Антибиотики и их фармакологическое действие

Классификация антибиотиков по характеру воздействия на бактериальную клетку, направленность действия и др. Особенности группы цефалоспоринов, монобактамов, тетрациклинов, гликопептидов и тетрациклинов. Классификация противотуберкулезных химиопрепаратов.

Рубрика Медицина
Вид курсовая работа
Язык русский
Дата добавления 26.04.2016
Размер файла 46,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Классификация антибиотиков

2. Бета-лактамные антибиотики

3. Пенициллины

4. Группа цефалоспоринов

5. Группа карбапенемов

6. Группа монобактамов

7. Группа тетрациклинов

8. Группа аминогликозидов

9. Левомицетины

10. Группа гликопептидов

11. Группа линкозамидов

12. Противотуберкулезные химиопрепараты

13. Классификация противотуберкулезных препаратов Международного союза борьбы с туберкулезом

14. Полипептиды

Литература

Введение

Антибиотики -- это вещества, которые подавляют рост живых клеток, чаще всего прокариотических и простейших. Антибиотики могут быть естественными (природного) происхождения и искусственными (синтетическими и полусинтетическими).

Антибиотики природного происхождения чаще всего продуцируются актиномицетами и плесневыми грибами, но их также можно получить из бактерий (полимиксины), растений (фитонциды) и тканей животных и рыб.

Антибиотики, которые подавляют рост и размножение бактерий используются в качестве лекарственных препаратов. Широкое использование антибиотики получили и в онкологической практике, в качестве цитостатических (противоопухолевых) препаратов. При лечении заболеваний вирусной этиологии, применение антибиотиков не целесообразно, так как они не способны воздействовать на вирусы. Однако, было отмечено, что ряд антибиотиков (тетрациклины) способны воздействовать на крупные вирусы.

Антибактериальные препараты -- это синтетические препараты, не имеющие природных аналогов и оказывающие сходное с антибиотиками подавляющее влияние на рост бактерий.

Изобретение антибиотиков можно назвать революцией в медицине. Первыми антибиотиками были пенициллин и стрептомицин.

1. Классификация антибиотиков

По характеру воздействия на бактериальную клетку:

1. бактериостатические препараты (останавливают рост и размножение бактерий)

2. бактерицидные препараты (уничтожают бактерии)

По способу получения различают антибиотики:

1. природные

2. синтетические

3. полусинтетические

По направленности действия различают:

1. антибактериальные

2. противоопухолевые

3. противогрибковые

По спектру действия различают:

1. антибиотики широкого спектра действия

2. антибиотики узкого спектра действия

По химической структуре:

1. Бета-лактамные антибиотики

Пенициллины -- вырабатываются колониями плесневого грибка Penicillinum. Различают: биосинтетические (пенициллин G -- бензилпенициллин), аминопенициллины (амоксициллин, ампициллин, бекампициллин) и полусинтетические (оксациллин, метициллин, клоксациллин, диклоксациллин, флуклоксациллин) пенициллины.

Цефалоспорины -- используются по отношению к пенициллинустойчивым бактериям. Различают цефалоспорины: 1-го (цепорин, цефалексин), 2-го (цефазолин, цефамезин), 3-го (цефтриаксон, цефотаксим, цефуроксим) и 4-го (цефепим, цефпиром) поколений.

Карбапенемы -- антибиотики широкого спектра действия. Структура карбапенемов обуславливает их высокую резистентность к бета-лактамазам. К карбапенемам относятся: меропенем (меронем) и имипинем.

Монобактамы (азтреонам)

2. Макролиды -- антибиотики со сложной циклической структурой, обладающие бактериостатическим действием. По сравнению с другими антибиотиками являются менее токсичными. К ним относятся: эритромицин, олеандомицин, рокситромицин, азитромицин (сумамед), кларитромицин и др. Также к макролидам относятся: азалиды и кетолиды.

3. Тетрациклины -- используются для лечения инфекций дыхательных и мочевыводящих путей, лечения тяжелых инфекций типа сибирской язвы, туляремии, бруцеллёза. Обладает бактериостатическим действием. Относятся к классу поликетидов. Среди них различают: природные (тетрациклин, окситетрациклин) и полусинтетические (метациклин, хлортетрин, доксициклин) тетрациклины.

4. Аминогликозиды -- препараты данной группы антибиотиков высокотоксичные. Используются для лечения тяжелых инфекций типа заражения крови или перитонитов. Обладает бактерицидным действием. Аминогликозидыактивны в отношении к грамотрицательным аэробным бактериям. К ним относятся: стрептомицин, гентамицин, канамицин, неомицин, амикацин и др.

5. Левомицетины -- При использовании антибиотиков данной группы, существует риск возникновения серьезных осложнений -- поражении костного мозга, вырабатывающего клетки крови. Обладает бактериостатическим действием.

6. Гликопептидные антибиотики нарушают синтез клеточной стенки бактерий. Обладает бактерицидным действием, однако возможно бактериостатическое действие антибиотиков данной группы в отношении к энтерококкам, стрептококкам и стафилококкам. К ним относятся: ванкомицин, тейкопланин, даптомицин и др.

7. Линкозамиды обладают бактериостатическим действием. В высоких концентрациях в отношении высокочувствительных микроорганизмов могут проявлять бактерицидный эффект. К ним относятся: линкомицин и клиндамицин

8. Противотуберкулёзные препараты -- Изониазид, Фтивазид, Салюзид, Метазид, Этионамид, Протионамид.

9. Полипептиды -- антибиотики данной группы в своей молекуле содержать остатки полипептидных соединений. К ним относятся: грамицидин, полимиксины М и В, бацитрацин, колистин;

10. К полиенам относятся: амфотерицин В, нистатин, леворин, натамицин

11. Антибиотики разных групп -- Рифамицин, Ристомицина сульфат, Фузидин-натрий и др.

12. Противогрибковые препараты -- вызывают гибель клеток грибков, разрушая их мембранную структуру. Обладают литическим действием.

13. Противолепрозные препараты -- Диафенилсульфон, Солюсульфон, Диуцифон.

14. Антрациклинновые антибиотики -- к ним относятся противоопухолевые антибиотики -- доксорубицин, карминомицин, рубомицин, акларубицин.

2. Бета-лактамные антибиотики

К в-лактамным антибиотикам (в-лактамам), которые объединяет наличие в структуре в-лактамного кольца, относятся пенициллины, цефалоспорины, карбапенемы и монобактамы, обладающие бактерицидным действием. Сходство химической структуры предопределяет одинаковый механизм действия всех в-лактамов (нарушение синтеза клеточной стенки бактерий), а также перекрестную аллергию к ним у некоторых пациентов.

Пенициллины, цефалоспорины и монобактамы чувствительны к гидролизующему действию особых ферментов - в-лактамаз, вырабатываемых рядом бактерий. Карбапенемы характеризуются значительно более высокой устойчивостью к в-лактамазам.

С учетом высокой клинической эффективности и низкой токсичности в-лактамные антибиотики составляют основу антимикробной химиотерапии на современном этапе, занимая ведущее место при лечении большинства инфекций.

3. Пенициллины

Пенициллины являются первыми антимикробными препаратами, разработанными на основе биологически активных субстанций, продуцируемых микроорганизмами. Родоначальник всех пенициллинов, бензилпенициллин, был получен в начале 40-х годов XX столетия. В настоящее время группа пенициллинов включает более десяти антибиотиков, которые в зависимости от источников получения, особенностей строения и антимикробной активности подразделяются на несколько подгрупп (табл. 1)

Общие свойства:

1. Бактерицидное действие.

2. Низкая токсичность.

3. Выведение в основном через почки.

4. Широкий диапазон дозировок.

Перекрестная аллергия между всеми пенициллинами и частично цефалоспоринами и карбапенемами.

Природные пенициллины. К природным пенициллинам относится, по существу, только бензилпенициллин. Однако, исходя из спектра активности, пролонгированные (бензилпенициллинпрокаин, бензатинбензилпенициллин) ипероральные(феноксиметилпенициллин,бензатинфеноксиметилпенициллин) производные также можно отнести к этой группе. Все они разрушаются в-лактамазами, поэтому их нельзя использовать для терапии стафилококковых инфекций, так как в большинстве случаев стафилококки вырабатывают в-лактамазы.

Полусинтетические пенициллины:

Антистафилококковые пенициллины

Пенициллины с расширенным спектром активности

Антисинегнойные пенициллины

4. Группа цефалоспоринов

Цефалоспорины являются представителями в-лактамов. Считаются одним из самых обширных классов АМП. За счет своей низкой токсичности и высокой эффективности цефалоспорины используют гораздо чаще других АМП. Антимикробная активность и фармакокинетическая характеристика определяют использование того или иного антибиотика группы цефалоспоринов. Поскольку цефалоспорины и пенициллины имеют структурное сходство, препараты данных групп характеризуются одинаковым механизмом антимикробного действия, а также перекрестной аллергией у некоторых пациентов.

Существует 4 поколения цефаллоспоринов:

І поколение - цефазолин (парентеральное использование); цефалексин, цефадроксил (пероральное использование)

ІІ поколение - цефуроксим (парентерально); цефуроксим аксетил, цефаклор (перорально)

ІІІ поколение - цефотаксим, цефтриаксон, цефтазидим, цефоперазон, цефоперазон/сульбактам (парентерально); цефиксим, цефтибутен (перорально)

IV поколение - цефепим (парентерально).

Механизм действия. Действие цефалоспоринов бактрицидное. Под влияние цефалоспоринов попадают пенициллиносвязывающие белки бактерий, выполняющие роль ферментов на конечном этапе синтеза пептидогликана (биополимер - основной компонент клеточной стенки бактерий). В результате блокирования синтеза пептидогликана бактерия гибнет.

Спектр активности. Цефалоспорины от I к III поколению характеризуются тенденцией к расширению круга активности, а также повышением уровня антимикробной активности по отношению грамотрицательных микроорганизмов и понижением уровня активности по отношению грамположительных бактерий.

Общее для всех цефалоспоринов - это отсутствие весомой активности по отношению L.monocytogenes, MRSA и энтерококков. К цефалоспоринам проявляют меньшую чувствительность КНС, по сравнению с S.aureus.

Цефалоспорины I поколения. Имеют сходный антимикробный спектр активности со следующим отличием: действуют более сильно препараты, предназначенные для парентерального введения (цефазолин), нежели препараты для перорального приема (цефадроксил, цефалексин). Действию антибиотиков подвержены метициллиночувствительные Staphylococcus spp. и Streptococcus spp. (S.pneumoniae, S.pyogenes). Цефалоспорины І поколения отличаются меньшей антипневмококковой активности, по сравнению с аминопенициллинами и большинством цефалоспоринов последующих поколений. Цефалоспорины вообще не действуют на листерии и энтерококки, что является клинически важной особенностью данного класса антибиотиков. У цефалоспоринов выявлена устойчивость к действию стафилококковых в-лактамаз, но несмотря на это у отдельных штаммов (гиперпродуцентов этих ферментов), может проявляться к ним умеренная чувствительность. Цефалоспорины І поколения и пенициллины не активны в отношении пневмококков. У цефалоспоринов I поколения узкий спектр действия и невысокий уровень активности по отношению грамотрицательных бактерий. Их действие распространятся на Neisseria spp., однако клиническое значение данного факта ограничено. Клинически незначима активность цефалоспоринов І поколения в отношении M.сatarrhalis и H.influenzae. На M.сatarrhalis действуют природно достаточно активно, но проявляют чувствительность к гидролизу в-лактамазами, продуцирующими практически 100-% штаммов. Подвержены влиянию цефалоспоринов І поколения представители семейства Enterobacteriaceae: P.mirabilis, Salmonella spp., Shigella spp., E.coli, при чем клиническое значение отсутствует в активности по отношению шигелл и сальмонелл. Штаммы P.mirabilis и E.coli, которые провоцируют внебольничные (особенно нозокомиальные) инфекции, характеризуются широко распространенной приобретенной устойчивостью, обусловленной продукцией в-лактамаз расширенного и широкого спектра действия.

У других энтеробактерий, неферментирующих бактерий и Pseudomonas spp. выявлена резистентность.

B.fragilis и родственные микроорганизмы проявляют устойчивость, а представители ряда анаэробов - чувствительность к действию цефалоспоринов І поколения.

Цефалоспорины II поколения. Цефуроксим и цефаклор - два представителя этого поколения - отличаются между собой: имея сходный антимикробный спектр действия, у цефуроксима, по сравнению с цефаклором, выявлена большая активность по отношению Staphylococcus spp. и Streptococcus spp. Оба препарата не проявляют активность в отношении листерий, энтерококков и MRSA.

У пневмококков проявляется ПР к пенициллину и цефалоспоринам II поколения. Представители цефалоспоринов ІІ поколения отличаются более расширенным спектром воздействия на грамотрицательные микроорганизмы, чем цефалоспорины І поколения. Как цефуроксим, так и цефаклор проявляют активность по отношению Neisseria spp., но только у действия цефуроксима на гонококки обозначена клиническая активность. На Haemophilus spp. и M. Catarrhalis влияет более сильно цефуроксим, поскольку проявляет устойчивость к гидролизу их в-лактамазами, а данные ферменты частично разрушают цефаклор. Из представителей семейства Enterobacteriaceae подвержены воздействию препаратов не только P.mirabilis, Salmonella spp., Shigella spp., E.coli, но и C.diversus, P.vulgaris, Klebsiella spp. При продукции микроорганизмами, перечисленными выше, в-лактамаз широкого спектра у них сохраняется чувствительность к цефуроксиму. У цефаклора и цефуроксима есть особенность: их разрушают в-лактамазы расширенного спектра. У некоторых штаммов P.rettgeri, P.stuartii, M.morganii, Serratia spp., C.freundii, Enterobacter spp. может проявляться in vitro умеренная чувствительность к цефуроксиму, однако нет смысла использовать этот препарат при лечении инфекций, возбудителями которых являются вышеперечисленные бактерии. Действие цефалоспоринов II поколения не распространяется на анаэробы группы B.fragilis, псевдомонады и другие неферментирующие микроорганизмы.

Цефалоспорины III поколения. У цефалоспоринов III поколения наравне с общими чертами существуют и определенные особенности. Цефтриаксон и цефотаксим являются базовыми АМП данной группы и практически не отличаются друг от друга по своим антимикробным действиям. Оба препарата активно действуют на Streptococcus spp., и при этом у существенной части пневмококков, а также у зеленящихся стрептококков, проявляющих резистентность к пенициллину, сохраняется чувствительность к цефтриаксону и цефотаксиму. Действию цефотаксима и цефтриаксона подвержены S.aureus (кроме MRSA), в несколько меньшей степени - КНС. У коринебактерий (кроме C.jeikeium), как правило, проявляется чувствительность. Устойчивость проявляют B.сereus, B.antracis, L.monocytogenes, MRSA и энтерококки. Высокую активность цефтриаксон и цефотаксим демонстрируют по отношению H.influenzae, M.catarrhalis, гонококков и менингококков, включая штаммы с пониженной чувствительностью к действию пенициллина, вне зависимости от механизма устойчивости. Практически все представители семейства Enterobacteriaceae, в т.ч. микроорганизмы, которые продуцируют в-лактамазы широкого спектра, подвержены активному природному воздействию цефотаксима и цефтриаксона. E.coli и Klebsiella spp. обладают устойчивостью, чаще всего обусловленной продукцией БЛРС. Гиперпродукция хромосомных в-лактамаз класса С обычно становится причиной устойчивости P.rettgeri, P.stuartii, M.morganii, Serratia spp., C.freundii, Enterobacter spp.

Иногда активность цефотаксима и цефтриаксона in vitro проявляется по отношению определенных штаммов P.aeruginosa, др. неферментирующих микроорганизмов, а также B.fragilis, но этого не достаточно для того, чтобы их можно было применять при лечении соответствующих инфекций.

Между цефтазидимом, цефоперазон и цефотаксимом, цефтриаксоном существуют сходства по основным антимикробным свойствам. Отличительные характеристики цефтазидима и цефоперазона от цефотаксима и цефтриаксона:

- проявляют высокую чувствительность к гидролизу БЛРС;

- проявляют существенно меньшую активность по отношению стрептококков, в первую очередь S.pneumoniae;

- выраженная активность (особенно у цефтазидима) по отношению P.aeruginosa и др. неферментирующих микроорганизмов.

Отличия цефиксима и цефтибутена от цефотаксима и цефтриаксона:

- оба препарата не действуют или мало действуют на P.rettgeri, P.stuartii, M.morganii, Serratia spp., C.freundii, Enterobacter spp.;

- цефтибутен малоактивен по отношению зеленящих стрептококков и пневмококков мало подвержены действию цефтибутена;

- нет значимой активности по отношению Staphylococcus spp.

Цефалоспорины IV поколения. Между цефепимом и цефалоспоринами III поколения много общего по многим параметрам. Однако особенности химической структуры позволяют цефепиму проникать с большей уверенностью через внешнюю мембрану грамотрицательных микроорганизмов, а также иметь относительную устойчивость к гидролизу хромосомными в-лактамазами класса С. Потому вместе со своими свойствами, отличающими базовые цефалоспорины ІІІ поколения (цефтриаксон, цефотаксим), цефепим обладает следующими особенностями:

- высокая активность по отношению неферментирующих микроорганизмов и P.aeruginosa;

- повышенная устойчивость к гидролизу в-лактамаз расширенного спектра (этот факт не до конца определяет свое клиническое значение);

- влияние на следующие микроорганизмы-гиперпродуценты хромосомных в-лактамаз класса С: P.rettgeri, P.stuartii, M.morganii, Serratia spp., C.freundii, Enterobacter spp.

Ингибиторозащищенные цефалоспорины. Цефоперазон/сульбактам - единственный представитель данной группы в-лактамов. В сравнении с цефоперазоном, комбинированный препарат обладает расширенным спектром действия за счет влияния на анаэробные микроорганизмы. Также действию препарата подвержены большинство штаммов энтеробактерий, которые продуцируют в-лактамазы расширенного и широкого спектра. Антибактериальная активность сульбактама позволяет данному АМП проявлять высокую активность по отношению Acinetobacter spp.

Фармакокинетика. У пероральных цефалоспоринов установлена хорошая всасываемость в ЖКТ. Конкретный препарат отличается своей биодоступностью, варьирующей между 40-50% (у цефиксима) и 95 % (у цефаклора, цефадроксила и цефалексина). Наличие пищи может несколько замедлять всасываемость цефтибутена, цефиксима и цефаклора. Пища помогает во время всасывания цефуроксима аксетила высвобождать активный цефуроксим. При введении в/м наблюдается хорошее всасывание парентеральных цефалоспоринов. Распределение цефалоспоринов осуществляется во многих органах (кроме предстательной железы), тканях и секретах. В перитонеальной, плевральной, перикардиальной и синовиальной жидкостях, в костях, мягких тканях, коже, мышцах, печени, почках и легких отмечаются высокие концентрации. Цефоперазон и цефтриаксон создают в желчи самые высокие уровни. У цефалоспоринов, в особенности цефтазидима и цефуроксима отмечается способность хорошо проникать во внутриглазную жидкость, и при этом не создавать терапевтические уровни в задней камере глаза. Цефалоспорины ІІІ поколения (цефтазидим, цефтриаксон, цефотаксим) и ІV поколения (цефепим) обладают в наибольшей мере способностью проходить через ГЭБ, а также создавать терапевтические концентрации в СМЖ. Цефуроксим умеренно преодолевает ГЭБ исключительно в случае воспаления оболочек мозга.

У большинства цефалоспоринов (кроме цефотаксима, биотрасформирующегося с образованием активного метаболита) отсутствует способность метаболизироваться. Вывод препаратов осуществляется преимущественно через почки, при этом создавая очень высокие концентрации в моче. У цефтриаксона и цефоперазона двойной путь выведения - печенью и почками. У большинства цефалоспоринов период полувыведения от 1 до 2 часов. Цефтибутен, цефиксим отличаются более длительным периодом - 3-4 часа, у цефтриаксона он увеличивается до 8,5 часов. Благодаря этому показателю данные препараты можно принимать 1 раз в сутки. Почечная недостаточность влечет за собой коррекцию режима дозирования антибиотиков группы цефалоспоринов (кроме цефоперазона и цефтриаксона).

Цефалоспорины I поколения. В основном на сегодняшний день цефазолин применяют в качестве периоперационной профилактики в хирургии. Также его применяют при инфекциях мягких тканей и кожи.

Поскольку у цефазолина узкий спектр активности, а среди потенциальных возбудителей распространена резистентность к действию цефалоспоринов, то у рекомендаций к применению цефазолина для лечения инфекций дыхательных путей и МВП сегодня нет достаточных обоснований.

Цефалексин применяют при лечении стрептококкового тонзиллофарингита (как препарат второго ряда), а также внебольничных инфекций мягких тканей и кожи легкой и средней степени тяжести.

Цефалоспорины II поколения

Цефуроксим используется:

- при внебольничной пневмонии, требующей госпитализации;

- при внебольничных инфекциях мягких тканей и кожи;

- при инфекциях МВП (пиелонефрите средней и тяжелой степени тяжести); антибиотик цефалоспорин тетрациклин противотуберкулезный

- в качестве периоперационной профилактики в хирургии.

Цефаклор, цефуроксим аксетил используется:

- при инфекциях ВДП и НДП (внебольничной пневмонии, обострении хронического бронхита, остром синусите, ОСО);

- при внебольничных инфекциях мягких тканей и кожи легкой, средней степени тяжести;

- инфекциях МВП (остром цистите и пиелонефрите у детей, пиелонефрите у женщин в период лактации, пиелонефрите легкой и средней степени тяжести).

Цефуроксим аксетил и цефуроксим можно использовать как ступенчатую терапию.

Цефалоспорины III поколения

Цефтриаксон, цефотаксим применяют при:

- внебольничных инфекциях - острой гонореи, ОСО (цефтриаксон);

- тяжелых нозокомиальных и внебольничных инфекциях - сепсисе, менингите, генерализованном сальмонеллезе, инфекциях органов малого таза, интраабдоминальных инфекциях, тяжелых формах инфекций суставов, костей, мягких тканей и кожи, тяжелых формах инфекций МВП, инфекций НДП.

Цефоперазон, цефтазидим назначают при:

- лечении тяжелых внебольничных и нозокомиальных инфекций различной локализации в случае подтвержденного или возможного этиологического воздействия P.aeruginosa и др. неферментирующих микроорганизмов.

- лечении инфекций на фоне иммунодефицита и нейтропении (в т.ч. нейтропенической лихорадки).

Цефалоспорины ІІІ поколения могут применяться парентерально в виде монотерапии или совместно с антибиотиками др. групп.

Цефтибутен, цефиксим эффективны:

- приинфекциях МВП: остром цистите и пиелонефрите у детей, пиелонефрите у женщин в период беременности и кормления грудью, пиелонефрите легкой и средней степени тяжести;

- в роли перорального этапа ступенчатой терапии разных тяжелых нозокомиальных и внебольничных инфекций, вызванных грамотрицательными бактериями, после получения стойкого эффекта от ЛС, предназначенных для парентерального приема;

- при инфекциях ВДП и НДП (прием цефтибутена в случае возможной пневмококковой этиологии не рекомендуется).

Цефоперазон/сульбактам применяют:

- при лечении тяжелых (в основном нозокомиальных) инфекций, вызванных смешанной (аэробно-анаэробной) и полирезистентной микрофлорой - сепсиса, инфекций НДП (эмпиемы плевры, абсцессе легкого, пневмонии), осложненных инфекций МВП, интраабдоминальных инфекций малого таза;

- при инфекциях на фоне нейтропении, а также др. иммунодефицитных состояний.

Цефалоспорины IV поколения. Применяют при тяжелых, в основном нозокомиальных, инфекциях, спровоцированных полирезистентной микрофлорой:

- сепсис;

-интраабдоминальные инфекции;

-инфекции суставов, костей, кожи и мягких тканей;

-осложненныеинфекцииМВП;

- инфекции НДП (эмпиема плевры, абсцесс легкого, пневмония).

Также цефалоспорины IV поколения эффективны при лечении инфекций на фоне нейтропении, а также др. иммунодефицитных состояний.

Противопоказания

Нельзя применять при аллергических реакциях на цефалоспорины.

5. Группа карбапенемов

Карбапенемы (имипенем и меропенем) относятся к в-лактамам. По сравнению с пенициллинами и цефалоспоринами, они более устойчивы к гидролизующему действию бактериальных в-лактамаз, в том числе БЛРС, и обладают более широким спектром активности. Применяются при тяжелых инфекциях различной локализации, включая нозокомиальные, чаще как препараты резерва, но при угрожающих жизни инфекциях могут быть рассмотрены в качестве первоочередной эмпирической терапии.

Механизм действия. Карбапенемы оказывают мощное бактерицидное действие, обусловленное нарушением образования клеточной стенки бактерий. По сравнению с другими в-лактамами карбапенемы способны быстрее проникать через наружную мембрану грамотрицательных бактерий и, кроме того, оказывать в отношении них выраженный ПАЭ.

Спектр активности. Карбапенемы действуют на многие грамположительные, грамотрицательные и анаэробные микроорганизмы.

К карбапенемам чувствительны стафилококки (кроме MRSA), стрептококки, включая S.pneumoniae (по активности в отношении АРП карбапенемы уступаютванкомицину), гонококки, менингококки. Имипенем действует на E.faecalis.

Карбапенемы высокоактивны в отношении большинства грамотрицательных бактерий семейства Enterobacteriaceae (кишечная палочка, клебсиелла, протей, энтеробактер, цитробактер, ацинетобактер, морганелла), в том числе в отношении штаммов, резистентных к цефалоспоринам III-IV поколения и ингибиторозащищенным пенициллинам. Несколько ниже активность в отношении протея, серрации, H.influenzae. Большинство штаммов P.aeruginosa изначально чувствительны, но в процессе применения карбапенемов отмечается нарастание резистентности. Так, по данным многоцентрового эпидемиологического исследования, проведенного в России в 1998-1999 гг., резистентность к имипенему нозокомиальных штаммов P.aeruginosa в ОРИТ составила 18,8%.

Карбапенемы относительно слабо действуют на B.cepacia, устойчивым является S.maltophilia.

Карбапенемы высокоактивны в отношении спорообразующих (кроме C.difficile) и неспорообразующих (включая B. fragilis) анаэробов.

Вторичная устойчивость микроорганизмов (кроме P.aeruginosa) к карбапенемам развивается редко. Для устойчивых возбудителей (кроме P.aeruginosa) характерна перекрестная резистентность к имипенему и меропенему.

Фармакокинетика. Карбапенемы применяются только парентерально. Хорошо распределяются в организме, создавая терапевтические концентрации во многих тканях и секретах. При воспалении оболочек мозга проникают через ГЭБ, создавая концентрации в СМЖ, равные 15-20% уровня в плазме крови. Карбапенемы не метаболизируются, выводятся преимущественно почками в неизмененном виде, поэтому при почечной недостаточности возможно значительное замедление их элиминации.

В связи с тем, что имипенем инактивируется в почечных канальцах ферментом дегидропептидазой I и при этом не создается терапевтических концентраций в моче, он используется в комбинации с циластатином, который является селективным ингибитором дегидропептидазы I.

При проведении гемодиализа карбапенемы и циластатин быстро удаляются из крови.

Показания:

1. Тяжелые инфекции, преимущественно нозокомиальные, вызванные полирезистентной и смешанной микрофлорой;

2. Инфекции НДП (пневмония, абсцесс легкого, эмпиема плевры);

3. Осложненные инфекции МВП;

4. Интраабдоминальные инфекции;

5. Инфекции органов малого таза;

6. Сепсис;

7. Инфекции кожи и мягких тканей;

8. Инфекции костей и суставов (только имипенем);

9. Эндокардит (только имипенем);

10. Бактериальные инфекции у пациентов с нейтропенией;

11. Менингит (только меропенем).

Противопоказания. Аллергическая реакция на карбапенемы. Имипенем/циластатин нельзя применять также при аллергической реакции на циластатин.

6. Группа монобактамов

Из монобактамов, или моноциклических в-лактамов, в клинической практике применяется один антибиотик - азтреонам. Он имеет узкий спектр антибактериальной активности и используется для лечения инфекций, вызванных аэробной грамотрицательной флорой.

Механизм действия. Азтреонам обладает бактерицидным эффектом, который связан с нарушением образования клеточной стенки бактерий.

Спектр активности. Своеобразие антимикробного спектра действия азтреонама обусловлено тем, что он устойчив ко многим в-лактамазам, продуцируемым аэробной грамотрицательной флорой, и в то же время разрушается в-лактамазами стафилококков, бактероидов и БЛРС.

Клиническое значение имеет активность азтреонама в отношении многих микроорганизмов семейства Enterobacteriaceae (E.coli, энтеробактер, клебсиелла, протей, серрация, цитробактер, провиденция, морганелла) и P.aeruginosa, в том числе в отношении нозокомиальных штаммов, устойчивых к аминогликозидам,уреидопенициллинам и цефалоспоринам.

Азтреонам не действует на ацинетобактер, S.maltophilia, B.cepacia, грамположительные кокки и анаэробы.

Фармакокинетика. Азтреонам применяется только парентерально. Распределяется во многих тканях и средах организма. Проходит через ГЭБ при воспалении оболочек мозга, через плаценту и проникает в грудное молоко. Очень незначительно метаболизируется в печени, экскретируется преимущественно почками, на 60-75% в неизмененном виде. Период полувыведения при нормальной функции почек и печени составляет 1,5-2 ч, при циррозе печени может увеличиваться до 2,5-3,5 ч, при почечной недостаточности - до 6-8 ч. При проведении гемодиализа концентрация азтреонама в крови понижается на 25-60%.

Показания. Азтреонам является препаратом резерва для лечения инфекций различной локализации, вызванных аэробными грамотрицательными бактериями:

1. инфекции НДП (внебольничная и нозокомиальная пневмония);

2. интраабдоминальные инфекции;

3. инфекции органов малого таза;

4. инфекции МВП;

5. инфекции кожи, мягких тканей, костей и суставов;

6. сепсис.

Учитывая узкий антимикробный спектр действия азтреонама, при эмпирической терапии тяжелых инфекций его следует назначать в сочетании с АМП, активными в отношении грамположительных кокков (оксациллин, цефалоспорины, линкозамиды, ванкомицин) и анаэробов (метронидазол).

Противопоказания. Аллергические реакции на азтреонам в анамнезе.

7. Группа тетрациклинов

Тетрациклины являются одним из ранних классов АМП, первые тетрациклины были получены в конце 40-х годов. В настоящее время в связи с появлением большого количества резистентных к тетрациклинам микроорганизмов и многочисленными НР, которые свойственны этим препаратам, их применение ограничено. Наибольшее клиническое значение тетрациклины (природный тетрациклин и полусинтетический доксициклин) сохраняют при хламидийных инфекциях, риккетсиозах, некоторых зоонозах, тяжелой угревой сыпи.

Механизм действия. Тетрациклины обладают бактериостатическим эффектом, который связан с нарушением синтеза белка в микробной клетке.

Спектр активности. Тетрациклины считаются АМП с широким спектром антимикробной активности, однако в процессе их многолетнего использования многие бактерии приобрели к ним резистентность.

Среди грамположительных кокков наиболее чувствителен пневмококк (за исключением АРП). В то же время устойчивы более 50% штаммов S.pyogenes, более 70% нозокомиальных штаммов стафилококков и подавляющее большинство энтерококков. Из грамотрицательных кокков наиболее чувствительны менингококки иM.catarrhalis, а многие гонококки резистентны.

Тетрациклины действуют на некоторые грамположительные и грамотрицательные палочки - листерии, H.influenzae, H.ducreyi, иерсинии, кампилобактеры (включаяH.pylori), бруцеллы, бартонеллы, вибрионы (включая холерный), возбудителей паховой гранулемы, сибирской язвы, чумы, туляремии. Большинство штаммов кишечной палочки, сальмонелл, шигелл, клебсиелл, энтеробактера устойчивы.

Тетрациклины активны в отношении спирохет, лептоспир, боррелий, риккетсий, хламидий, микоплазм, актиномицетов, некоторых простейших.

Среди анаэробной флоры к тетрациклинам чувствительны клостридии (кроме C.difficile), фузобактерии, P.acnes. Большинство штаммов бактероидов устойчивы.

Фармакокинетика. При приеме внутрь тетрациклины хорошо всасываются, причем доксициклин лучше, чем тетрациклин. Биодоступность доксициклина не изменяется, а тетрациклина - в 2 раза уменьшается под влиянием пищи. Максимальные концентрации препаратов в сыворотке крови создаются через 1-3 ч после приема внутрь. При в/в введении быстро достигаются значительно более высокие концентрации в крови, чем при приеме внутрь.

Тетрациклины распределяются во многих органах и средах организма, причем доксициклин создает более высокие тканевые концентрации, чем тетрациклин. Концентрации в СМЖ составляют 10-25% уровня в сыворотке крови, концентрации в желчи в 5-20 раз выше, чем в крови. Тетрациклины обладают высокой способностью проходить через плаценту и проникать в грудное молоко.

Экскреция гидрофильного тетрациклина осуществляется преимущественно почками, поэтому при почечной недостаточности его выведение значительно нарушается. Более липофильный доксициклин выводится не только почками, но и ЖКТ, причем у пациентов с нарушением функции почек этот путь является основным. Доксициклин имеет в 2-3 раза более длительный период полувыведения по сравнению с тетрациклином. При гемодиализе тетрациклин удаляется медленно, а доксициклин не удаляется вообще.

Показания:

1. Хламидийные инфекции (пситтакоз, трахома, уретрит, простатит, цервицит).

2. Микоплазменные инфекции.

3. Боррелиозы (болезнь Лайма, возвратный тиф).

4. Риккетсиозы (Ку-лихорадка, пятнистая лихорадка Скалистых гор, сыпной тиф).

5. Бактериальные зоонозы: бруцеллез, лептоспироз, сибирская язва, чума, туляремия (в двух последних случаях - в сочетании со стрептомицином илигентамицином).

6. Инфекции НДП: обострение хронического бронхита, внебольничная пневмония.

7. Кишечные инфекции: холера, иерсиниоз.

8. Гинекологические инфекции: аднексит, сальпингоофорит (при тяжелом течении- в сочетании с в-лактамами, аминогликозидами, метронидазолом).

9. Угревая сыпь.

10. Розовые угри.

11. Раневая инфекция после укусов животных.

12. ИППП: сифилис (при аллергии к пенициллину), паховая гранулема, венерическая лимфогранулема.

13. Инфекции глаз.

14. Актиномикоз.

15. Бациллярный ангиоматоз.

16. Эрадикация H.pylori при язвенной болезни желудка и двенадцатиперстной кишки (тетрациклин в сочетании с антисекреторными ЛС, висмута субцитратом и другими АМП).

17. Профилактика тропической малярии.

Противопоказания:

- Возраст до 8 лет.

- Беременность.

- Кормление грудью.

- Тяжелая патология печени.

- Почечная недостаточность (тетрациклин).

8. Группа аминогликозидов

Аминогликозиды являются одним из ранних классов антибиотиков. Первый аминогликозид - стрептомицин был получен в 1944 г. В настоящее время выделяют три поколения аминогликозидов.

Основное клиническое значение аминогликозиды имеют при лечении нозокомиальных инфекций, вызванных аэробными грамотрицательными возбудителями, а также инфекционного эндокардита. Стрептомицин и канамицин используют при лечении туберкулеза. Неомицин как наиболее токсичный среди аминогликозидов применяется только внутрь и местно.

Аминогликозиды обладают потенциальной нефротоксичностью, ототоксичностью и могут вызывать нервно-мышечную блокаду. Однако учет факторов риска, однократное введение всей суточной дозы, короткие курсы терапии и ТЛМ могут уменьшить степень проявления НР.

Механизм действия. Аминогликозиды оказывают бактерицидное действие, которое связано с нарушением синтеза белка рибосомами. Степень антибактериальной активности аминогликозидов зависит от их максимальной (пиковой) концентрации в сыворотке крови. При совместном использовании с пенициллинами или цефалоспоринаминаблюдается синергизм в отношении некоторых грамотрицательных и грамположительных аэробных микроорганизмов.

Спектр активности. Для аминогликозидов II и III поколения характерна дозозависимая бактерицидная активность в отношении грамотрицательных микроорганизмов семействаEnterobacteriaceae (E.coli, Proteus spp., Klebsiella spp., Enterobacter spp., Serratia spp. и др.), а также неферментирующих грамотрицательных палочек (P.aeruginosa, Acinetobacter spp.). Аминогликозиды активны в отношении стафилококков, кроме MRSA. Стрептомицин и канамицин действуют на M.tuberculosis, в то время как амикацин более активен в отношении M.avium и других атипичных микобактерий. Стрептомицин и гентамицин действуют на энтерококки. Стрептомицин активен против возбудителей чумы, туляремии, бруцеллеза.

Аминогликозиды неактивны в отношении S.pneumoniae, S.maltophilia, B.cepacia, анаэробов (Bacteroides spp., Clostridium spp. и др.). Более того, резистентностьS.pneumoniae, S.maltophilia и B.cepacia к аминогликозидам может быть использована при идентификации этих микроорганизмов.

Несмотря на то, что аминогликозиды in vitro активны в отношении гемофил, шигелл, сальмонелл, легионелл, клиническая эффективность при лечении инфекций, вызванных этими возбудителями, не была установлена.

Фармакокинетика. При приеме внутрь аминогликозиды практически не всасываются, поэтому применяются парентерально (кроме неомицина). После в/м введения всасываются быстро и полностью. Пиковые концентрации развиваются через 30 мин после окончания в/в инфузии и через 0,5-1,5 ч после в/м введения.

Пиковые концентрации аминогликозидов варьируют у различных пациентов, поскольку зависят от объема распределения. Объем распределения, в свою очередь, зависит от массы тела, объема жидкости и жировой ткани, состояния пациента. Например, у пациентов с обширными ожогами, асцитом объем распределения аминогликозидов повышен. Наоборот, при дегидратации или мышечной дистрофии он уменьшается.

Аминогликозиды распределяются во внеклеточной жидкости, включая сыворотку крови, экссудат абсцессов, асцитическую, перикардиальную, плевральную, синовиальную, лимфатическую и перитонеальную жидкости. Способны создавать высокие концентрации в органах с хорошим кровоснабжением: печени, легких, почках (где они накапливаются в корковом веществе). Низкие концентрации отмечаются в мокроте, бронхиальном секрете, желчи, грудном молоке. Аминогликозиды плохо проходят через ГЭБ. При воспалении мозговых оболочек проницаемость несколько увеличивается. У новорожденных в СМЖ достигаются более высокие концентрации, чем у взрослых.

Аминогликозиды не метаболизируются, выводятся почками путем клубочковой фильтрации в неизмененном виде, создавая высокие концентрации в моче. Скорость экскреции зависит от возраста, функции почек и сопутствующей патологии пациента. У больных с лихорадкой она может увеличиваться, при понижении функции почек значительно замедляется. У людей пожилого возраста в результате уменьшения клубочковой фильтрации экскреция также может замедляться. Период полувыведения всех аминогликозидов у взрослых с нормальной функцией почек составляет 2-4 ч, у новорожденных - 5-8 ч, у детей - 2,5-4 ч. При почечной недостаточности период полувыведения может возрастать до 70 ч и более.

Показания:

1. Эмпирическая терапия (в большинстве случаев назначают в сочетании с в-лактамами, гликопептидами или антианаэробными препаратами, в зависимости от предполагаемых возбудителей):

Сепсис неясной этиологии.

Инфекционный эндокардит.

Посттравматические и послеоперационные менингиты.

Лихорадка у пациентов с нейтропенией.

Нозокомиальная пневмония (включая вентиляционную).

Пиелонефрит.

Интраабдоминальные инфекции.

Инфекции органов малого таза.

Диабетическая стопа.

Послеоперационные или посттравматические остеомиелиты.

Септический артрит.

Местная терапия:

Инфекции глаз - бактериальный конъюнктивит и кератит.

2. Специфическая терапия:

Чума (стрептомицин).

Туляремия (стрептомицин, гентамицин).

Бруцеллез (стрептомицин).

Туберкулез (стрептомицин, канамицин).

Антибиотикопрофилактика:

Деконтаминация кишечника перед плановыми операциями на толстой кишке (неомицин или канамицин в сочетании с эритромицином).

Аминогликозиды нельзя использовать для лечения внебольничной пневмонии как в амбулаторных, так и в стационарных условиях. Это связано с отсутствием активности этой группы антибиотиков в отношении основного возбудителя - пневмококка. При терапии нозокомиальной пневмонии аминогликозиды назначают парентерально. Эндотрахеальное введение аминогликозидов ввиду непредсказуемой фармакокинетики не приводит к повышению клинической эффективности.

Ошибочным является назначение аминогликозидов для терапии шигеллезов и сальмонеллезов (как внутрь, так и парентерально), поскольку они клинически неэффективны в отношении возбудителей, локализованных внутриклеточно.

Аминогликозиды не рекомендуется использовать для монотерапии стафилококковых инфекций, так как существуют другие эффективные, но менее токсичные антистафилококковые препараты.

Аминогликозиды не следует применять для лечения неосложненных инфекций МВП, за исключением случаев, когда возбудитель устойчив к другим, менее токсичным антибиотикам.

Аминогликозиды также не следует использовать для местного применения при лечении инфекций кожи ввиду быстрого формирования резистентности у микроорганизмов.

Необходимо избегать использования аминогликозидов для проточного дренирования и ирригации брюшной полости из-за их выраженной токсичности.

Правила дозирования аминогликозидов. У взрослых пациентов могут осуществляться два режима назначения аминогликозидов: традиционный, когда их вводят 2-3 раза в сутки (например, стрептомицин, канамицин и амикацин - 2 раза; гентамицин, тобрамицин и нетилмицин - 2-3 раза), и однократное введение всей суточной дозы.

Однократное введение всей суточной дозы аминогликозида позволяет оптимизировать терапию препаратами данной группы. Многочисленные клинические испытания показали, что эффективность лечения при однократном режиме назначения аминогликозидов такая же, как и при традиционном, а нефротоксичность выражена в меньшей степени. К тому же при однократном введении суточной дозы уменьшаются экономические затраты. Однако такой режим назначения аминогликозидов не должен использоваться при лечении инфекционного эндокардита.

На выбор дозы аминогликозидов оказывают влияние такие факторы, как масса тела пациента, локализация и тяжесть инфекции, функция почек.

При парентеральном введении дозы всех аминогликозидов должны рассчитываться на килограмм массы тела. Учитывая, что аминогликозиды плохо распределяются в жировой ткани, у пациентов с массой тела, превышающей идеальную более чем на 25%, должна быть проведена коррекция дозы. При этом рассчитанную на фактическую массу тела суточную дозу следует эмпирически снизить на 25%. В то же время у истощенных пациентов доза увеличивается на 25%.

При менингите, сепсисе, пневмонии и других тяжелых инфекциях назначают максимальные дозы аминогликозидов, при инфекциях МВП - минимальные или средние. Максимальные дозы не следует назначать людям пожилого возраста.

У пациентов с почечной недостаточностью дозы аминогликозидов обязательно должны понижаться. Это достигается либо уменьшением разовой дозы, либо увеличением интервалов между введениями.

Терапевтический лекарственный мониторинг. Поскольку фармакокинетика аминогликозидов нестабильна и зависит от целого ряда причин, для достижения максимального клинического эффекта при одновременном уменьшением риска развития НР проводят ТЛМ. При этом определяют пиковые и остаточные концентрации аминогликозидов в сыворотке крови. Пиковые концентрации (через 60 мин после в/м или через 15-30 мин после окончания в/в введения), от которых зависит эффективность терапии, при обычном режиме дозирования должны составлять для гентамицина, тобрамицина и нетилмицина не менее 6-10 мкг/мл, для канамицина и амикацина - не менее 20-30 мкг/мл. Остаточные концентрации (перед очередным введением), которые свидетельствуют о степени кумуляции аминогликозидов и позволяют контролировать безопасность терапии, для гентамицина, тобрамицина и нетилмицина должны быть менее 2 мкг/мл, для канамицина и амикацина - менее 10 мкг/мл. Проведение ТЛМ прежде всего необходимо у пациентов с тяжелыми инфекциями и при наличии других факторов риска токсического действия аминогликозидов. При назначении суточной дозы в виде однократного введения обычно контролируют остаточную концентрацию аминогликозидов.

Противопоказания: Аллергические реакции на аминогликозиды.

9. Левомицетины

Левомицетины - антибиотики с широким кругом действия. К группе левомицетинов относят Левомицетин и Синтомицин. Первый природный антибиотик-левомицетин было получено из культуры лучистого грибка Streptomyces venezualae в 1947 году, а в 1949-м установлено химическое строение. В СССР данный антибиотик получил название «левомицетин» в связи с тем, что является левовращающим изомером. В отношении бактерий не эффективен правовращающий изомер. Антибиотик данной группы, полученный синтетическим путем в 1950 году, был назван «Синтомицином». В состав синтомицина вошла смесь левовращающих и правовращающих изомеров, из-за чего и действие синтомицина слабее в 2 раза, по сравнению с левомицетином. Синтомицин применяется исключительно наружно.

Механизм действия. Левомицетины характеризуются бактеристатическим действием, а конкретно нарушают синтез белка, фиксируются на рибосомах, что приводит к угнетению функции размножения микробных клеток. Это же свойство в костном мозге становится причиной остановки образования эритроцитов и лейкоцитов (может привести к анемии и лейкопении), а также угнетения кроветворения. У изомеров существует способность оказывать противоположное действие на ЦНС: левовращающий изомер угнетает центральную нервную систему, а правовращающий - умеренно ее возбуждает.

Круг активности. Антибиотики-левомицетины проявляют активность по отношению многих грамотрицательных и грамположительных бактерий; вирусов: Chlamydia psittaci, Сhlamydia trachomatis; Spirochaetales, Rickettsiae; штаммов бактерий, не поддающихся действию пенициллина, стрептомицина, сульфаниламидов. Незначительное действие оказывают на кислотоустойчивые бактерии (возбудителей туберкулеза, некоторых сапрофитов, проказы), Protozoa, Clostridium, Pseudomonas aeruginosa. Развитие лекарственной резистентности к антибиотикам данной группы проходит относительно медленно. Левомицетины не способны вызывать перекрестную устойчивость к другим химиотерапевтическим ЛС.

Показания. Левомицетины используют при лечении трахомы, гонореи, различного вида пневмоний, менингита, коклюша, риккетсиозов, хламидиозов, туляремии, бруцеллеза, сальмонеллеза, дизентерии, паратифов, брюшного тифа и т.д.

10. Группа гликопептидов

К гликопептидам относятся природные антибиотики - ванкомицин и тейкопланин. Ванкомицин применяется в клинической практике с 1958 г., тейкопланин - с середины 80-х годов. В последнее время интерес к гликопептидам возрос в связи с увеличением частоты нозокомиальных инфекций, вызванных грамположительными микроорганизмами. В настоящее время гликопептиды являются препаратами выбора при инфекциях, вызванных MRSA, MRSE, а также энтерококками, резистентными к ампициллину и аминогликозидам.

Механизм действия. Гликопептиды нарушают синтез клеточной стенки бактерий. Оказывают бактерицидное действие, однако в отношении энтерококков, некоторых стрептококков иКНС действуют бактериостатически.

Спектр активности. Гликопептиды активны в отношении грамположительных аэробных и анаэробных микроорганизмов: стафилококков (включая MRSA, MRSE), стрептококков, пневмококков (включая АРП), энтерококков, пептострептококков, листерий, коринебактерий, клостридий (включая C.difficile). Грамотрицательные микроорганизмы устойчивы к гликопептидам.

По спектру антимикробной активности ванкомицин и тейкопланин сходны, однако имеются некоторые различия в уровне природной активности и приобретенной резистентности. Тейкопланин in vitro более активен в отношении S.aureus (в том числе MRSA), стрептококков (включая S.pneumoniae) и энтерококков. Ванкомицин in vitro более активен в отношении КНС.

В последние годы в нескольких странах выделены S.aureus с пониженной чувствительностью к ванкомицину или к ванкомицину и тейкопланину.

Для энтерококков характерно более быстрое развитие резистентности к ванкомицину: в настоящее время в ОРИТ в США уровень резистентности E.faecium к ванкомицину составляет около 10% и более. При этом клинически важно, что некоторые VRE сохраняют чувствительность к тейкопланину.

Фармакокинетика. Гликопептиды практически не всасываются при приеме внутрь. Биодоступность тейкопланина при в/м введении составляет около 90%.

Гликопептиды не метаболизируются, выводятся почками в неизмененном виде, поэтому при почечной недостаточности требуется коррекция доз. Препараты не удаляются при гемодиализе.

Период полувыведения ванкомицина при нормальной функции почек составляет 6-8 ч, тейкопланина - от 40 ч до 70 ч. Длительный период полувыведения тейкопланина дает возможность назначать его один раз в сутки.

Показания:

1. Инфекции, вызванные MRSA, MRSE.

2. Стафилококковые инфекции при аллергии к в-лактамам.

3. Тяжелые инфекции, вызванные Enterococcus spp., C.jeikeium, B.cereus, F.meningosepticum.

4. Инфекционный эндокардит, вызванный зеленящими стрептококками и S.bovis, при аллергии к в-лактамам.

5. Инфекционный эндокардит, вызванный E.faecalis (в комбинации с гентамицином).

6. Менингит, вызванный S.pneumoniae, резистентным к пенициллинам.

Эмпирическая терапия угрожающих жизни инфекций при подозрении на стафилококковую этиологию:

- инфекционный эндокардит трикуспидального клапана или протезированного клапана (в сочетании с гентамицином);


Подобные документы

  • Антибиотики из группы циклических полипептидов. Препараты группы пенициллинов, цефалоспоринов, макролидов, тетрациклинов, аминогликозидов и полимиксинов. Принципы комбинированного применения антибиотиков, осложнения, возникающие при лечении ими.

    реферат [33,3 K], добавлен 08.04.2012

  • История открытия пенициллина. Классификация антибиотиков, их фармакологические, химиотерапевтические свойства. Технологический процесс получения антибиотиков. Устойчивость бактерий к антибиотикам. Механизм действия левомицетина, макролидов, тетрациклинов.

    реферат [54,1 K], добавлен 24.04.2013

  • Классификация антибиотиков по механизму действия на клеточную стенку. Изучение ингибиторов функций цитоплазматической мембраны. Рассмотрение антимикробного спектра тетрациклинов. Тенденции развития резистентности микроорганизмов в настоящее время в мире.

    реферат [1,9 M], добавлен 08.02.2012

  • История открытия антибиотиков. Механизм действия антибиотиков. Избирательное действие антибиотиков. Резистентность по отношению к антибиотикам. Основные группы известных на сегодняшний день антибиотиков. Основные побочные реакции на прием антибиотиков.

    доклад [30,0 K], добавлен 03.11.2009

  • Изучение лекарственных препаратов под общим названием "антибиотики". Антибактериальные химиотерапевтические средства. История открытия антибиотиков, механизм их действия и классификация. Особенности применения антибиотиков и их побочные действия.

    курсовая работа [51,4 K], добавлен 16.10.2014

  • Принципы рациональной антибиотикотерапии. Группы антибиотиков: пенициллины, тетрациклины, цефалоспорины, макролиды и фторхинолоны. Косвенное действие полусинтетических пенициллинов. Антимикробный спектр действия цефалоспоринов, основные осложнения.

    презентация [2,0 M], добавлен 29.03.2015

  • Особенности использования антибактериальных средств для лечения и профилактики инфекционных заболеваний, вызванных бактериями. Классификация антибиотиков по спектру противомикробного действия. Описания отрицательных последствий применения антибиотиков.

    презентация [5,6 M], добавлен 24.02.2013

  • Первооткрыватели антибиотиков. Распространение антибиотиков в природе. Роль антибиотиков в естественных микробиоценозах. Действие бактериостатических антибиотиков. Устойчивость бактерий к антибиотикам. Физические свойства антибиотиков, их классификация.

    презентация [3,0 M], добавлен 18.03.2012

  • Классификация антибиотиков по спектру биологического действия. Свойства бета-лактамных антибиотиков. Бактериальные осложнения при ВИЧ-инфекции, их лечение. Природные соединения, обладающие высокой антибактериальной активностью и широким спектром действия.

    реферат [23,9 K], добавлен 20.01.2010

  • Химические соединения биологического происхождения, оказывающие повреждающее или губительное действие на микроорганизмы в очень низких концентрациях по принципу антибиоза. Источники получения антибиотиков и направленность их фармакологического действия.

    презентация [1,1 M], добавлен 05.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.