Физиология возбудимых тканей

Структурно-функциональная организация клеточной мембраны. Электрические явления в тканях. Раздражение возбудимых тканей, синаптическая передача возбуждения. Тепловые явления, сопровождающие мышечное сокращение. Физиологические основы физической культуры.

Рубрика Медицина
Вид методичка
Язык русский
Дата добавления 27.05.2015
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таблица 2. Сравнительная характеристика локального потенциала и ПД

Свойство

Локальный потенциал

Потенциал действия

Распространение

Распространяется на 1-2 мм с затуханием (декрементом)

Распространяется без затухания на большие расстояния по всей длине нервного волокна, в частности с учетом длины конечности

Зависимость величины от силы стимула

Возрастает с увеличением силы стимула, т.е. подчинятся закону «силы»

Не зависит (подчиняется закону «все или ничего»)

Явление суммации

Суммируется - возрастает при повторных частых подпороговых раздражениях

Не суммируется

Амплитуда

10-40 мВ

80-130 мВ

Возбудимость ткани при возникновении потенциала

Увеличивается

Уменьшается вплоть до полной невозбудимости (рефрактерность)

Повышение возбудимости клетки во время локального потенциала объясняется тем, что клеточная мембрана оказывается частично деполяризованной. Если Екр остается на постоянном уровне, для достижения критического уровня деполяризации во время локального потенциала нужен значительно меньшей силы раздражитель. Амплитуда ПД не зависит от силы раздражения, потому что он возникает вследствие регенеративного процесса.

Состояние проницаемости клеточной мембраны можно определить по скорости движения ионов в клетку или из клетки согласно концентрационному градиенту, т.е. по проводимости ионов Na+ и К+ (gNa и gK), но при условии, что влияние электрического градиента на движение ионов исключено или оно постоянное. Последнее условие выполняется с помощью методики фиксации напряжения (voltage-clamp) на постоянном уровне. Ток Na+ в клетку при деполяризации быстро нарастает и начинает падать уже через 0,5 мс. Ток К , напротив, нарастает медленно и приближается к максимальной величине к тому времени, когда ток Na+ возвращается к 0, причем выход К+ из клетки при всех уровнях деполяризации возникает с задержкой, возрастает с увеличением деполяризации мембраны, достигает максимума примерно через 1,5 мс, после чего начинает падать и к 3 мс приближается к исходному уровню.

В обычных условиях мембранные токи при данных концентрационных градиентах зависят не только от проницаемости клеточной мембраны, но и от мембранного потенциала, точнее от электрического градиента. Ионные токи могут точно характеризовать изменения gNa и gK только при постоянном мембранном потенциале. В состоянии покоя соотношение констант проводимости ионов К+: Na+: Сl- равно 1 : 0,04 : 0,45, а во время фазы деполяризации и восходящей части фазы инверсии ПД -- 1 : 20 : 0,45.

Как видно, проницаемость мембраны для К+ и Сl- во время фазы деполяризации и восходящей фазы инверсии не изменяется. Это хорошо укладывается в общепринятые представления о механизме возникновения ПД: Na+ движется в этот период внутрь клетки; затем проницаемость клеточной мембраны повышается для К+, что и определяет причину реполяризации -- выход К+ из клетки. Проницаемость клеточной мембраны для ионов Сl- во время развития потенциала действия не изменяется. Естественно, ион Сl- в возникновении ПД участия не принимает.

1.2.5 Изменения возбудимости клетки во время ее возбуждения

Возбудимость клетки во время ее возбуждения быстро и сильно изменяется. Различают несколько фаз изменения возбудимости, каждая из которых строго соответствует определенной фазе ПД и так же, как и фазы ПД, определяется состоянием проницаемости клеточной мембраны для ионов. Схематично эти фазы представлены на рис.3.

1. Кратковременное повышение возбудимости в начале развития ПД, когда уже возникла некоторая деполяризация клеточной мембраны. Если деполяризация не достигает критической величины, то регистрируется локальный потенциал. Если же деполяризация достигает Екр., то развивается ПД. Возбудимость повышена потому, что клетка частично деполяризована, мембранный потенциал приближается к критическому уровню и, когда деполяризация достигает примерно 50 % пороговой величины, начинают открываться потенциалчувствительные быстрые Na-каналы. При этом достаточно небольшого увеличения силы раздражителя, чтобы деполяризация достигла Екр., при которой возникает ПД.

2. Абсолютная рефрактерная фаза -- это полная невозбудимость клетки (возбудимость равна нулю), она соответствует пику ПД и продолжается 1--2 мс; если ПД более продолжителен, то более продолжительна и абсолютная рефрактерная фаза. Клетка в этот период времени на раздражения любой силы не отвечает. Невозбудимость клетки в фазах деполяризации и восходящей части инверсии объясняется тем, что потенциалзависимые m-ворота Na-каналов уже открыты и Na+ быстро поступает в клетку по всем открытым каналам. Те ворота Na-каналов, которые еще не успели открыться, открываются под влиянием деполяризации -- уменьшения мембранного потенциала. Поэтому дополнительное раздражение клетки относительно движения Na+ в клетку ничего изменить не может. Именно поэтому ПД либо совсем не возникает при раздражении, если оно мало, либо является максимальным, если действует раздражение достаточной силы (пороговой или сверхпороговой). В период нисходящей части фазы инверсии клетка невозбудима потому, что закрываются инактивационные h-ворота Na-каналов, в результате чего клеточная мембрана непроницаема для Na+ даже при сильном раздражении.

Кроме того, в этот период открываются (уже в большом количестве) К-каналы, К+ быстро выходит из клетки, обеспечивая нисходящую часть фазы инверсии и реполяризацию. Абсолютная рефрактерная фаза продолжается и в период реполяризации клетки до достижения уровня мембранного потенциала Екр. ± 10 мВ. Абсолютный рефрактерный период ограничивает максимальную частоту генерации ПД. Если абсолютный рефрактерный период завершается через 2 мс после начала ПД, клетка может возбуждаться с частотой максимум 500 имп/с. Существуют клетки с еще более коротким рефрактерным периодом, в которых возбуждение может в крайних случаях повторяться с частотой 1000 имп/с. С такой частотой могут возбуждаться нейроны ретикулярной формации ЦНС, толстые миелиновые нервные волокна.

3. Относительная рефрактерная фаза -- это период восстановления возбудимости клетки, когда сильное раздражение может вызвать новое возбуждение (см. рис.3, Б-3). Относительная рефрактерная фаза соответствует конечной части фазы реполяризации (начиная от Екр. ±10 мВ) и следовой гиперполяризации клеточной мембраны, если она имеется. Пониженная возбудимость является следствием все еще повышенной проницаемости для К+ и избыточного выхода его из клетки. Поэтому, чтобы вызвать возбуждение в этот период, необходимо приложить более сильное раздражение, так как выход К+ из клетки препятствует ее деполяризации. Кроме того, в период следовой гиперполяризации мембранный потенциал больше и, естественно, дальше отстоит от критического уровня деполяризации. Если реполяризация в конце пика ПД замедляется (см. рис.2, А), то относительная рефрактерная фаза включает и период замедления реполяризации, и период гиперполяризации, т.е. продолжается до возвращения мембранного потенциала к исходному уровню после гиперполяризации. Продолжительность относительной рефрактерной фазы вариабельна, у нервных волокон она невелика и составляет несколько мс.

4. Фаза экзальтации -- это период повышенной возбудимости. Он соответствует следовой деполяризации. В некоторых клетках, например в нейронах ЦНС, возможна частичная деполяризация клеточной мембраны вслед за гиперполяризацией. Очередной ПД можно вызывать более слабым раздражением, поскольку мембранный потенциал несколько ниже обычного и оказывается ближе к критическому уровню деполяризации, что объясняют повышенной проницаемостью клеточной мембраны для ионов Na+, Скорость протекания фазовых изменений возбудимости клетки определяет ее лабильность.

1.2.6 Метаболические потенциалы

Метаболические потенциалы регистрируются в результате разного уровня обмена веществ в пунктах отведения, характеризуя степень поляризации мембран. Возникающий метаболический градиент потенциала может быть обусловлен неравномерностью кровоснабжения, местным согреванием или охлаждением и другими условиями. Типичным примером метаболических потенциалов могут служить потенциалы, возникающие между освещенной частью зеленого листа, где усиливаются процессы фотосинтеза, и остающимися в темноте. Место усиленного метаболизма оказывается электроотрицательным по отношению к окружающим тканям, а величина метаболического потенциала будет зависеть от градиента обмена веществ.

1.3 Законы раздражения возбудимых тканей

Ответная реакция возбудимой ткани на действие раздражителя зависит от двух групп факторов: от возбудимости возбудимой ткани и от характеристик раздражителя.

Возбудимость клетки изменяется в процессе возбуждения (было рассмотрено выше - см. рис.3), а также при изменении химического состава внеклеточной жидкости, например, в результате высокой длительной активности клеток, отклонения показателей внутренней среды в патологических случаях. При снижении концентрации ионов Na+ вне клетки этот ион в меньшем количестве входит в клетку, в результате чего снижается ее возбудимость из-за гиперполяризации клетки. Это наблюдается, например, при бессолевой диете, при этом может развиваться мышечная слабость. Повышение внеклеточной концентрации Na+ вызывает противоположный эффект, например усиление тонуса сосудов вследствие возрастания возбудимости нервно-мышечных элементов. Возбудимость различных тканей сама по себе различна -- у нервных клеток выше, чем у мышечных, что используется в клинической практике, например, при выяснении причины двигательных нарушений.

В то же время кроме особенностей возбудимости ответная реакция возбудимой ткани на раздражение зависит характеристик раздражителя. Между уровнем возбудимости возбудимой ткани и характеристиками раздражителя, способного вызвать возбуждение, существует четкая взаимосвязь. Характеристики раздражителя могут служить показателями состояния возбудимости ткани.

Раздражители. Организм непрерывно подвергается множеству воздействий. Факторы, вызывающие переход из состояния покоя в состояние деятельности, называются раздражителями. Они могут быть внешними, исходящими из окружающей среды, и внутренними, возникающими при изменении состояния органов, тканей и особенно состава крови и тканевой жидкости.

В зависимости от своей природы раздражители делят на физические (электрические, механические, температурные, световые) и химические.

Условия эволюции живых существ определили их отношение к разнообразным раздражителям и развитие преимущественной чувствительности к наиболее существенным из них. Так, для простейших в естественных условиях основными раздражителями являются химическое воздействие диффундирующих питательных веществ и термическое, вызывающее движение к источнику пищи и в зону температурного оптимума. У высокоорганизованных животных развиваются специализированные рецепторы, особо чувствительные, например, у рыб к механическому раздражителю - вибрациям воды, означающим движения врага или добычи, у птиц - к световому раздражителю, у хищных млекопитающих - к запахам, позволяющим находить добычу. Рецепторы сетчатки глаза обладают наибольшей чувствительностью к свету, вкусовые рецепторы -- к химическим веществам. Раздражители, к действию которых ткани органов и специализированные рецепторы приспособлены исторически (эволюционно) называются адекватными. Однако раздражение этих тканей и рецепторов можно вызвать, применяя и другие раздражители, которые обозначаются как неадекватные. Для того чтобы неадекватный раздражитель оказал свое действие, он должен развивать энергию во много раз большую, чем требуется при действии адекватного раздражителя. Достаточно сравнить энергию кванта света, необходимую для адекватного раздражения фоторецептора глаза и неадекватную механическую энергию удара, требуемую для того, чтобы «искры из глаз посыпались».

Электрический раздражитель неадекватен для всех тканей и рецепторов, кроме электрорецепторов некоторых рыб. Тем не менее, он вызывает раздражение любой ткани и любого рецептора, затрачивая гораздо меньшую энергию, чем другие неадекватные раздражители, и поэтому приближается к естественным. Эти особенности электрического раздражителя объясняются тем, что процессы раздражения и возбуждения связаны с перемещением ионов, определяющих структуру и свойства поляризованных мембран клетки, и электрический ток, создавая искусственно потоки ионов, видимо, сравнительно легко включает пусковые звенья механизма раздражения. Кроме того, электрический раздражитель легко дозировать по силе, длительности, частоте и крутизне нарастания силы. Благодаря этим особенностям электрический раздражитель широко применяют в физиологических экспериментах, а также в клинической практике как с диагностической, так и с лечебной целями.

Основными характеристиками раздражителя, от которых зависит эффективность его действия на ткань, являются:

- сила;

- крутизна нарастания силы;

- длительность действия;

- частота стимуляции - количество раздражающих стимулов в единицу времени.

1.3.1 Значение силы раздражителя для возникновения возбуждения

По силе раздражители делятся на пороговые, подпороговые и сверхпороговые.

Пороговый потенциал (ДV) -- это минимальная величина, на которую надо уменьшить мембранный потенциал покоя, чтобы вызвать возбуждение (ПД). ДV и возбудимость клеток находятся в обратных соотношениях: небольшая величина ДV свидетельствует о высокой возбудимости клетки. Если, например, уменьшение мембранного потенциала (частичная деполяризация) на 5--10 мВ вызывает возникновение ПД, то возбудимость клетки высока. Напротив, большой ДV (30--40 мВ) свидетельствует о более низкой возбудимости клетки. Однако во всех случаях ПД возникает только при достижении критического уровня деполяризации клеточной мембраны (Екр.).

Критический уровень деполяризации Екр, (КУД) -- это минимальный уровень деполяризации клеточной мембраны, при которой возникает ПД. Дальнейшее раздражение клетки и искусственное снижение ПП ничего не изменяют в процессе возникновения ПД, поскольку деполяризация клетки, достигнув критического уровня, сама по себе ведет к открытию потенциалзависимых m-ворот Na-каналов, в результате чего Na+ устремляется в клетку, ускоряя деполяризацию независимо от действия раздражителя. Критический уровень деполяризации клеточной мембраны обычно составляет около --50 мВ. При величине ПП, например, --60 мВ (Е0) деполяризация -- уменьшение ПП на 10 мВ приведет к достижению Екр. (--50 мВ) и возникнет ПД. Если ПП равен --90 мВ, то для вызова ПД надо снизить ПП на 40 мВ. В последнем случае возбудимость клетки значительно ниже.

Таким образом:

?V = E0 - Eкр.

Величина ПП изменяется в различных условиях деятельности клетки, вследствие этого колеблется и ее возбудимость, например при изменении концентрации Са2+, рН среды. Когда концентрация Са2+ в среде повышается, клетка становится менее возбудимой, поскольку возрастает мембранный потенциал, вследствие чего Е0 удаляется от Екр, а когда концентрация Са2+ снижается, возбудимость клетки возрастает, так как мембранный потенциал уменьшается, Е0 приближается к Екр..

Такое повышение возбудимости лежит в основе синдрома тетании, связанного с дефицитом Са2+ в крови. Изменения содержания ионов Н+ в среде действуют на возбудимость нейронов так же, как изменения концентрации Са2+, что в обоих случаях объясняется изменением величины Е0. Однако если мембранный потенциал снижается медленно ниже Екр. (-50 мВ), например, в условиях гипоксии, при действии миорелаксантов типа сукцинилхолина, то клетка становится невозбудимой вследствие инактивации Na+-каналов и невозможности достичь Екр.

Несмотря на то что ?V является наиболее точным показателям состояния возбудимости клетки, используется он в эксперименте из-за сложности процедуры реже, чем другие показатели. Чаще всего возбудимость оценивается по пороговой силе раздражителя.

Пороговая сила -- это наименьшая сила раздражителя, способная вызвать возбуждение (ПД) при неограничении ее действия во времени (рис. 4). Сила раздражителя -- понятие собирательное, оно отражает степень выраженности раздражающего воздействия стимула на ткань. Например, сила электрического тока выражается в амперах (А), температура среды -- в градусах Цельсия (°С), концентрация химического вещества -- в миллимолях на 1 л (ммоль/л), сила звука -- в децибелах (дБ) и т.д. При использовании в качестве раздражителя электрического тока предложенное определение пороговой силы совпадает с понятием «реобаза». Реобаза -- наименьшая сила тока, способная вызвать импульсное возбуждение. Если возбудимость ткани высока, пороговая сила раздражителя мала. Чем выше возбудимость, тем ниже пороговая сила. Большая пороговая сила свидетельствует о низкой возбудимости ткани. При внутриклеточном раздражении пороговая сила электрического тока для различных клеток равна 10-7--10-9 А.

После получения в ответ на пороговое раздражение потенциала действия, увеличение интенсивности раздражения не сопровождается увеличением его амплитуды. При этом лишь уменьшается латентный (скрытый) период возникновения возбуждения. При сверхпороговых раздражениях потенциал действия развивается без латентного периода и электротоническая деполяризация мембраны сливается с его восходящим коленом. Независимость амплитуды потенциала действия от силы раздражителя при определенном функциональном состоянии волокна известна под названием закона «все или ничего».

В соответствии с этим законом, подпороговые раздражители не вызывают потенциала действия («ничего»); при пороговом раздражении генерируется потенциал действия максимальной амплитуды («все»), после этого (при сверхпороговых раздражениях) амплитуда потенциала действия не увеличивается при увеличении силы раздражителя.

Закон «все или ничего» открыт Боудичем (1871) при исследовании сократительных свойств сердечной мышцы и был использован Готчем (1902) для объяснения генерирования потенциалов действия нерва лягушки. Позже с позиций закона «все или ничего» расценивалась деятельность все большего количества тканей и органов, а закон интерпретировался как общий принцип деятельности возбудимых тканей. Считалось, что «ничего» означает полное отсутствие ответа на подпороговые раздражения, а «все» рассматривалось как проявление полного исчерпания возбудимым образованием его потенциальных возможностей.

В действительности возбудимые образования реагируют на подпороговые стимулы локальным возбуждением, электрическим проявлением которого является описанный ранее локальный ответ. Необходимо отметить также, что амплитуда потенциала действия не является абсолютно постоянной и зависит от множества факторов даже в физиологических условиях организма (утомление, различные онтогенетические периоды).

При медленно нарастающей силе раздражителя возбуждение может не возникнуть даже при достижении большой его силы, значительно превосходящей пороговую. Это свидетельствует о том, что возбудимость ткани в таких условиях уменьшается -- возникает явление аккомодации.

1.3.2 Роль крутизны нарастания силы раздражителя в возникновении возбуждения

Другая важная закономерность касается соотношения между пороговой силой раздражения и скоростью его нарастания. Дюбуа - Реймоном (1848) был установлен закон, согласно которому раздражающее действие электрического тока тем сильнее, чем быстрее он нарастает. Пороги раздражения самые низкие при раздражении прямоугольными электрическими импульсами.

Если раздражать возбудимую структуру электрическими импульсами, сила которых нарастает линейно, то пороги оказываются повышенными и тем в большей степени, чем медленнее увеличивается сила тока. Ток, крутизна нарастания силы которого достигает определенной минимальной величины, остается неэффективным для возникновения возбуждения, даже если он значительно превышает реобазу. Т.о. слишком медленно нарастающие токи вообще могут не вызывать возбуждения.

Явление повышения порога с уменьшением крутизны нарастания раздражающего тока Нернстом (1908) было названо аккомодацией. Таким образом, раздражитель, чтобы оказать возбуждающее действие, должен достичь пороговой силы со скоростью, превышающей скорость развития аккомодации в данной ткани.

Главной причиной аккомодации является инактивация Na-каналов, возникающая при медленной деполяризации клеточной мембраны -- в течение 1с и более. Клетка теряет возбудимость, если закрывается около 50 % инактивационных h-ворот (в покое h-ворота в основном открыты, закрыто около 20 %). Меньшую роль играет активация К-каналов. Возникающая частичная деполяризация клетки при медленно нарастающей силе стимула ведет к уменьшению мембранного потенциала. Поэтому если и возникает ПД при дальнейшем резком увеличении силы раздражителя, то его амплитуда мала. Аккомодация развивается, например, в клетках ЦНС, когда они деполяризуются при суммации медленно нарастающих синаптических потенциалов. Скорость развития аккомодации у разных тканей различна, она зависит, как и скорость возникновения ПД, от скорости активации и инактивации ионных каналов, в первую очередь инактивации Na-каналов. Таким образом, аккомодация характеризует не возбудимость ткани, а изменение возбудимости ткани при действии плавно нарастающего раздражителя. Поэтому при определении возбудимости ткани в качестве раздражителя необходимо использовать прямоугольные импульсы. В этом случае скорость нарастания стимула и активация Na-каналов опережают скорость аккомодации (инактивации Na-каналов), что и приводит к возникновению ПД.

Значение крутизны нарастания силы раздражителя проявляется не только при электрическом, но и при химическом, механическом, термическом и других раздражениях. Поэтому, например, отравление газом может произойти, когда он накапливается в помещении, не обнаруживая себя запахом.

1.3.3 Роль длительности действия раздражителя в возникновении возбуждения

Раздражитель даже пороговой силы, нарастающий с достаточной крутизной может оказаться неэффективным, если он действовал в течение менее нужного времени. Следовательно, важным условием, обеспечивающим возникновение возбуждения при действии раздражителя, является его длительность.

Поэтому для оценки свойств возбудимой ткани вводится еще одно понятие -- пороговое время. Пороговое время -- это минимальное время, в течение которого должен действовать на ткань раздражитель пороговой силы, чтобы вызвать ее возбуждение (см. рис. 4-- проекция точки А на абсциссу). Пороговое время называют также полезным временем, так как раздражитель обеспечивает деполяризацию только до критического уровня (Екр.). Далее ПД развивается независимо от действия раздражителя, дальнейшее раздражение уже становится ненужным -- бесполезным. Величина полезного времени показывает срок, в течение которого раздражитель пороговой силы успевает вызвать местные сдвиги и довести их до критического значения.

При уменьшении длительности действия тока необходимо увеличивать его силу, чтобы сохранить эффективность раздражения. Таким образом, полезное время находится в обратной зависимости от силы тока (раздражителя). Эту зависимость изображают графически, откладывая на абсциссе время, а на ординате - силу тока. Графическая зависимость между длительностью и силой порогового раздражения называется кривой силы - времени (см. рис.4). Впервые такую кривую получил Гоорвег (1892) при исследовании возбудимости скелетных мышц человека, а позже - Вейс (1901) на нервно-мышечном препарате лягушки.

Измерение полезного времени для оценки временных характеристик возбудимости ткани, ее подвижности, затрудняется необходимостью уловить переход от пороговой, т.е. минимальной реакции к полному ее отсутствию (пологая часть кривой, см. рис. 4). Поэтому практическое применение и широкое распространение в эксперименте и клинической практике получило измеряемое для этой цели полезное время тока удвоенной пороговой силы -_хронаксия. Хронаксия (Л.Лапик, 1926) -- наименьшее время, в течение которого должен действовать ток в две реобазы, чтобы вызвать возбуждение (см. рис.4-- проекция точки Б на абсциссе). Хронаксия соответствует более крутой части кривой сила -- время, она колеблется от сотых долей до сотен миллисекунд.

Хронаксия характеризует скорость возникновения возбуждения и в определенной степени лабильность, так как чем быстрее возникает возбуждение, тем быстрее «оно протекает» в целом. Чем больше хронаксия, тем медленнее реагирует ткань возбуждением - длительность потенциала действия и рефрактерности больше, а лабильность ниже.

Хронаксия - динамический показатель функционального состояния возбудимых тканей: длятельное напряжение мышцы увеличивает ее хронаксию, т.е. делает менее подвижной; болевое раздражение уменьшает хронаксию рецепторов кожи в месте его действия, т.е. повышает их подвижность; общее охлаждение тела, увеличивая хронаксию, снижает их подвижность.

Измерение хронаксии (хронаксимерия) в клинической практике позволяет уточнить характер повреждений мышцы при травмах. В норме определяется фактически хронаксия нервных волокон, так как возбудимость их выше. В случае повреждения нерва и его перерождения определяют истинную хронаксию мышцы, которая намного превышает таковую до травмы.

Из графика (см. рис.4 - правая часть) также следует, что, если для получения возбуждения использовать раздражитель по амплитуде меньше реобазы, возбуждение ткани не возникнет даже в том случае, если время его действия будет бесконечно большим. С другой стороны, если для получения возбуждения использовать раздражитель, длительность которого будет меньше некоторого критического интервала (левая часть графика), возбуждение ткани также не будет получено даже в том случае, если сила раздражителя будет бесконечно большой. Поэтому высокочастотный переменный ток (>10 кГц) - ток Д,Арсенваля - опасности для организма не несет: при сверхкоротком воздействии на ткань импульс электрического тока дает лишь тепловой эффект, что используется в клинической практике для глубокого прогревания тканей при различных патологических процессах. Переменный ток высокой частоты не вызывает возбуждения потому, что его полупериоды слишком коротки для того, чтобы изменить мембранный потенциал, так как небольшой эффект действия каждого полупериода нивелируется последующим полупериодом, во время которого ток имеет противоположное направление. Иначе говоря, изменения мембранного потенциала не успевают за измененияминаправлений высокочастотного тока.

Электрический ток с частотой от 0,5 до 1 мГц также может использоваться в лечебных целях, в основном для прогревания тканей.

Низкочастотный переменный синусоидальный ток (50 Гц) стимулирует возбудимые ткани. Стимулы синусоидального тока частотой 50 Гц большого напряжения опасны для жизни: они могут вызвать фибрилляцию сердца с летальным исходом (относительный рефрактерный период миокарда представляет собой в этом случае фазу повышенной уязвимости).

Возникает вопрос о природе фактора времени в раздражении. Полезное время раздражения при определенной силе тока зависит от скорости кателектротонической деполяризации мембраны, обусловленной величиной постоянной времени мембраны (ф = Rм . См ). Хронаксия нервных волокон меньше, чем мышечных именно потому, что постоянная времени мембраны мышечных волокон больше, чем нервных.

При одинаковой постоянной времени мембраны полезное время зависит от скорости нарастания амплитуды локального потенциала, который вместе с кателектротоническим потенциалом принимает участие в развитии критической деполяризации. Развитие локального потенциала зависит от постоянной времени молекулярных механизмов, ответственных за активацию натриевой проницаемости мембраны.

Таким образом, величина фактора времени в раздражении обусловлена скоростью протекания пассивных и активных мембранных процессов, которые обеспечивают критическую деполяризацию.

1.3.4 Роль частоты стимуляции в возникновении возбуждения

Наличие рефрактерности определяет максимальную частоту генерирования возбудимыми структурами потенциалов действия, для характеристики которой Н.Е.Введенским(1901) было предложено понятие лабильности или функциональной подвижности. Таким образом, лабильность можно определить как скорость протекания одного цикла возбуждения, т.е. ПД. Как видно из определения, лабильность ткани зависит от длительности ПД, Это означает, что лабильность, как и ПД, определяется скоростью перемещения ионов в клетку и из клетки, которая в свою очередь зависит от скорости изменения проницаемости клеточной мембраны. При этом особое значение имеет длительность рефрактерной фазы: чем больше рефрактерная фаза, тем ниже лабильность ткани.

Мерой лабильности является максимальное число ПД, которое ткань может воспроизвести в 1с без искажений. Если частота раздражения превышает величину лабильности, то возникает ее трансформация. Для воспроизведения возбудимой тканью импульсов без искажения интервал между раздражающими импульсами должен равняться или быть чуть больше длительности абсолютной рефрактерной фазы.

В эксперименте лабильность исследуют с помощью регистрации максимального числа ПД, которое может воспроизвести клетка при увеличении частоты ритмического раздражения.

Лабильность различных тканей существенно различается. Так, лабильность нерва равна 500--1000, мышцы -- около 200, нервно-мышечного синапса -- порядка 100 импульсов в секунду.

Лабильность ткани понижается при длительном бездействии органа и при утомлении, а также в случае нарушения иннервации.

Лабильность может изменяться в ходе ритмического раздражения нерва или мышцы, так как в ритмическом ряду волны возбуждения взаимодействуют друг с другом. Это взаимодействие в одних случаях может приводить к падению лабильности, в других, напротив, -- к ее повышению.

При постепенном увеличении частоты ритмического раздражения лабильность ткани повышается, т.е. ткань отвечает более высокой частотой возбуждения по сравнению с исходной частотой. Это явление открыто А.А.Ухтомским и получило название усвоение ритма раздражения. Примером усвоения ритма может служить эксперимент Г.Мевеса на изолированном нервном волокне лягушки. Одиночное нервное волокно раздражали ритмическими стимулами частотой 460 в секунду. На каждый стимул возникал потенциал действия. Затем повышали частоту стимуляции до 740 в секунду. Вначале волокно отвечало только на каждый второй стимул, т.е. происходила трансформация ритма раздражения. Однако после нескольких секунд такого раздражения волокно начало усваивать навязанный ему ритм, и частота ответов повысилась до 740 импульсов в секунду. Усвоение ритма связано с убыстрением тех процессов обмена веществ, которые обеспечивают активное «выкачивание» из цитоплазмы в наружный раствор ионов Na+, проникших через мембрану во время возбуждения.

В то же время переход от умеренной (оптимальной) к чрезмерной (пессимальной) частоте или силе раздражения вызывает смену возбуждения торможением при обычном функциональном состоянии объекта.

Однако подобную смену возбуждения торможением можно получить при действии одного и того же раздражителя с характеристиками, оптимальными для здоровой ткани, если последнюю подвергнуть воздействиям, изменяющим функциональное состояние, в частности, снижающим ее лабильность. При этом развиваются явления, которым Н.Е.Введенский дал название -- парабиоз. Парабиоз -- состояние ткани, лабильность которой не удовлетворяет требованиям раздражителя, что затрудняет возникновение и распространение возбуждения.

По мере углубления парабиотического состояния раздражимость ткани проходит несколько стадий. Начальная уравнительная стадия состоит в том, что даже в пределах сил раздражения, обычных для интактной ткани, более сильные раздражители оказывают для парабиотического участка пессимальными, вызывают торможение и их эффекты уравниваются с эффектами от слабых раздражений. Следующая парадоксальная стадия наступает, когда парабиоз достигает степени, при которой относительно сильные раздражения оказываются настолько пессимальными, что становятся менее эффективными, чем слабые раздражения. Наконец, тормозная стадия характеризуется таким низким уровнем лабильности парабиотического участка, при котором каждое раздражение вызывает только торможение.

1.3.5 Действие постоянного тока на ткань (полярный закон раздражения)

При действии постоянного тока средней силы на ткань возбуждение возникает только в момент замыкания и в момент размыкания цепи -- закон полярного действия тока [Пфлюгер, 1859]. Возбуждение возникает в момент замыкания под катодом, а в момент размыкания -- под анодом. Это демонстрируется в опыте на нервно-мышечном препарате лягушки с раздражением нерва, один участок которого умерщвлен. Один электрод устанавливают на умерщвленный, другой -- на интактный участок нерва. Если интактного участка нерва касается катод, то возбуждение нерва и сокращение мышцы возникают только при замыкании цепи постоянного тока. Если интактного участка нерва касается анод, то мышца сокращается только при размыкании электрической цепи. Описанные изменения возбудимости имеют место лишь при кратковременном действии постоянного тока. При длительном действии тока развиваются противоположные изменения возбудимости: под катодом повышение возбудимости сменяется ее уменьшением, а под анодом первоначально пониженная возбудимость постепенно повышается. Угнетение возбудимости длительным действием катода постоянного тока открыл Б.Ф.Вериго (1889), назвав ее катодической депрессией.

При раздражении с помощью электрода, введенного в клетку, возбуждение развивается только в том случае, когда катод размещается снаружи, а анод -- внутри клетки. При обратном расположении полюсов ПД не генерируется, так как в этом случае возникает не деполяризация, а гиперполяризация клеточной мембраны.

В области действия катода на ткань возникает частичная деполяризация клеточных мембран, так как катод -- отрицательный электрод, а клеточная мембрана снаружи имеет положительный заряд. Если деполяризация достигает Екр, то возникает ПД вследствие лавинообразного движения ионов Na+ внутрь клетки. В области действия анода, напротив, клеточная мембрана гиперполяризуется. Е0 удаляется от Екр, поэтому ПД при замыкании цепи не возникает. Почему же ПД регистрируют под анодом в момент размыкания цепи постоянного тока? При действии анода Екр. смещается в сторону гиперполяризации и может сравняться с исходным Е0. При размыкании электрической цепи в области действия анода мембранный потенциал быстро возвращается к исходному уровню и, естественно, достигает критического уровня, в результате чего открываются потенциалзависимые активационные m-ворота Na-каналов и генерируется ПД -- анодное размыкательное возбуждение.

Если сила электрического тока мала и не вызывает возникновения ПД, то в области действия катода возбудимость ткани сначала повышается (катэлектротон), а затем падает -- католическая депрессия. Возбудимость повышается вследствие уменьшения мембранного потенциала и приближения его к Екр., открытия части m-ворот Na-каналов. Главной причиной католической депрессии является развивающаяся инактивация Na-каналов (при этом Екр смещается вверх -- в сторону деполяризации). Активация К-каналов играет меньшую роль. Таким образом, механизмы рефрактерности во время возбуждения ткани, аккомодации при медленно нарастающем стимуле и католической депрессии при длительном действии тока в основном совпадают.

В области действия анода постоянного тока в ткани развиваются противоположные изменения: возникает гиперполяризация клеточной мембраны (мембранный потенциал увеличен), вследствие чего возбудимость клетки снижается. Это снижение возбудимости называют анэлектротоном. Затем возбудимость ткани повышается в результате смещения Екр в сторону Е0 и приближения его к исходному Е0. Поэтому для достижения критического уровня деполяризации мембраны в этот момент достаточно небольшой ее деполяризации.

Тесты 1-2 уровня для самоконтроля знаний по теме: Общая физиология возбудимых тканей

1.Изменится ли величина потенциала покоя, если внутри нервной клетки искусственно увеличивать на 30% концентрацию ионов К+?

А. потенциал покоя снизится до 0

В. потенциал покоя увеличится

С. потенциал покоя останется без изменений

D. потенциал покоя увеличится

2.Изменится ли величина потенциала покоя, если внутри нервной клетки искусственно уменьшить на 30% концентрацию ионов К+?

А. потенциал покоя снизится до 0

В. потенциал покоя увеличится

С. потенциал покоя останется без изменений

D. потенциал покоя уменьшится

3.Как изменится амплитуда потенциала действия одиночного нервного волокна, если наружную концентрацию ионов Nа+ снизить на 20%?

А. амплитуда потенциала действия упадет до 0

В. амплитуда потенциала действия не изменится

С. амплитуда потенциала действия снизится

D. амплитуда потенциала действия возрастет

4.В постоянстве структурно-функциональной целостности мембран главную роль играют:

А. фосфолипиды

В. свободные жирные кислоты

С. холестирин

D. липопротеиды

Е. белки

5. Фактором, определяющим величину потенциала покоя, являетсяконцентрационный градиент:

А. иона натрия

В. иона калия

С. иона кальция

D. иона хлора

6.Деполяризация клеточной мембраны может возникнуть при увеличении проницаемости клеточной мембраны для:

А. иона натрия

В. иона калия

С. иона кальция

D. иона хлора

Е. всех вышеперечисленных ионов

7.В генезе восходящий фазы потенциала действия нервной ткани ведущую роль играют ионы:

А. калия

В. натрия

С. хлора

D. магния

Е. кальция

8.Локальный ответ обусловлен повышением проницаемости мембраны для ионов:

А. хлора

В. калия

С. натрия

D. магния

Е. кальция

9.Трансмембранный выходящий ионный ток К+ во время потенциала покоя обеспечивается:

А. активным транспортом

В. пассивной диффузией

С. облегченным транспортом

10.В механизме фазы деполяризации ПД ведущую роль играет:

А. пассивный ток Nа+ в клетку

В. пассивный ток Nа+ из клетки

С. активный транспорт Са2+ из клетки

D. активный транспорт Nа+ в клетку

11.Важным фактором реполяризации мембран во время развития потенциала действия является:

А. повышение проницаемости для К+

В. уменьшение проницаемости для К+

С. увеличение проницаемости для Nа+

D. уменьшение проницаемости для Nа+

Е. входящий калиевый ток

12.Подпороговый раздражитель:

А. вызывает развитие потенциала действия

В. вызывает развитие локального ответа

С. не деполяризирует мембрану до критического уровня

D. гиперполяризирует мембрану

13.Раздражитель пороговой силы:

А. вызывает развитие потенциала действия

В. вызывает развитие локального ответа

С. деполяризирует мембрану до критического уровня

D. гиперполяризирует мембрану

14. Во время фазы абсолютной рефрактерности происходит:

А. активизация калиевых каналов

В. активизация натриевых каналов

С. инактивация калиевых каналов

D. инактивация натриевых каналов

15.Какую функцию выполняют интегральные белки мембраны?

А. определяют структурную целостность мембраны

В. являются рецепторами мембраны

С. образуют ионные насосы

D. образуют ионные каналы

16.Сколько ионов перемещает через мембрану Nа-К-насос за один цикл:

А. 1 ион Nа+ и 1 ион К+

В. 2 иона Nа+ и 2 иона К+

С. 3 иона Nа+ и 3 иона К+

D. 3 иона Nа+ и 2 иона К+

Е. 2 иона Nа+ и 3 иона К+

17.Какое из этих утверджений справедливо в отношении внутриклеточной жидкости:

А. концентрация внутриклеточного калия выше, чем концентрация внеклеточного

калия

В. концентрация внутриклеточного натрия выше, чем концентрация

внеклеточного натрия

С. осмолярность внутриклеточной жидкости выше, чем концентрация внеклеточной жидкости

D. концентрация внутриклеточной глюкозы выше, чем концентрация внекле-точной глюкозы

Е. во внутриклеточной жидкости нет белков

18.Какие из этих веществ могут быстро проходить через мембрану?

А. глюкоза

В. аминокислоты

С. углекислый газ

D. ионы натрия

Е. ионы водорода

19.При проведении исследования на изолированной возбудимой клетке установлено, что порог силы раздражения клетки существенно уменьшился. Что из указанного может быть причиной этого?

А. инактивация калиевых каналов мембраны

В. активация калиевых каналов мембраны

С. активация натриевых каналов мембраны

D. инактивация натриевых каналов мембраны

Е. блокада энергообразования в клетке

20.Вследствие блокады ионных каналов мембраны клетки ее потенциал покоя уменьшился с -90мВ до -70мВ. Какие каналы заблокированы?

А. калиевые

В. натриевые

С. магниевые

D. кальциевые

Е. хлоровые

21. От чего зависит лабильность ткани?

А. от величины мембранного потенциала

B. от длины миофибрилы

C. от силы раздражителя

D. от длительности абсолютно рефрактерной фазы.

22. Способность живой ткани отвечать на действие раздражителя?

А. проводимость

B. раздражимость

C. автоматия

D. лабильность

E. рефрактерность

23. Причины возникновения католической депрессии

А. уменьшение МП

В. продолжительное действие катода постоянного тока

С. увеличение лабильности

D. кратковременное действие раздражителя

Е. кратковременное действие катода постоянного тока

24. Что лежит в основе аккомодации ткани

А. повышение амплитуды ПД

В. исчезновение МП

С. повышение натриевой проницаемости

D. прекращение работы калий-натриевого насоса

Е. инактивация натриевой проницаемости и повышение калиевой проницаемости

25. Что будет возникать в возбудимой ткани при пороговом раздражении

А. локальный потенциал

В. Мембранный потенциал

С. ПД

D. метаболический потенциал

Е. Ток покоя

26.Какой электрод должен быть активным, чтобы повысить возбудимость ткани?

А. Не имеет значения какой электрод

В. Анод при замыкании постоянного тока

С. Катод при замыкании постоянного тока

D. катод и анод одновременно

27. Какой электрод должен быть активным, чтобы снизить возбудимость ткани?

А. Не имеет значения какой электрод

В. Анод при замыкании постоянного тока

С. Катод при разамыкании постоянного тока

D. Катод при замыкании постоянного тока

Е. катод и анод одновременно

28. Какое по силе нужно нанести раздражение, чтобы вызвать ответ в относительно рефрактерную фазу?

А. подпороговое

В. сверхпороговое

С. подпорогое длительное

D. подпороговое кратковременное

Е. любой силы

29.Почему при нанесении порогового раздражения в абсолютно рефрактерную фазу не возникает ответ в возбудимой ткани?

А. недостаточная сила раздражителя

В. отсутствует возбудимость

С. необходимо более длительное раздражение

D. высокая возбудимость

Е. низкий порог раздражения

30. В какую фазу возбудимости может возникнуть ответ на порогое раздражение?

А. в супернормальную фазу (повышенной возбудимости)

Б. в фазу относительной рефрактерности

С. вообще не возникает

D. в субнормальную фазу

Е. в фазу абсолютной рефрактерности

Ситуационные задачи для самоконтроля знаний по теме: "Общая физиология возбудимых тканей"

1. Под влиянием гуморальных факторов проницаемость мембраны клетки для ионов натрия увеличилась. Как это скажется на значении ПП клетки и почему?

2. При ухудшении кровоснабжения миокарда в межклеточной жидкости повышается концентрация ионов калия. Как и почему это скажется на генерации ПД в волокнах миокарда?

3. Динитрофенол, действуя на клетки блокирует метаболические процессы, поставляющие энергию. Как и почему изменится значение ПП клетки при действии на неё динитрофенола ?

4. В тканевой жидкости, окружающей клетки, увеличилась концентрация ионов калия. Как и почему это скажется на величине ПП этой клетки?

5. Под влиянием местного анестетика в мембране клетки увеличилось число инактивированных натриевых каналов. Как и почему это скажется на параметрах ПД, возникающего в клетке?

6. В тканевой жидкости, окружающей клетки, увеличилась концентрация натрия. Как и почему это скажется на величине ПД клетки?

7. Под влиянием химического фактора в мембране клетки увеличилось число каналов, которые могут активироваться при генерации ПД клетки. Как и почему это скажется на параметрах ПД клетки?

8. Какое влияние на ПП окажет увеличение содержания калия внутри клетки и почему?

9. Некоторые лекарственные препараты /например, сердечные гликозиды/ являются специфическими фармакологическими блокаторами натрий-калиевого насоса. Какое влияние оказывают сердечные гликозиды на возбудимость сердечной мышцы? Почему?

10. Какие изменения в генерации ПД возникнут в возбудимой клетке при помещении её в бессолевой раствор? Почему?

11. Установлено, что амплитуда ПД клетки увеличилась на несколько милливольт. Изменилась ли возбудимость этой клетки?

12. Критический уровень деполяризации клеточной мембраны повысился от -60 мВ до -50 мВ. Как и почему изменилась возбудимость клетки?

13. Раздражитель вызвал деполяризацию клеточной мембраны, однако, возбудимость клетки уменьшилась. Почему это могло произойти?

14. Ацетилхолин, действуя на клетки, повышает проницаемость их мембран для ионов калия. Как и почему изменится при этом возбудимость клетки?

15. Пороговый потенциал мембраны клетки -20 мВ. При электрическом раздражении клетки на её мембране возник деполяризационный местный потенциал, амплитуда которого равна 18 мВ. Что это за потенциал?

16. В клинике для местного прогревания тканей используют высокочастотные токи высокого напряжения /диатермию/. Почему эти токи проходят через клетки, не вызывая в них возбуждения?

17. Как и почему изменится минимальное время, необходимое для возникновения в клетке ПД (латентный период ПД) при увеличении силы электрического раздражения?

2. ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ В ВОЗБУДИМЫХ ТКАНЯХ

Проводимость -- это свойство ткани проводить потенциал действия (т.е. возбуждение) без изменения его амплитуды. Проводимость присуща всем возбудимым тканям. Специализированную функцию проведения возбуждения в возбудимых тканях осуществляют нервные волокна и синаптические образования, т.е. нервные волокна и синапсы структурно и функционально предназначены для проведения возбуждения. Но механизмы проведения возбуждения в этих структурах различны и поэтому требуют отдельного рассмотрения.

2.1 Физиология нервных волокон и нервов

2.1.1 Структура нервного волокна

Нервные волокна представляют собой отростки нейронов, с помощью которых осуществляется связь между нейронами, а также нейронов с исполнительными клетками. В состав нервного волокна входят осевой цилиндр (нервный отросток) и глиальная оболочка. По взаимоотношению осевых цилиндров с глиальными клетками выделяют два типа нервных волокон: безмиелиновые и миелиновые. Оболочку безмиелиновых волокон образуют шванновские клетки (леммоциты). При этом осевые цилиндры прогибают клеточную оболочку леммоцитов и погружаются в них. Клеточная мембрана обычно полностью окружает каждый осевой цилиндр и смыкается над ним, образуя сдвоенную мембрану (мезаксон).

Оболочку миелиновых волокон образуют в периферической нервной системе также шванновские клетки, а в ЦНС -- олигодендроциты. В отличие от безмиелиновых волокон в миелиновых волокнах мезаксон удлиняется и спирально закручивается вокруг осевого цилиндра, образуя слой миелина толщиной от долей мкм до 10 мкм (липидный футляр) вокруг осевого цилиндра. Миелиновая оболочка через равные участки (0,5-- 2,0 мм) прерывается, образуя свободные от миелина небольшие участки -- узловые перехваты Ранвье. Протяженность перехватов в волокнах периферической нервной системы находится в пределах 0,25--1,0 мкм, в волокнах ЦНС их длина может достигать 14 мкм. Участки волокон между узловыми перехватами называются межузловыми сегментами, они образованы слоем миелина. Основную часть миелина (78 % сухой массы) составляют липиды, в них на долю фосфолипидов приходится 42 %, цереброзидов -- 28 %, холестерина -- 25 %. Несмотря на метаболическую инертность миелина (особенно по обновлению холестерина), поддержание целостности его структуры требует затраты энергии и нарушение снабжения олигодендроцитов кислородом и питательными веществами быстро вызывает деструкцию миелина. Одной из основных функций глиальной оболочки нервных волокон является изолирующая функция, способствующая лучшему проведению биопотенциалов по отросткам нейронов.

2.1.2 Классификация нервных волокон

Наиболее распространена классификация по Дж.Эрлангеру и Х.Гассеру (1937), в которой волокна разделяют на три типа: А, В и С (табл.3). Волокна типа А и В являются миелиновыми, типа С -- безмиелиновыми. Волокна А делят на 4 подгруппы: б, в, г, д. В периферической нервной системе к волокнам Аб относятся афферентные волокна от механорецепторов кожи, мышечных и сухожильных рецепторов, а также эфферентные волокна к скелетным мышцам. К Ав принадлежат афферентные волокна от кожных рецепторов прикосновения и давления, от части мышечных и висцеральных рецепторов. Аг представляют собой эфферентные волокна, через которые регулируется активность мышечных рецепторов. К Ад относят афферентные волокна от части тактильных, температурных и болевых, а также суставных рецепторов. К волокнам типа В принадлежат преганглионарные волокна вегетативной нервной системы. К волокнам типа С относят постганглионарные волокна вегетативной нервной системы, афферентные волокна от некоторых болевых (вторичная боль), тепловых и висцеральных рецепторов.

Таблица 3. Типы волокон в нервах млекопитающих (по Эрлангеру--Гассеру)

Тип волокон

Диаметр волокна,

мкм

Скорость проведения возбуждения, м/с

Длительность абсолютного рефракторного периода, мс

А?

12-20

70-120

0,4-1,0

А?

5-12

30-70

А?

3-6

15-30

А?

2-5

12-30

В

1-3

5-12

1,2

С

0,3-1,3

0,5-2,3

2

Из данных, представленных в табл.3, видно, что средний диаметр каждого типа волокна снижается от типа А до С (каждый примерно в 2 раза по отношению к предыдущему). Соответственно этому снижается и скорость проведения возбуждения. Низкая скорость проведения нервного импульса в волокнах типа С связана с особенностями проведения возбуждения в безмиелиновых волокнах. Лабильность также уменьшается от волокон Аб до С и находится в обратной зависимости от продолжительности фазы абсолютной рефрактерности. Возбудимость тоже уменьшается от волокон Аб (наибольшая возбудимость) к волокнам С (наименьшая возбудимость). Например, пороговая сила электрического тока у волокон С в 30--50 раз больше, чем у волокон Аб. Исследование факторов, блокирующих нервную проводимость, показало, что к давлению наиболее чувствительны волокна А, к кислородному голоданию (гипоксии) -- волокна В, к местным анестетикам -- волокна С.

Нервные волокна имеют две основные функции -- проведение возбуждения и транспорт веществ, обеспечивающих трофическую функцию.


Подобные документы

  • Правила по технике безопасности при работе в физиологической лаборатории. Этапы приготовления нервно-мышечного препарата. Строение и физиологические функции биологических мембран возбудимых тканей. Первый и второй опыты Гальвани. Порог раздражения мышцы.

    методичка [1,4 M], добавлен 07.02.2013

  • Оpганизм, его стpоение и жизнедеятельность. Совpеменные пpедставления о стpоении и функции мембpан. Биоэлектpические явления в живых тканях. Возбуждение: потенциал действия, механизм пpоисхождения, фазы. Раздpажитель: значение, виды и классификация.

    лекция [25,4 K], добавлен 26.04.2012

  • Физиологические свойства скелетных мышц. Понятие о гормонах и их классификация. Функциональная характеристика неисчерченных мышц. Типы функционального влияния гормонов. Одиночное мышечное сокращение и его фазы. Гормональная регуляция и парагормоны.

    контрольная работа [15,8 K], добавлен 14.05.2009

  • Законы раздражения возбудимых тканей и следствия, которые из них вытекают. Физиология человека, регуляция и сенсорное обеспечение движений. Минимальная сила раздражителя. Законы силы, времени и адаптации организма человека. Наличие внешнего раздражителя.

    контрольная работа [16,7 K], добавлен 23.07.2009

  • Разделы современной физиологии. Известные отечественные физиологи. Методы и разновидности физиологических исследований. Виды экспериментов, концептуальные подходы. Возрастные периоды развития ребенка (стадии онтогенеза). Физиология возбудимых систем.

    лекция [1,0 M], добавлен 05.01.2014

  • Значение и деятельность элементов нервной системы. Возрастные изменения морфофункциональной организации нейрона. Свойства импульсов возбуждения в центральной нервной системе (ЦНС), биоэлектрические явления. Процессы возбуждения и торможения в ЦНС.

    контрольная работа [370,1 K], добавлен 04.08.2010

  • Все живые ткани и клетки под влиянием раздражителей переходят из состояния относительного физиологического покоя в состояние активности. Степень активного состояния живой ткани может быть различной. Проявление специфических признаков возбуждения.

    реферат [378,8 K], добавлен 23.06.2010

  • Формулирование законов полярного, "силы-времени", градиента, физиологического электротона. Свойства и классификация рецепторов. Механизм преобразования энергии стимула в нервный импульс. Пути фармакологической регуляции проводимости и лабильности.

    лекция [26,6 K], добавлен 30.07.2013

  • Раздражимость как основное свойство живых клеток. Физиология возбудимых клеток. Строение и основные свойства клеточных мембран и ионных каналов. Физиология нервной ткани и синапсов. Классификация антиадренергических средств, механизм их действия.

    курсовая работа [194,6 K], добавлен 02.03.2014

  • История создания и понятие культуры клеток и тканей. Анализ влияния генетических, физических и химических факторов на рост и развитие культур. Особенности образования полифенолов, алкалоидов и вторичных метаболитов в культуре тканей различного рода.

    курсовая работа [400,8 K], добавлен 18.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.