Вместе с тем необходимо помнить, что если причина, вызвавшая развитие зернистой дистрофии, не устранена, наступает деструкция липопротеидных комплексов мембранных структур клетки и развиваются более тяжелые паренхиматозные белковые и жировые дистрофии.
В настоящее время к паренхиматозным белковым дистрофиям (диспротеинозам) относят гиалиново-капельную, гидропическую и роговую. Однако следует подчеркнуть, что роговая дистрофия по механизму своего развития не связана с предыдущими.
1.3 Гиалиново-капельная дистрофия
При гиалиново-капельной дистрофии в цитоплазме появляются крупные гиалиноподобные белковые глыбки и капли, сливающиеся между собой и заполняющие тело клетки. В основе этой дистрофии лежит коагуляция белков цитоплазмы с выраженной деструкцией ультраструктурных элементов клетки -- фокальный коагуляционный некроз.
Этот вид диспротеиноза часто встречается в почках, реже -- в печени, и совсем редко -- в миокарде. Внешний вид органов при этой дистрофии не имеет каких-либо характерных черт. Макроскопические изменения характерны для тех заболеваний, при которых встречается гиалиново-капельная дистрофия. В почках при микроскопическом исследовании накопление крупных зерен белка ярко-розового цвета -- гиалиновых капель -- находят в нефроцитах. При этом наблюдается деструкция митохондрий, эндоплазматической сети, щеточной каемки.
В основе гиалиново-капельной дистрофии нефроцитов лежит недостаточность вакуолярно-лизосомального аппарата эпителия проксимальных и дистальных извитых канальцев, в норме реабсорбирующего белки.
Поэтому этот вид дистрофии нефроцитов очень часто встречается при нефротическом синдроме и отражает реабсорбционную недостаточность извитых канальцев в отношении белков. Этот синдром является одним из проявлений многих заболевании почек, при которых первично поражается гломерулярный фильтр (гломерулонефрит, амилоидоз почек, парапротеинемическая нефропатия и др.).
В печени при микроскопическом исследовании в гепатоцитах находят глыбки и капли белковой природы -- это алкогольный гиалин, представляющий собой на ультраструктурном уровне нерегулярные агрегаты микрофибрилл и гиалиновые неправильной формы включения (тельца Маллори). Образование этого белка и телец Маллори служит проявлением извращенной белково-синтетической функции гепатоцита и выявляется постоянно при алкогольном гепатите.
Исход гиалиново-капельной дистрофии неблагоприятен: она завершается необратимым процессом, ведущим к тотальному коагуляционному некрозу клетки.
Функциональное значение этой дистрофии очень велико -- происходит резкое снижение функции органа. С гиалиново-капельной дистрофией эпителия почечных канальцев связаны появление в моче белка (протеинурия) и цилиндров (цилиндрурия), потеря белков плазмы (гипопротеинемия), нарушение ее электролитного баланса. Гиалиново-капельная дистрофия гепатоцитов нередко является морфологической основой нарушений многих функций печени.
1.4 Гидропическая (водяночная) или вакуольная дистрофия
Гидропическая, или вакуольная, дистрофия характеризуется появлением в клетке вакуолей, наполненных цитоплазматической жидкостью. Жидкость накапливается в цистернах эндоплазматического ретикулума и в митохондриях, реже в ядре клетки. Механизм развития гидропической дистрофии сложен и отражает нарушения водно-электролитного и белкового обмена, ведущие к изменению коллоидно-осмотического давления в клетке. Большую роль играет нарушение проницаемости мембран клетки, сопровождающееся их распадом. Это ведет к активации гидролитических ферментов лизосом, которые разрывают внутримолекулярные связи с присоединением воды. По существу такие изменения клетки являются выражением фокального колликвационного некроза.
Гидропическая дистрофия наблюдается в эпителии кожи и почечных канальцев, в гепатоцитах, мышечных и нервных клетках, а также в клетках коры надпочечников. Причины развития гидропической дистрофии в разных органах неоднозначны. В почках -- это повреждение гломерулярного фильтра (гломерулонефрит, амилоидоз, сахарный диабет), что ведет к гиперфильтрации и недостаточности ферментной системы нефроцитов, в норме обеспечивающей реабсорбцию воды; отравление гликолями, гипокалиемия. В печени гидропическая дистрофия возникает при вирусном и токсическом гепатитах.
Причинами гидропической дистрофия эпидермиса могут быть инфекции, аллергии.
Внешний вид органов и тканей мало изменяется при гидропической дистрофии. Микроскопическая картина: паренхиматозные клетки увеличены в объеме, цитоплазма их заполнена вакуолями, содержащими прозрачную жидкость. Ядро смещается на периферию, иногда вакуолизируется или сморщивается. Нарастание гидропии приводит к распаду ультраструктур клетки и переполнению клетки водой, появлению заполненных жидкостью баллонов, поэтому такие изменения называют баллонной дистрофией. Исход гидропической дистрофии, как правило, неблагоприятный; она завершается тотальным колликвационным некрозом клетки. Поэтому функция органов и тканей при гидропической дистрофии резко снижена.
1.5 Роговая дистрофия
Роговая дистрофия, или патологическое ороговение, характеризуется избыточным образованием рогового вещества в ороговевающем эпителии (гиперкератоз, ихтиоз) или образованием рогового вещества там, где в норме его не бывает (патологическое ороговение на слизистых оболочках, например, в полости рта (лейкоплакия), пищеводе, шейке матки. Роговая дистрофия может быть местной или общей, врожденной или приобретенной. Причины роговой дистрофии разнообразны: хроническое воспаление, связанное с инфекционными агентами, действием физических и химических факторов, авитаминозы, врожденное нарушение развития кожи и др.
Исход может быть двояким: устранение вызывающей причины в начале процесса может привести к восстановлению ткани, однако в далеко зашедших случаях наступает гибель клеток. Значение роговой дистрофии определяется ее степенью, распространенностью и длительностью. Длительно существующее патологическое ороговение слизистой оболочки (лейкоплакия) может явиться источником развития раковой опухоли (плоскоклеточного ороговевающего рака).
Ихтиоз -- это наследственное заболевание кожи, которое характеризуется нарушениями ороговения. Этимология греч. "ихтис" - "рыба". Различают несколько клинических форм, обусловленных различными группами мутантных генов, биохимический дефект которых окончательно не расшифрован. Придают большое значение недостаточности витамина А, эндокринопатиям (гипофункции щитовидной железы, половых желез). При заболевании на коже появляются чешуйки, напоминающих рыбью чешую. Ороговение выражено в различной степени -- от едва заметной шероховатости кожи, до тяжелейших изменений эпидермиса, порой несовместимых с жизнью. Существует много форм ихтиоза и целый ряд редких синдромов, включающих ихтиоз как один из симптомов. Дерматологи различают, по крайней мере, двадцать восемь различных форм заболевания. Врожденный ихтиоз резкой степени, как правило, несовместим с жизнью.
1.6 Морфогенез паренхиматозных жировых дистрофий (липидозов)
В цитоплазме клеток содержатся в основном липиды, которые образуют с белками сложные лабильные жиробелковые комплексы -- липопротеиды. Эти комплексы составляют основу мембран клетки. Липиды вместе с белками являются составной частью и клеточных ультраструктур. Помимо липопротеидов, в цитоплазме встречаются в небольшом количестве жиры в свободном состоянии.
Паренхиматозная жировая дистрофия -- это структурные проявления нарушения обмена цитоплазматических липидов, которые могут выражаться в накоплении жира в свободном состоянии в клетках, где он обнаруживаются и в норме.
Причины жировой дистрофии разнообразны:
-- кислородное голодание (тканевая гипоксия), поэтому жировая дистрофия так часто встречается при заболеваниях сердечно-сосудистой системы, хронических заболеваниях легких, анемиях, хроническом алкоголизме и т. д. В условиях гипоксии страдают в первую очередь отделы органа, находящиеся в функциональном напряжении; -- тяжелые или длительно протекающие инфекции (дифтерия, туберкулез, сепсис);
-- интоксикации (фосфор, мышьяк, хлороформ, алкоголь), ведущие к нарушениям обмена;
-- авитаминозы и одностороннее (с недостаточным содержанием белков) питание, сопровождающееся дефицитом ферментов и липотропных факторов, которые необходимы для нормального жирового обмена клетки. Паренхиматозная жировая дистрофия характеризуется, главным образом, накоплением триглицеридов в цитоплазме паренхиматозных клеток. При нарушении связи белков с липидами -- декомпозиции, которая возникает под действием инфекций, интоксикаций, продуктов перекисного окисления липидов -- возникает деструкция мембранных структур клетки и в цитоплазме появляются свободные липоиды, являющиеся морфологическим субстратом паренхиматозной жировой дистрофии. Наиболее часто она наблюдается в печени, реже в почке и миокарде, и расценивается как неспецифический ответ на большое количество типов повреждения.
Нормальный метаболизм триглицеридов в печени играет центральную роль в метаболизме жиров. Свободные жирные кислоты током крови приносятся в печень, где они преобразовываются в триглицериды, фосфолипиды и сложные эфиры холестерина. После того, как эти липиды формируют комплексы с белками, которые также синтезируются в клетках печени, они секретируются в плазму как липопротеиды. При нормальном метаболизме количество триглицеридов в клетке печени невелико и не может быть замечено при обычных микроскопических исследованиях.
Микроскопические признаки жировой дистрофии: любой жир, находящийся в тканях, растворяется в растворителях, которые используются при окраске образцов ткани для микроскопического исследования. Поэтому при обычной проводке и окраске ткани (окраска гематоксилином и эозином) клетки в самых ранних стадиях жировой дистрофии имеют бледную и пенистую цитоплазму. По мере увеличения жировых включений в цитоплазме появляются небольшие вакуоли.
Специфическая окраска на жиры требует использования замороженных срезов, сделанных из свежей ткани. В замороженных срезах жир остается в цитоплазме, после чего срезы окрашиваются специальными красителями. Гистохимически жиры выявляются с помощью ряда методов. Принцип методики основан на способности определённых красителей концентрироваться в жирах. Наиболее часто применяют следующие реактивы:
· Суданы (III, чёрный) -- окрашивают жиры в оранжевый (судан III) или в чёрный (судан чёрный В) цвета
· Шарлах красный (шарлах-рот) -- окрашивает липиды в красный цвет
· Масляный красный О -- также окрашивает жировые вещества в красный цвет
· Осмиевая кислота (тетраоксид осмия) -- растворяется в липидах, придавая им чёрный цвет, но из-за высокой токсичности в обычной работе патологоанатома не применяется, используется для окраски ультратонких срезов, предназначенных для электронной микроскопии
· Нильский голубой -- экспресс-метод дифференциальной окраски липидов (ацилглицеролы окрашивает в красный цвет, холестерол и холестериды -- в лиловый, фосфолипиды -- в голубой, свободные жирные кислоты и их соли -- в тёмно-синий); краситель нестойкий, поэтому исследование проводится по мере готовности препарата, через несколько часов красные тона исчезают.
С помощью поляризационного микроскопа можно дифференцировать изотропные и анизотропные липиды. Анизотропные липиды, такие как холестерин и его эфиры, дают характерное двойное лучепреломление. Жировая дистрофия печени проявляется резким увеличением содержания и изменением состава жиров в гепатоцитах.
В клетках печени вначале появляются гранулы липидов (пылевидное ожирение), затем мелкие капли их (мелкокапельное ожирение), которые в дальнейшем сливаются в крупные капли (крупнокапельное ожирение) или в одну жировую вакуоль, которая заполняет всю цитоплазму и отодвигает ядро на периферию. Измененные таким образом печеночные клетки напоминают жировые. Чаще отложение жиров в печени начинается на периферии, реже -- в центре долек; при значительно выраженной дистрофии ожирение клеток печени имеет диффузный характер.
Макроскопически печень при жировой дистрофии увеличена, малокровна, тестоватой консистенции, имеет желтый или охряно-желтый цвет, с жирным блеском на разрезе. При разрезе на лезвии ножа и поверхности разреза виден налет жира.
Причины жировой дистрофии печени: накопление триглицеридов в цитоплазме клеток печени возникает в результате нарушения метаболизма при следующих условиях:
1) когда увеличивается мобилизация жиров в жировой ткани, что приводит к увеличению количества жирных кислот, достигающих печени, например, при голодании и сахарном диабете;
2) когда скорость преобразования жирных кислот в триглицериды в клетке печени увеличена из-за повышенной активности соответствующих ферментных систем. Это -- главный механизм влияния алкоголя, который является мощным стимулятором ферментов.
3) когда уменьшено окисление триглицеридов до ацетил-КоА и кетоновых тел в органах, например, при гипоксии, и приносимый током крови и лимфы жир не окисляется -- жировая инфильтрация;
4) когда синтез белков-акцепторов жиров недостаточен. Таким путем возникает жировая дистрофия печени при белковом голодании и при отравлении некоторыми гепатотоксинами, например, четыреххлористым углеродом и фосфором.
Типы жировой дистрофии печени:
1. Острая жировая дистрофия печени -- редкое, но серьезное состояние, связанное с острым поражением печени. При острой жировой дистрофии печени триглицериды накапливаются в цитоплазме как маленькие, ограниченные мембраной вакуоли (мелкокапельная жировая дистрофия печени).
2. Хроническая жировая дистрофия печени может возникать при хроническом алкоголизме, недоедании и при отравлении некоторыми гепатотоксинами. Жировые капли в цитоплазме соединяются, формируя значительно большие вакуоли (крупнокапельная жировая дистрофия печени). Локализация жировых изменений в дольке печени различается в зависимости от различных причин. Даже при тяжелой хронической жировой печени редко имеются клинические проявления дисфункции печени. Жировая дистрофия миокарда характеризуется накоплением триглицеридов в миокарде. Причины жировой дистрофии миокарда: -- хронические гипоксические состояния, особенно при выраженной анемии.
При хронической жировой дистрофии желтые полосы чередуются с краснокоричневыми участками («тигровое сердце»). Клинические признаки обычно не сильно выражены.
-- токсическое поражение, например, дифтеритический миокардит, вызывает острую жировую дистрофию. Макроскопически сердце дряблое, имеется диффузное желтое окрашивание, сердце выглядит увеличенным в объеме, камеры его растянуты; в клинической картине появляются признаки острой сердечной недостаточности.
Жировая дистрофия миокарда рассматривается как морфологический эквивалент его декомпенсации. Большинство митохондрий при этом распадается, поперечная исчерченность волокон исчезает. Развитие жировой дистрофии миокарда чаще всего связывают не с разрушением комплексов клеточных мембран, а с деструкцией митохондрий, что ведет к нарушению окисления жирных кислот в клетке. В миокарде жировая дистрофия характеризуется появлением в мышечных клетках мельчайших жировых капель (пылевидное ожирение).
При нарастании изменений эти капли (мелкокапельное ожирение) полностью замещают цитоплазму. Процесс имеет очаговый характер и наблюдается в группах мышечных клеток, расположенных по ходу венозного колена капилляров и мелких вен, чаще субэндо- и субэпикардиально. В почках при жировой дистрофии жиры появляются в эпителии проксимальных и дистальных канальцев. Обычно это нейтральные жиры, фосфолипиды или холестерин, который обнаруживают не только в эпителии канальцев, но и в строме. Нейтральные жиры в эпителии узкого сегмента и собирательных трубок встречаются как физиологическое явление. Внешний вид почек: они увеличены, дряблые (при сочетании с амилоидозом плотные), корковое вещество набухшее, серое с желтым крапом, заметным на поверхности и разрезе.
Механизм развития жировой дистрофии почек связан с инфильтрацией эпителия почечных канальцев жиром при липемии и гиперхолестеринемии (нефротический синдром), что ведет к гибели нефроцитов. Исход жировой дистрофии зависит от ее степени. Если она не сопровождается грубым поломом клеточных структур, то, как правило, оказывается обратимой. Глубокое нарушение обмена клеточных липидов в большинстве случаев заканчивается гибелью клетки. Функциональное значение жировой дистрофии велико: функционирование органов при этом резко нарушается, а в ряде случаев и прекращается. Некоторые авторы высказывали мысль о появлении жира в клетках в период реконвалесценции и начала репарации. Это согласуется с биохимическими представлениями о роли пентозофосфатного пути утилизации глюкозы в анаболических процессах, что сопровождается также синтезом жиров.
1.7 Морфогенез паренхиматозных углеводных дистрофий
Углеводы, которые определяются в клетках и тканях и могут быть идентифицированы гистохимически, делят на полисахариды, из которых в животных тканях выявляются лишь гликоген, гликозаминогликаны (мукополисахариды) и гликопротеиды. Среди гликозаминогликанов различают нейтральные, прочно связанные с белками, и кислые, к которым относятся гиалуроновая, хондроитинсерная кислоты и гепарин. Кислые гликозаминогликаны как биополимеры способны вступать в непрочные соединения с рядом метаболитов и осуществлять их транспорт. Главными представителями гликопротеидов являются муцины и мукоиды. Муцины составляют основу слизи, продуцируемой эпителием слизистых оболочек и железами, мукоиды входят в состав многих тканей.
Гистохимические методы выявления углеводов.
Полисахариды, гликозаминогликаны и гликопротеиды выявляются ШИКреакцией. Сущность реакции заключается в том, что после окисления йодной кислотой (или реакции с перйодатом) образующиеся альдегиды дают с фуксином Шиффа красное окрашивание. Для выявления гликогена ШИКреакцию дополняют ферментативным контролем -- обработкой срезов амилазой. Гликоген окрашивается кармином Беста в красный цвет. Гликозаминогликаны и гликопротеиды определяют с помощью ряда методов, из которых наиболее часто применяют окраски толуидиновымсиним или метиленовым синим. Эти окраски позволяют выявлять хромотропные вещества, дающие реакцию метахромазии. Паренхиматозная углеводная дистрофия может быть связана с нарушением обмена гликогена или гликопротеидов.
Нарушение обмена гликогена:
Основные запасы гликогена находятся в печени и скелетных мышцах. Гликоген печени и мышц расходуется в зависимости от потребностей организма (лабильный гликоген). Гликоген нервных клеток, проводящей системы сердца, аорты, эндотелия, эпителиальных покровов, слизистой оболочки матки, соединительной ткани, эмбриональных тканей, хряща является необходимым компонентом клеток и его содержание не подвергается заметным колебаниям (стабильный гликоген). Однако деление гликогена на лабильный и стабильный условно. Регуляция обмена углеводов осуществляется нейроэндокринным путем. Основная роль принадлежит гипоталамической области, гипофизу (АКТГ, тиреотропный, соматотропный гормоны), бета-клеткам островков поджелудочной железы (инсулин), надпочечникам (глюкокортикоиды, адреналин) и щитовидной железе. Нарушения содержания гликогена проявляются в уменьшении или увеличении количества его в тканях и появлении там, где он обычно не выявляется. Эти нарушения наиболее ярко выражены при сахарном диабете и при наследственных углеводных дистрофиях -- гликогенозах. При сахарном диабете, развитие которого связывают с патологией бетаклеток островков поджелудочной железы, что обусловливает недостаточную выработку инсулина, происходит недостаточное использование глюкозы тканями, увеличение ее содержания в крови (гипергликемия) и выведение с мочой (глюкозурия). Тканевые запасы гликогена резко уменьшаются. Это в первую очередь касается печени, в которой нарушается синтез гликогена, что ведет к инфильтрации ее жирами -- развивается жировая дистрофия печени; при этом в ядрах гепатоцитов появляются включения гликогена, они становятся светлыми («пустые» ядра).
С глюкозурией связаны характерные изменения почек при диабете. Они выражаются в гликогенной инфильтрации эпителия канальцев, главным образом узкого и дистального сегментов. Эпителий становится высоким, со светлой пенистой цитоплазмой; зерна гликогена видны и в просвете канальцев. Эти изменения отражают состояние синтеза гликогена (полимеризация глюкозы) в канальцевом эпителии при резорбции богатого глюкозой ультрафильтрата плазмы. При диабете страдают не только почечные канальцы, но и клубочки, их капиллярные петли, базальная мембрана которых становится значительно более проницаемой для сахаров и белков плазмы. Возникает одно из проявлений диабетической микроангиопатии -- интракапиллярный (диабетический) гломерулосклероз. У детей раннего грудного возрастав ряде случаев обнаруживаются избыточные отложения гликогена в миокарде, почках, печени, скелетных мышцах. Этот вторичный «транзиторный гликогеноз» наблюдается при сахарном диабете матерей (то есть речь идёт о проявлениях диабетической фетопатии) и проходит через несколько недель после рождения. Наследственные углеводные дистрофии, в основе которых лежат нарушения обмена гликогена, называются гликогенозами. Гликогенозы обусловлены отсутствием или недостаточностью фермента, участвующего в расщеплении депонированного гликогена, и относятся потому к наследственным ферментопатиям, или болезням накопления. В настоящее время хорошо изучены 6 типов гликогенозов, обусловленных наследственной недостаточностью 6 различных ферментов. Это болезни Гирке (I тип), Помпе (II тип), Мак-Ардля (V тип) и Герса (VI тип), при которых структура накапливаемого в тканях гликогена не нарушена, и болезни Форбса-Кори (III тип) и Андерсена (IV тип), при которых она резко изменена. Морфологическая диагностика гликогеноза того или иного типа возможна при исследовании биопсии с помощью гистоферментных методов, а также с учетом локализации накапливаемого гликогена.
Болезнь фон Гирке. Заболевание начинается в раннем детском возрасте проявлениями гипогликемии и кетонемии. Характерны развитие вторичного гипофизарного ожирения (жир откладывается главным образом на лице, приобретающем «кукольный» вид), увеличение в размерах почек, значительная гепатомегалия, обусловленная не только углеводной, но и жировой дистрофией гепатоцитов. Отмечается значительное увеличение гликогена в лейкоцитах. Накопление гликогена в поражённых клетках столь значительно, что они остаются PAS-положительными даже после фиксации материала в формалине. Большинство детей погибает от ацидотической комы или присоединившейся инфекции.
Болезнь Помпе (гликогеноз типа II, 17q25.2-q25.3, ген GAA) - дефицит лизосомной б-1,4-глюкозидазы - приводит к поражению сердца, поперечнополосатых и гладких мышц и проявляется в возрасте до одного года жизни отставанием в массе тела, кардиомегалией общей мышечной слабостью. Накопление гликогена в миокарде, диафрагме и других дыхательных мышцах способствует нарастающей сердечной и дыхательной недостаточности. Гликоген откладывается также в язык (глоссомегалия), гладких мышцах пищевода, желудка, что вызывает затруднение глотания, картину пилоростеноза, сопровождающегося рвотой. Летальный исход наступает в первые годы жизни не только от сердечной или дыхательной недостаточности, но часто и от аспирационной пневмонии. Болезнь Форбса--Кори. Накопление атипичного гликогена (лимитдекстрина) уже на 1-м году жизни приводит к умеренной гепатомегалии, небольшому увеличению сердца, гипотонусу скелетных мышц, что не является опасным для жизни, почему заболевание иногда называют доброкачественным гликогенозом.
Болезнь Андерсена. Нарушается структура гликогена (напоминает растительные полисахариды -- пектины), откладывающегося в клетках печени, селезёнки и лимфатических узлов с развитием в последующем цирроза печени. Заболевание проявляется в конце грудного или в раннем детском возрасте в виде мелкоузлового цирроза печени с портальной гипертензией. При ЭМ-исследовании в цитоплазме поражённых клеток обнаруживаются включения аномального гликогена, состоящего из тёмной массивной центральной части (образованной гранулярным и ветвистым материалом), окружённой светлым тонким периферическим ободком. Болезнь Мак-Ардля. У больных (как правило, в возрасте старше 10 лет) наблюдаются боли в мышцах, общая слабость после физической нагрузки. В ряде случаев отмечается тёмный цвет мочи из-за присутствия в ней миоглобина. В состоянии покоя указанная симптоматика не наблюдается. Изменения затрагивают только скелетную мускулатуру, в цитоплазме мышечных волокон находятся PAS-положительные включения гликогена.
Прогноз благоприятен.
Углеводные дистрофии, связанные с нарушением обмена гликопротеидов. При нарушении обмена гликопротеидов в клетках или в межклеточном веществе происходит накопление муцинов и мукоидов, называемых также слизистыми или слизеподобными веществами. В связи с этим при нарушении обмена гликопротеидов говорят о слизистой дистрофии. Микроскопическое исследование. Оно позволяет выявить не только усиленное слизеобразование, но и изменения физико-химических свойств слизи. Многие секретирующие клетки погибают и десквамируются, выводные протоки желез обтурируются слизью, что ведет к развитию кист. Нередко в этих случаях присоединяется воспаление. Слизь может закрывать просветы бронхов, следствием чего является возникновение ателектазов и очагов пневмонии. Иногда в железистых структурах накапливается не истинная слизь, а слизеподобные вещества (псевдомуцины). Эти вещества могут уплотняться и принимать характер коллоида. Тогда говорят о коллоидной дистрофии, которая наблюдается, например, при коллоидном зобе. Причины слизистой дистрофии разнообразны, но чаще всего это воспаление слизистых оболочек в результате действия различных патогенных раздражителей (катаральное воспаление).
Слизистая дистрофия лежит в основе наследственного системного заболевания, называемого муковисцидозом, для которого характерно изменение качества слизи, выделяемой эпителием слизистых желез: слизь становится густой и вязкой, она плохо выводится, что обусловливает развитие ретенционных кист и склероза (кистозный фиброз). Поражаются экзокринный аппарат поджелудочной железы, железы бронхиального дерева, пищеварительного и мочевого тракта, желчных путей, потовые и слезные железы. Исход в значительной мере определяется степенью и длительностью повышенного слизеобразования. В одних случаях регенерация эпителия приводит к полному восстановлению слизистой оболочки, в других -- она атрофируется, в дальнейшем склерозируется, что, естественно, отражается на функции органа.
1.8 Мукополисахаридозы и муколипидозы
К этой группе относятся болезни накопления, развивающиеся при мутациях ферментов, обеспечивающих метаболизм сфинголипидов, гликолипидов и мукополисахаридов. Существует множество нозологических единиц, в значительной степени перекрывающих друг друга. Классификация заболеваний запутана. Для больных с многими страданиями рассматриваемой группы характерен фенотип гаргоилизма. Гаргоилизм. У больных уже к концу 1-го года жизни отмечается низкий рост, характерный фенотип -- массивный череп, втянутый корень носа, сросшиеся брови, толстые губы, большой язык, короткая шея. Одним из симптомов является своеобразное выражение лица -- «лицо, выплёвывающее воду». Наблюдаются помутнение роговицы, гепато- и спленомегалия, склонность к пупочным и паховым грыжам, скелетные аномалии вследствие нарушения периостального и энхондрального окостенения (фиксированный кифоз в области торакально-поясничного сочленения, ограниченная подвижность суставов, искривления длинных трубчатых костей), отсталость в психическом развитии и иногда тугоухость (вплоть до глухоты), низкий хриплый голос. При клинико-лабораторном обследовании характерным признаком заболевания является темно-синяя зернистость лейкоцитов и лимфоцитов периферической крови. В поражённых ганглиозных клетках откладывается трудно растворимый гликолипопротеин, тогда как в клетках миокарда, печени, селезёнки, хрящевой и фиброзной ткани, а также в эндотелиоцитах интимы кровеносных сосудов -- гликопротеины и гликолипиды. Дети погибают обычно до 12-летнего возраста от сердечно-сосудистой недостаточности или вторичной инфекции.
Лекция 2. Общая нозология
Патофизиология (от греч. pathos - болезнь, страдание и logos - учение, наука) - наука, которая изучает общие закономерности возникновения, развития и исхода заболеваний. Это наука о жизнедеятельности больного организма.
Задачи патофизиологии:
1)изучение проблем общей патологии - создание общего учения о болезни или общая нозология,
2)изучение причин болезни и создание общего учения о причинности в патологии - то есть законов, управляющих причинами - это общая этиология,
3)изучение общих механизмов возникновения, развития и прекращения болезней и патологических процессов - общий патогенез - это главная задача,
4)изучение типовых патологических процессов - фундамент болезни (их около 20 в различных комбинациях),
5)изучение общих закономерностей нарушения и восстановления деятельности отдельных физиологических систем и органов - частная патофизиология, где наиболее важным является изучение показателей недостаточности системы или органа,
6)обоснование новых методов лечения - это создание учения о принципах патогенетической терапии - то есть воздействия на механизмы развития болезни на основе знаний патогенеза.
Патологическая физиология связана с другими науками:
1.Связь с науками, которые изучают свойства факторов окружающей среды, способных вызвать болезни (физика, химия, биология, микробиология) - эти науки, дают сведения, необходимые для изучения этиологии.
2.Связь с науками, изучающими свойства организма и его жизнедеятельность (цитология, эмбриология, гистология, нормальная физиология, генетика, биохимия) - эти науки дают основу для изучения патогенеза.
3.Связь с науками, изучающими болезнь, они вместе патофизиологией создают целостную картину болезни (патанатомия, фармакология).
4.Связь с клиническими науками, патофизиология определяет основные этиологические и патогенетические принципы профилактики, диагностики и лечения болезней.
Основной метод исследования - эксперимент. Особенность патофизиологического эксперимента - воспроизведение на лабораторных животных экспериментальных моделей болезней с целью установления механизмов их возникновения, развития и исхода у человека.
Виды эксперимента: острый (оперативное вмешательство в организм животного - позволяет изучать острые расстройства - шок, коллапс, острая недостаточность дыхания, почек) и хронический (используют для моделирования хронических заболеваний - сахарный диабет, атеросклероз).
Этапы патофизиологического эксперимента:
1.Планирование эксперимента (1.создание рабочей гипотезы, 2.постановка цели и задач исследования, 3.определение объекта эксперимента - вид, пол, возраст животных, 4.схема эксперимента - частота патогенных влияний, доза, продолжительность, 5.определение объема исследований - количество опытов, методики).
2.Моделирование патологического процесса
Метод удаления - печени (печеночная недостаточность), почек (почечная недостаточность), поджелудочной железы (сахарный диабет).
Метод разрушения - используют хирургические воздействия (перерезание нервов), химические факторы (яды), физические (ионизирующая радиация, температура окружающей среды).
Метод перегрузок - введение больших количеств холестерина - моделирование атеросклероза.
Метод создания дефицита - дефицит кислорода (гипоксия), витаминов (авитаминоз).
Метод нарушения нервной и гормональной регуляции - раздражение или повреждение нервных структур, введение больших количеств гормонов.
Метод создания преград - перевязывание кровеносных сосудов (инфаркт), общий желчный проток (механическую желтуху).
Метод экзогенной индукции - действие на организм факторами, которые являются специфическими возбудителями болезни (инфекционные болезни, аллергию, злокачественные опухоли).
3.Получение информации об изменениях в организме экспериментального животного.
-морфологические - макро- и микроскопическое исследование,
-функциональные - электрокардиография, энцефалография, запись спирограммы,
-биохимические
-иммунологические
4.Анализ и синтез полученных результатов.
-математический,
-сравнительный метод анализа - филогенетический (моделирование и сравнение патологических процессов у животных разного вида эволюционного развития), онтогенетический (изучение и сравнение патологических процессов у животных на разных этапах их индивидуального развития), топографо-анатомический (сравнение патологических процессов в разных органах).
Преимущества экспериментального метода изучения болезни:
а) в эксперименте всегда есть возможность наблюдать и изучать болезнь от самого ее начала до ее завершения, что не возможно в клинике,
б) благодаря получению модели в эксперименте неограниченные возможности изучения причин, поскольку есть жесткая связь между действующим причинным фактором и развивающейся патологией, так как моделирование и есть изучение причины,
в) в эксперименте есть возможность изучения механизмов начальных, самых ранних фаз развития заболевания, скрытых от клинического наблюдения, а ведь именно они являются пусковыми механизмами,
г) в эксперименте есть неограниченные возможности изучения патогенеза - самых глубинных, интимных механизмов патологии, ведь можно применить любые приемы,
д) эксперимент дает неограниченные возможности научного обоснования разработки новых методов лечения.
Трудности и недостатки экспериментального метода:
1.выбор животного для экспериментального исследования, в каждом случае следует учитывать их видовые и родовые особенности. Так, например, при изучении особенностей влияния на организм различного рода токсических веществ, предпочтительнее проводить опыты на животных, метаболизм которых наиболее близок метаболизму человека, - в первую очередь это свиньи, затем собаки и крысы. Для изучения иммуногенности анатоксинов рекомендуются мыши. Аллергические реакции, анафилактический шок лучше всего моделировать на морских свинках, опухоли - на мышах, неврозы - на собаках. Инфекционные процессы нужно изучать на кроликах и мышах, но не на крысах, которых отличает повышенная функциональная активность надпочечников, обусловливающая их высокую естественную (в том числе противоинфекционную) резистентность.
2.При моделировании на живых объектах всегда нужно помнить, что организм человека намного сложнее даже самых высокоорганизованных животных и находится под постоянным влиянием социальных факторов, в связи, с чем получить «полную копию» болезни человека практически невозможно.
3.труден перенос экспериментальных данных в клинику,
4.трудно создать модель болезни, нельзя смоделировать на животных гипертоническую болезнь человека в полном объеме, но можно воспроизвести наиболее важный ее симптом - стойкое повышение кровяного давления (гипертонию). Необходимо также знать, что ряд заболеваний человека (психические болезни, подагру, бронхиальную астму, корь, скарлатину и др.) воспроизвести в эксперименте вообще невозможно.
В патофизиологию как учебную дисциплину входят 3 основных раздела:
1. Нозология (от греч. nosos - болезни и logos - учение) - учение о сущности болезни, формирующее основные понятия и категории патологии, включает общую этиологию (учение о причинах и условиях возникновения болезней) и общий патогенез (учение о механизмах возникновения, развития и исхода болезней, а также о механизмах устойчивости организма к действию патогенных факторов).
2.Типовые патологические процессы - это процессы, которые развиваются по одинаковым законам, независимо от причины, локализации, индивидуальных особенностей организма (воспаление, отек, лихорадка, аллергия, гипоксия, опухолевый рост, нарушения обмена веществ и др.).
3.Патофизиология органов и систем (частная патофизиология).
морфогенез дистрофия нозология жировой
2.1 Здоровье и болезнь
Здоровье и болезнь представляют собой две основные формы жизни. Состояния здоровья и болезни могут много раз сменять друг друга на протяжении индивидуальной жизни человека.
Норма - более общее понятие, определяющее многие процессы и явления для живых организмов. Оно выражает качественно особое состояние живого организма как целого в каждый отдельный момент его существования. Норма (от греч. norma - мерило, способ познания) является термином, весьма близким к понятию «здоровье», но не исчерпывающим данный термин вполне. В практической медицине очень часто пользуются выражениями «нормальная температура», «нормальная электрокардиограмма», «нормальные вес и рост», «нормальный состав крови» и т.п. В данном случае имеется в виду норма как статистическая средняя величина из данных измерений у большого количества здоровых людей (среднестатистическая норма).
Среднестатистическая норма учитывает расовые, возрастные и половые особенности, но она не может учитывать все возможности генотипа.
Можно быть здоровым по основным показателям строения и функций организма, но иметь отклонения от нормы по некоторым отдельным признакам, например росту, умственным способностям, особенностям поведения в обществе и др. С другой стороны, можно быть больным и в то же время обладать выдающимися умственными способностями. Все это говорит об относительности терминов «норма» и «здоровье» и некоторой условности масштабов их оценки для каждого отдельного человека.
По определению Г.И. Царегородцева, «норма - это гармоническая совокупность и соотношение структурно-функциональных данных организма, адекватных окружающей его среде и обеспечивающих организму оптимальную жизнедеятельность».
Подобные документы
Основные причины дистрофии, анализ механизма ее развития. Классификация заболевания в зависимости от локализации, распространенности, причины и вида нарушенного обмена. Описание ключевых симптомов мезенхимальных белковых, жировых и углеводных дистрофий.
презентация [1,1 M], добавлен 02.05.2015Рассмотрение структур, обеспечивающих транспортную систему трофики. Причины возникновения стромально-сосудистых дистрофий. Механизмы развития стромально-сосудистых дистрофий. Изменения основного вещества и коллагеновых волокон при мукоидном набухании.
презентация [2,7 M], добавлен 07.11.2022Определение понятия и сущности жировых дистрофий. Рассмотрение функции липидов в организме. Изучение липидоза, ожирения и истощения. Клиническая картина жировой дистрофии сердца, печени и почек. Ознакомление с проявлениями болезней Гоше и Намана-Пика.
презентация [669,7 K], добавлен 18.05.2014Нарушение коллагеновых волокнистых структур соединительной ткани. Причины стромально-сосудистых дистрофий. Виды белковых диспротеиноз. Механизм возникновения, клиническая картина и симптомы артрита, ревматизма, волчанки, дерматомиозита, склеродермии.
презентация [1,1 M], добавлен 07.01.2014Белковая дистрофия (диспротеинозы) — заболевания, связанные с нарушением обмена белка. Относится к одной из трех видов дистрофий (к паренхиматозной дистрофии). Основные проявления дефицита белка. Интегральный показатель общего уровня белкового обмена.
презентация [322,3 K], добавлен 17.06.2015Причины, способные вызвать повреждение, его характер и степень. Понятие и морфологическая сущность дистрофий, непосредственные причины их развития. Механизм повреждений и общая характеристика паренхиматозной, гидропической, роговой, жировой дистрофии.
лекция [41,6 K], добавлен 24.05.2009Понятие, общая характеристика, эпидемиология, этиология, патогенез, клиническая классификация, клиника, диагностика, лечение и профилактика прогрессирующих мышечных дистрофий. Сущность миодистрофии Дюшенна, генотерапевтические подходы к ее лечению.
курсовая работа [1,2 M], добавлен 04.04.2010Методы амбулаторного обследования и виды нозологии. Особенности клинического развития стоматологических заболеваний у детей. Практические рекомендации, использующиеся в стоматологической практике детского приема. Качества, которыми должен обладать врач.
презентация [1,6 M], добавлен 03.04.2017Эпидемиология, этиология, патогенез и диагностика прогрессирующих мышечных дистрофий. Патоморфологические изменения при данном заболевании. Псевдогипертрофическая злокачественная миодистрофия Дюшенна. Миодистрофия Дрейфуса-Хогана и Роттауфа-Мортье.
презентация [653,0 K], добавлен 29.04.2015Классификация расстройств кровообращения. Морфологические изменения при венозном полнокровии. Причины нарушения течения и состояния крови. Факторы развития и риск возникновения тромбоза. Стадии морфогенеза тромба. Отличие тромбов от посмертных сгустков.
презентация [149,4 K], добавлен 17.04.2016