Основа нейрофизиологии и высшей нервной деятельности
Структура и функции вегетативной нервной системы, основные принципы и закономерности. Рефлекторный принцип функционирования высшей нервной деятельности. Созревание условных рефлексов в онтогенезе, строение и функции нервной ткани, безусловные рефлексы.
Рубрика | Медицина |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 29.03.2015 |
Размер файла | 266,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
6. Низкая способность к аккомодации.
7. Специализация рецепторов к определенным параметрам адекватного раздражителя. Рецепторы, входящие в состав периферического отдела анализатора, неоднородны по отношению к различным моментам действия раздражителя. Имеются рецепторы, которые возбуждаются только в момент включения раздражителя, другие- только в момент выключения раздражителя, а третьи реагируют в течение всего времени действия раздражителя. Кроме того, имеются рецепторы, реагирующие на изменение интенсивности раздражителя или на его перемещение и т. д.
8. Способность к элементарному первичному анализу. Благодаря связи между отдельными рецепторами периферического отдела, отражающими отдельные параметры раздражителя, осуществляется элементарный первичный анализ последнего. Деятельность рецепторов осуществляется не изолированно, а во взаимодействии, в связи с чем уже на рецепторном уровне осуществляется анализ раздражителя по разным его характеристикам (параметрам).
9. Кодирование информации. Информация о действии химических, механических раздражителей, имеющих разнообразную природу, преобразуется рецепторами в универсальные для мозга сигналы -- нервные импульсы. Таким образом рецепторы кодируют информацию о среде, т. е. преобразуя сигналы, непонятные мозгу, в сигналы, понятные ему.
Проводниковый отдел сенсорной системы включает афферентные (периферические) и промежуточные нейроны стволовых и подкорковых структур центральной нервной системы (ЦНС), которые составляют как бы цепь нейронов, находящихся в разных слоях на каждом уровне ЦНС. Проводниковый отдел обеспечивает проведение возбуждения от рецепторов в кору большого мозга и частичную переработку информации. Проведение возбуждения по проводниковому отделу осуществляется двумя афферентными путями: специфическим проекционным путем (прямые афферентные пути) от рецептора по строго обозначенным специфическим путям с переключением на различных уровнях ЦНС (на уровне спинного и продолговатого мозга, в зрительных буграх и в соответствующей проекционной зоне коры большого мозга); неспецифическим путем, с участием ретикулярной формации. На уровне ствола мозга от специфического пути отходят коллатерали к клеткам ретикулярной формации, к которым могут конвергировать различные афферентные возбуждения, обеспечивая взаимодействие анализаторов. При этом афферентные возбуждения теряют свои специфические свойства (сенсорную модальность) и изменяют возбудимость корковых нейронов. Возбуждение проводится медленно через большое число синапсов. За счет коллатералей в процесс возбуждения включаются гипоталамус и другие отделы лимбической системы мозга, а также двигательные центры. Все это обеспечивает вегетативный, двигательный и эмоциональный компоненты сенсорных реакций.
Свойства проводникового отдела анализаторов
Этот отдел анализаторов представлен афферентными путями и подкорковыми центрами. Основными функциями проводникового отдела являются: анализ и передача информации, осуществление рефлексов и межанализаторного взаимодействия. Эти функции обеспечиваются свойствами проводникового отдела анализаторов, которые выражаются в следующем.
1. От каждого специализированного образования (рецептора), идет строго локализованный специфический сенсорный путь. Эти пути как правило, передают сигналы от рецепторов одного типа.
2. От каждого специфического сенсорного пути отходят коллатерали к ретикулярной формации, в результате чего она является структурой конвергенции различных специфических путей и формирования мультимодальных или неспецифических путей, кроме того, ретикулярная формация является местом межанализаторного взаимодействия.
3. Имеет место многоканальность проведения возбуждения от рецепторов к коре (специфические и неспецифичекие пути), что обеспечивает надежность передачи информации.
4. При передаче возбуждения происходит многократное переключение возбуждения на различных уровнях ЦНС. Выделяют три основных переключающих уровня:
спинальный или стволовой (продолговатый мозг);
зрительный бугор;
соответствующая проекционная зона коры головного мозга.
Вместе с тем, в пределах сенсорных путей существуют афферентные каналы срочной передачи информации (без переключении) в высшие мозговые центры. Полагают, что по этим каналам осуществляется преднадстройка высших мозговых центров к восприятию последующей информации. Наличие таких путей является признаком совершенствования конструкции мозга и повышения надежности сенсорных систем.
5. Кроме специфических и неспецифических путей существуют так называемые ассоциативные таламо-кортикальные пути, связанные с ассоциативными областями коры больших полушарий. Показано, что с деятельностью таламо-кортикальных ассоциативных систем связана межсенсорная оценка биологической значимости стимула и др. Таким образом, сенсорная функция осуществляется на основе взаимосвязанной деятельности специфических, неспецифических и ассоциативных образований мозга, которые и обеспечивают формирование адекватного адаптивного поведения организма.
Центральный, или корковый, отдел сенсорной системы, согласно И.П.Павлову, состоит из двух частей: центральной части, т.е. «ядра», представленной специфическими нейронами, перерабатывающими афферентную импульсацию от рецепторов, и периферической части, т.е. «рассеянных элементов» -- нейронов, рассредоточенных по коре большого мозга. Корковые концы анализаторов называют также «сенсорными зонами», которые не являются строго ограниченными участками, они перекрывают друг друга. В настоящее время в соответствии с цитоархитектоническими и нейрофизиологическими данными выделяют проекционные (первичные и вторичные) и ассоциативные третичные зоны коры. Возбуждение от соответствующих рецепторов в первичные зоны направляется по быстропроводящим специфическим путям, тогда как активация вторичных и третичных (ассоциативных) зон происходит по полисинаптическим неспецифическим путям. Кроме того, корковые зоны связаны между собой многочисленными ассоциативными волокнами.
Из общих принципов организации сенсорных систем следует выделить многоуровневость и многоканальность.
Многоуровневость обеспечивает возможность специализации разных уровней и слоев ЦНС по переработке отдельных видов информации. Это позволяет организму более быстро реагировать на простые сигналы, анализируемые уже на отдельных промежуточных уровнях.
Существующая многоканальность сенсорных систем проявляется в наличии параллельных нейронных каналов, т.е. в наличии в каждом из слоев и уровней множества нервных элементов, связанных со множеством нервных элементов следующего слоя и уровня, которые в свою очередь передают нервные импульсы к элементам более высокого уровня, обеспечивая тем самым надежность и точность анализа воздействующего фактора.
В то же время существующий иерархический принцип построения сенсорных систем создает условия для тонкого регулирования процессов восприятия посредством влияний из более высоких уровней на более низкие.
Данные особенности строения центрального отдела обеспечивают взаимодействие различных сенсорных систем и процесс компенсации нарушенных функций. На уровне коркового отдела осуществляются высший анализ и синтез афферентных возбуждений, обеспечивающие полное представление об окружающей среде.
Свойства коркового отдела анализаторов
1. Каждая сенсорная система (каждый анализатор) имеет проекцию в кору больших полушарий. Корковый отдел анализаторов имеет центральную часть и окружающую ее ассоциативную зону (по представлению И. П. Павлова -- «ядро» и рассеянные элементы). Центральная часть коркового отдела анализатора состоит из высокодифференцированных в функциональном отношении нейронов, которые осуществляют высший анализ и синтез информации, поступающей к ним. Ассоциативные корковые зоны представлены менее дифференцированными нейронами, способных к выполнению простейших функций. Синтез и анализ афферентных импульсов этими клетками осуществляется в элементарной, примитивной форме.
2. Одной из общих черт организации сенсорных систем является принцип двойственной проекции их в кору больших полушарий. Этот принцип тесно связан с многоканальностью проводящих путей и выражается в осуществлении двух различных типов корковых проекций, которые можно разделить на первичные и вторичные проекции. Первичные и вторичные проекционные зоны окружены ассоциативными корковыми зонами той же сенсорной системы. Примером двойственной проекции в коре головного мозга может служить представительство вкусового анализатора. Его первичная корковая проекция представлена, по-видимому, орбитальной областью коры, так как именно здесь при раздражении рецепторов языка вызванные ответы возникают с самым коротким латентным периодом и имеют самую высокую амплитуду. Вторичной проекционной областью коры вкусового анализатора является соматосенсорная область. Здесь вызванные ответы возникают значительно позже, чем в орбитальной области, и амплитуда их меньше.
3. Взаимодействие анализаторов на корковом уровне осуществляется за счет ассоциативных корковых зон и за счет наличия полимодальных нейронов.
33. Условия и механизм образования условных рефлексов
Важнейшим методом изучения ВНД является метод условных рефлексов в сочетании с различными дополнительными исследованиями или воздействиями. Основные правила выработки условных рефлексов следующие: неоднократное совпадение во времени индифферентного раздражителя с безусловным рефлексом; условный стимул должен предшествовать безусловному. Следовательно, условный рефлекс образуется на базе безусловного рефлекса.
Уравновешивание организма со средой осуществляется благодаря безусловно-рефлекторной деятельности нервной системы. Но достигаемое с помощью безусловных рефлексов равновесие организма и среды было бы совершенно только при абсолютном постоянстве внешней среды. А так как внешняя среда при своем чрезвычайном разнообразии вместе с тем находится в постоянном колебании, то безусловных рефлексов как устойчивых нервных связей оказывается недостаточно. Появляется необходимость дополнения их условными рефлексами, временными связями.
Условные рефлексы, приобретаемые организмом в определенных условиях в форме индивидуального опыта, способны изменяться и даже «исчезать», если отсутствуют вызвавшие их условия, изменилась ситуация. Условные рефлексы являются универсальным механизмом, обеспечивающим пластические формы поведения. Постоянно возникающие изменения внешней среды отражаются в непрерывных динамических перестройках реакций мозга, осуществляемых по рефлекторному принципу.
Механизм образования условных рефлексов
Рефлекс - это закономерная реакция организма на изменение внешней и внутренней среды, осуществляемая при посредстве ЦНС в ответ на раздражение рецепторов. Рефлексы проявляются в возникновении или прекращении какой-либо деятельности организма: в сокращении или расслаблении мышц, в секреции желез, в сужении или расширении сосудов и т.д.
Благодаря рефлекторной деятельности организм способен быстро реагировать на различные изменения внешней среды или своего внутреннего состояния и приспособляться к этим изменениям.
Рефлексы или рефлекторные акты отличаются большим разнообразием. Их можно классифицировать на различные группы по ряду признаков:
- по их биологическому значению - пищевые, оборонительные, ориентировочные, позно-тонические, половые, локомоторные (положения и передвижения в пространстве),
- в зависимости от того, где расположены рецепторы, раздражение которых вызывает данный рефлекторный акт (экстерорецептивные, интерорецептивные, проприоцептивные), разделение рефлексов по характеру ответной реакции,
- в зависимости от того какие органы участвуют - моторные, секреторные, сосудо-двигательные и т.д.
Все рефлексы делятся на безусловные и условные.
Безусловные рефлексы (БР) - это врожденные, видовые, т.е. свойственны представителям всем данного вида. Эти рефлексы осуществляются обязательно в ответ на адекватное раздражение, приложенное к одному определенному рецептору или группе рецепторов.
В осуществлении безусловных рефлексов ведущая роль принадлежит низшим отделам ЦНС - подкорковым ядрам, продолговатому мозгу, спинному мозгу.
Условные рефлексы (УР) - это реакции приобретенные организмом в процессе индивидуального развития на основе “жизненного опыта“. Они являются индивидуальными, непостоянными, в зависимости от определенных условий вырабатываются, закрепляются и исчезают.
Условные рефлексы вырабатываются на базе безусловных рефлексов. Для образования условного рефлекса необходимо сочетание во времени какого-либо изменения внешней среды или внутреннего состояния организма с осуществлением того или иного безусловного рефлекса. Только при этом условии изменение внешней среды или внутреннего состояния организма становится раздражителем условного рефлекса, условным раздражителем или сигналом. Раздражение, вызывающее безусловный рефлекс должно при образовании условного рефлекса сопутствовать условному раздражителю, подкреплять его.
Рис. 3. Схема «дуги» безусловного рефлекса
Итак, согласно теории И.П. Павлова, образуется временная связь между корковым центром безусловного рефлекса и корковым центром анализатора, на рецепторы которого действует индифферентный (условный) раздражитель. В коре больших полушарий происходит замыкание новой временной функциональной связи. Теперь подача только условного сигнала приводит к возбуждению коркового центра раздражителя. Этим самым организм оказывается заранее подготовленным к тем действиям, которые ему предстоит осуществить.
1-2-3-4-5- «дуга» безусловного рефлекса (слюноотделения);
3 - центр безусловного рефлекса в стволе мозга;
6 - корковое представительство безусловного рефлекса;
9 - корковый центр индифферентного сигнала;
10 - временная связь между двумя центрами в коре больших полушарий
Рис. 4. Схема образования условного рефлекса
Импульсы, вызываемые индифферентным (условным) сигналом, с любого участка кожи и других органов (глаз, ухо) поступают в кору больших полушарий и обеспечивают там образование очага возбуждения. Если после индифферентного сигнала подается подкрепление (например, пища), то возникает более мощный второй очаг возбуждения в коре больших полушарий, к которому направляется ранее возникшее и иррадиирующее по коре возбуждение. Неоднократное сочетание индифферентного (условного) сигнала и безусловного раздражителя (подкрепление) облегчает прохождение импульсов от коркового центра индифферентного сигнала к корковому представительству безусловного рефлекса - синаптическое облегчение.
Таким образом, в коре полушарий головного мозга при длительном использовании одной и той же последовательности условных сигналов создается определенная система связей (внутренний стереотип). Воспроизведение стереотипа носит, как правило, автоматический характер. Динамический стереотип мешает созданию нового (легче научить, чем переучить). Устранение стереотипа и создание нового сопровождается значительным нервным напряжением. В жизни человека стереотип играет значительную роль: профессиональные навыки, заучивание стихов, игра на музыкальных инструментах, выполнение движений в спорте, танцах и т.д.
Процесс формирования классического условного рефлекса (временной связи) проходит три стадии:
1) стадия прегенерализации, характеризующаяся выраженной концентрацией возбуждения (главным образом в проекционных зонах коры условного и безусловного раздражителей) и отсутствием условных поведенческих реакций;
2) стадия генерализации условного рефлекса, в основе которой лежит процесс «диффузного» распространения возбуждения (иррадиации); условные реакции возникают на сигнальный и другие раздражители; в этот период наблюдается синхронизация биоэлектрической активности во многих участках коры и подкорковых образованиях:
3) стадия специализации, когда межсигнальные реакции угасают и условный ответ возникает только на сигнальный раздражитель; изменения биотоков более ограничены и приурочены в основном к действию условного стимула.
Условные рефлексы - имеют очень большое приспособительное значение. Они обеспечивают приспособление организма к внешней среде и необходимы для более совершенной ориентации в изменчивых условиях.
При выработке условного рефлекса кроме двигательной реакции реагируют сердечно-сосудистая и дыхательная системы вследствие возбуждения симпато-адреналовой системы и выброса в кровь адреналина.
На клеточном уровне временная связь замыкается с помощью механизмов памяти. В начале выработки условного рефлекса осуществляется только с помощью механизмов кратковременной памяти - распространение возбуждения между двумя корковыми центрами. По мере повторения условных и безусловных раздражителей и повторения возбуждения между центрами, кратковременная память переходит в долговременную - происходят структурные и биохимические изменения в нейронах.
34. Функции коры большого мозга и их локализация
Кора выполняет следующие функции:
1 - взаимодействие организма с внешней средой за счет безусловных и условных рефлексов.
2 - осуществление высшей нервной деятельности (поведения) организма.
3 - выполнение высших психических функций (мышления и сознания).
4 - регуляция работы внутренних органов и обмена веществ в организме.
Кора больших полушарий представлена 12-18 миллиардами клеток, расположенных тонким слоем 3-4 мм на площади 2400 см2. 65-70 % этой площади находится в глубине борозд, а 30-35 % - на видимой поверхности полушарий. Кора состоит из нервных клеток, их отростков и нейроглинов, для которых характерно обилие межнейронных связей.
Функциональной единицей коры является вертикальная колонка взаимосвязанных нейронов. Все нейроны вертикальной колонки отвечают на одно и тоже афферентное раздражение одинаковой реакцией и совместно формируют эфферентный ответ. Распространение возбуждения в горизонтальном направлении (иррадиация) обеспечивается поперечными волокнами, идущими от одной вертикальной колонки к другой, а ограничивается - процессами торможения. Возникновение возбуждения в вертикальной колонке нейронов приводит к активности спинальные мотонейроны и к сокращению связанных с ними мышц.
Упорядоченное положение клеток в коре называется цитоархитектоникой, а их волокон - миелоархитектоникой.
При микроскопическом исследовании в коре различают шесть слоев нервных клеток:
1 - молекулярный (горизонтально расположенные клетки и волокна + дендриты пирамидных клеток),
2 - наружный зернистый (звездчатые и мелкие пирамидные клетки + тонкие нервные волокна),
3 - наружный пирамидный (средние и малые пирамидные клетки + восходящие волокна),
4 - внутренний зернистый (звездчатые клетки + таламо-корковые волокна и горизонтальные миелиновые волокна),
5 - внутренний пирамидный (крупные пирамидные клетки Беца от которых начинаются пирамидные проводящие пути),
6 - мультиформный (мелкие полиморфные клетки).
В первом слое коры волокна образуют полоску молекулярной пластинки. Во втором слое залегают тонкие волокна наружной зернистой пластинки. В составе четвертого слоя коры находится полоска внутренней зернистой пластинки (наружная полоска Байярже). В пятом слое содержатся волокна внутренней пирамидной пластинки (внутреняя полоска Байярже).
Основная информация в кору поступает по специфическим афферентным проводящим путям, заканчивающимся на клетках 3 и 4 слоев. Неспецифические пути от РФ заканчиваются в верхних слоях коры и регулируют ее функциональное состояние (возбуждение, торможение).
Звездчатые нейроны выполняют главным образом чувствительную (афферентную) функцию. Пирамидные и веретеновидные клетки - это преимущественно двигательные (эфферентные) нейроны.
Часть клеток коры принимают информацию от любых рецепторов организма - это полисенсорные нейроны, воспринимающие импульсы только от определенных рецепторов (зрительных, слуховых, тактильных и т.д.). Клетки нейроглии выполняют вспомогательные функции: трофическую, нейросекреторную, защитную, изолирующую.
Специализированные нейроны и другие клетки, входящие в состав вертикальных колонок, образуют отдельные участки коры, которые называются проекционными зонами (цитоархитектоническими полями). Эти функциональные зоны коры делятся на 3 группы:
- афферентные (чувственные);
- эфферентные (двигательные или моторные);
- ассоциативные (соединяют предыдущие зоны и обусловливают сложную работу мозга, лежащую в основе высшей психической деятельности).
У человека ассоциативные зоны достигают наибольшего развития. Локализация функций в коре головного мозга относительна - здесь нельзя провести каких-либо четких границ, поэтому мозг обладает высокой пластичностью, приспосабливаемостью к повреждениям. Тем не менее, морфологическая и функциональная неоднородность коры позволила выделить в ней 52 цитоархитектонических поля (К. Бродман), а среди них - центры зрения, слуха, осязания и др. Все они связаны между собой волокнами проводящих путей белого вещества, которые делятся на 3 типа:
1 - ассоциативные (связывают зоны коры в пределах одного полушария),
2 - комиссуральные (связывают симметричные зоны коры двух полушарий через мозолистое тело),
3 - проекционные (связывают кору и подкорку с периферическими органами, бывают чувствительные и двигательные).
Значение важнейших зон коры головного мозга.
1. Чувствительная зона коры (в постцентральной извилине) воспринимает импульсы от тактильных, температурных и болевых рецепторов кожи, а также от проприорецепторов противоположной половины тела.
2. Двигательная зона коры (в предцентральной извилине) содержит в 5 слое коры пирамидные клетки Беца, от которых идут импульсы произвольных движений к скелетным мышцам противоположной половины тела.
3. Премоторная зона (в основании средней лобной извилины) обеспечивает сочетанный поворот головы и глаз в противоположную сторону.
4. Праксическая зона (в надкраевой извилине) обеспечивает сложные целенаправленные движения практической деятельности и профессиональных двигательных навыков. Зона асимметрична (у правшей - в левом, а у левшей - в правом полушарии).
5. Центр проприоцептивного гнозиса (в верхней теменной дольке) обеспечивает восприятие импульсов проприорецепторов, контролирует ощущения тела и его частей как целостного образования.
6. Центр чтения (в верхней теменной дольке, вблизи затылочной доли) контролирует восприятие написанного текста.
7. Слуховая зона коры (в верхней височной извилине) воспринимает информацию от рецепторов органа слуха.
8. Слуховой центр речи, центр Вернике (в основании верхней височной извилины). Зона асимметрична (у правшей - в левом, а у левшей - в правом полушарии).
9. Слуховой центр пения (в верхней височной извилине). Зона асимметрична (у правшей - в левом, а у левшей - в правом полушарии).
10. Двигательный центр устной речи, центр Брока (в основании нижней лобной извилины) контролирует произвольные сокращения мышц, участвующих в речеобразовании. Зона асимметрична (у правшей - в левом, а у левшей - в правом полушарии).
11. Двигательный центр письменной речи (в основании средней лобной извилины) обеспечивает произвольные движения, связанные с написанием букв и других знаков. Зона асимметрична (у правшей - в левом, а у левшей - в правом полушарии).
12. Стереогностическая зона (в угловой извилине) контролирует узнавание предметов наощупь (стереогноз).
13. Зрительная зона коры (в затылочной доле) воспринимает информацию от рецепторов органа зрения.
14. Зрительный центр речи (в угловой извилине) контролирует движение губ и мимику говорящего оппонента, тесно связан с другими сенсорными и моторными речевыми центрами. Речь и сознание - это филогенетические наиболее молодые функции мозга, поэтому речевые центры имеют большое число рассеянных элементов и наименее локализованы. Речевые и мыслительные функции выполняются при участии всей коры. Речевые центры у человека сформировались на основе трудовой деятельности, поэтому они асимметричные, непарные и связаны с рабочей рукой.
При поражении чувствительной зоны коры может возникать частичная потеря чувствительности (гипэстезия). Одностороннее поражение приводит к нарушению кожной чувствительности на противоположной стороне тела. При двустороннем повреждении наблюдается полная потеря чувствительности (анестезия). В зависимости от обширности поражения двигательной зоны коры возникает частичная (парез) или полная (паралич) утрата движений. При поражении праксической зоны развивается (моторная или конструктивная) апраксия. Апраксия другого рода (идеаторная апраксия - «апраксия замысла») возникает при поражении передних отделов лобных долей. Здесь же возможно нарушение координации движений (корковая атаксия), сложных двигательных функций (акинезия), обеспечивающих трудовую деятельность, письмо (аграфия) и речь (моторная афазия). Поражение центра проприоцептивного гнозиса вызывает агнозию частей собственного тела (аутотопагнозию) - нарушение схемы тела. Поражение стереогностической зоны приводит к потере способности чтения (алексия). При двустороннем поражении слуховой зоны коры возникает полная корковая глухота. Поражение слухового центра речи (Вернике) имеет место словесная глухота (сенсорная афазия), а при поражении слухового центра пения возникает музыкальная глухота (сенсорная амузия) и неспособность к составлению осмысленных предложений из отдельных слов (аграмматизм). Поражение зрительной зоны коры в равных ее участках вызывает утрату способности ориентироваться в незнакомой обстановке, потерю зрительной памяти. Двустороннее поражение приводит к полной корковой слепоте.
Любая функциональная зона коры находится в анатомической и функциональной связи с другими зонами коры, с подкорковыми ядрами, структурами промежуточного мозга и ретикулярной формации, что обеспечивает совершенство выполняемых ими функций.
35. Особенности ВНД человека
Особенности ВНД человека. Закономерности условнорефлекторной деятельности, установленные для животных, свойственны и человеку. Однако поведение человека настолько сильно отличается от поведения животных, что у него должны существовать дополнительные нейрофизические механизмы, которые определяют особенности его внд. Павлов считал, что специфика внд человека возникла в результате нового способа взаимодействия с внешним миров, который стал возможен в результате деятельности людей и который выразился в речи.
Основа высшей нервной деятельности -- условные рефлексы, возникающие в процессе жизнедеятельности организма, и позволяющих ему целесообразно реагировать на внешние раздражители и тем самым приспосабливаться к постоянно изменяющимся условиям окружающей среды. Выработанные ранее УР способны затухать и исчезать благодаря торможению при изменении среды.
Раздражителями для образования условных рефлексов у человека являются не только факторы внешней среды (тепло, холод, свет, запасе), но и слова, обозначающие тот или иной предмет, явление. Исключительная способность человека (в отличие от животных) воспринимать смысл слова, свойства предметов, явления, человеческие переживания, обобщенно мыслить, общаться друг с другом с помощью речи. Вне общества человек не может научиться говорить, воспринимать письменную и устную речь, изучать опыт, накопленный за долгие годы существования человечества, и передавать его потомкам.
Особенностью высшей нервной деятельности человека является высокое развитие рассудочной деятельности и ее проявление в виде мышления. Уровень рассудочной деятельности напрямую зависит от уровня развития нервной системы. Человек обладает самой развитой НС. Особенностью внд человека является осознанность многих внутренних процессов его жизни. Сознание - функция человеческого мозга.
Две сигнальные системы действительности
Высшая нервная деятельность человека существенно отличается от высшей нервной деятельности животных. У человека в процессе его общественно-трудовой деятельности возникает и достигает высокого уровня развития принципиально новая сигнальная система.
Первая сигнальная система действительности-- это система наших непосредственных ощущений, восприятий, впечатлений от конкретных предметов и явлений окружающего мира. Слово (речь) -- это вторая сигнальная система (сигнал сигналов). Она возникла и развивалась на основе первой сигнальной системы и имеет значение лишь в тесной взаимосвязи с ней.
Благодаря второй сигнальной системе (слову) у человека более быстро, чем у животных, образуются временные связи, ибо слово несет в себе общественно выработанное значение предмета. Временные нервные связи человека более устойчивы и сохраняются без подкрепления в течении многих лет.
Слово является средством познания окружающей действительности, обобщенного и опосредованного отражения существенных ее свойств. Со словом “вводится новый принцип нервной деятельности -- отвлечение и вместе с тем обобщение бесчисленных сигналов -- принцип, обусловливающий безграничную ориентировку в окружающем мире и создающий высшее приспособление человека -- науку”.
Действие слова в качестве условного раздражителя может иметь такую же силу, как непосредственный первосигнальный раздражитель. Под влиянием слова находятся не только психические, но и физиологические процессы (это лежит в основе внушения и самовнушения).
Вторая сигнальная система имеет две функции -- коммуникативную (она обеспечивает общение между людьми) и функцию отражения объективных закономерностей. Слово не только дает наименование предмету, но и содержит в себе обобщение.
Ко второй сигнальной системе относится слово слышимое, видимое (написанное) и произносимое.
Под первой сигнальной системой понимают работу мозга, обуславливающую превращение непосредственных раздражителей в сигналы различных видов деятельности организма. Второй сигнальной системой обозначают функцию мозга человека ,которая имеет дело со словесными символами.
I СС является физиологической основой конкретного (предметного) мышления и ощущений; а II ССД - основой абстрактного (отвлеченного) мышления. Совместная деятельность сигнальных систем у человека является физиологической основой умственной деятельности, основой общественно-исторического уровня отражения как сущности психики и преобразования образов и сигналов в представления.
II СС является высшим регулятором человеческого поведения. II СС, взаимодействуя с I СС, служит физиологической основой специфически человеческих форм отражения действительности - сознательного отражения, регулирующего целенаправленную планомерную деятельность человека не просто как организма, а как субъекта общественно-исторической деятельности.
С точки зрения сигнальных систем ВНД человека имеет три уровня своего механизма:
· первый уровень - бессознательный, его основу составляют безусловные рефлексы;
· второй уровень - подсознательный, его основу составляет I СС;
· третий уровень - сознательный, его основу составляет II СС.
Речь значительно повысила способность мозга человека отражать действительность. Она обеспечила высшие формы анализа и синтеза.
Сигнализируя о том или ином предмете, слово выделяет его из группы других. Это аналитическая функция слова. В то же время слово как раздражитель имеет для человека и обобщающее значение. Это проявление его синтетической функции.
Физиологический механизм приобретенных сложных форм обобщения заложен у человека в свойствах слова как сигнала сигналов. Слово в этом качестве формируется благодаря его участию и образованию большого количества временных связей. Степень обобщения нельзя рассматривать как постоянную, устойчивую категорию, потому что она меняется, и, что особенно важно, в зависимости от условий формирования временных связей у учащихся в процессе их обучения. В физиологическом отношении в основе обобщения и отвлечения выступают два принципа:
1. образование системности в коре мозга;
2. постепенное сокращение сигнального образа.
Исходя из этих представлений о сущности механизма процесса обобщения, оказывается более понятным и представление об основах формирования новых понятий. В этом случае превращение слов в интеграторы различных ступеней следует рассматривать как развитие у школьников более широких понятий. Такие изменения приводят к построению все более сложной системности и к более широкому развитию объема интеграции. Угасание условных связей, входящих в эту систему, суживает объем интеграции и, следовательно, затрудняет формирование новых понятий. Отсюда следует вывод, что формирование понятий в физиологическом смысле имеет рефлекторную природу, т.е. его основу составляет формирование временных связей на речевой условный сигнал с адекватным ему безусловно-рефлекторным подкреплением.
У ребенка младшего школьного возраста в связи с недостаточным развитием второй сигнальной системы преобладает наглядное мышление, поэтому и память его имеет преимущественно наглядно-образный характер. Однако вместе с развитием второй сигнальной системы у ребенка зарождается начало теоретического, отвлеченного мышления.
Взаимодействие сигнальных систем является наиболее важным фактором в формировании конкретного и абстрактного. В процессе установления взаимоотношений между сигнальными системами возможно появление помех преимущественно за счет наиболее ранимой второй сигнальной системы. Так, например, при отсутствии стимулов, способствующих развитию второй сигнальной системы, мыслительная деятельность ребенка задерживается, а преобладающей оценочной системой его взаимоотношения с окружающей средой остается первая сигнальная система (образное, конкретное мышление). Вместе с тем желание воспитателя как можно раньше заставить проявиться абстрактным способностям ребенка, не соизмеряя это с достигнутым ребенком уровнем умственного развития, тоже может привести к нарушению проявлений второй сигнальной системы. В этом случае первая сигнальная система выходит из под контроля второй сигнальной системы, что легко можно заметить по поведенческим реакциям ребенка: у него нарушается способность к обдумыванию, спор приобретает не логический, а конфликтный, эмоционально окрашенный характер. У таких детей быстро развиваются срывы в поведении, появляются обидчивость, плаксивость, агрессивность.
Нарушение взаимоотношений между сигнальными системами можно устранить педагогическими приемами. Примером этого могут быть средства и методы, применявшиеся А.С. Макаренко. Воздействуя словом (через вторую сигнальную систему) и подкрепляя действием (через первую сигнальную систему), ему удавалось нормализовать поведение даже у очень «трудных» детей. А.С. Макаренко считал, что главное в развитии ребенка - умелая организация его разнообразной активной деятельности (познавательной, трудовой, игровой и др.). Взаимодействие сигнальных систем способствует формированию такой деятельности и, очевидно, что этим обеспечивается, кроме того, и необходимое развитие нравственного воспитания.
Вторая сигнальная система легче подвергается утомлению и торможению. Поэтому в начальных классах занятия должны быть построены так, чтобы уроки, требующие преобладающей деятельности второй сигнальной системы (например, математика), чередовались с уроками, в которых преобладала бы деятельность первой сигнальной системы (например, естествознание).
Учение о сигнальных системах имеет важное значение для педагогики еще и потому, что предоставляет учителю большие возможности для установления необходимого взаимодействия между словесным объяснением и наглядностью в процессе обучения, для воспитания у учащихся умения правильно соотносить конкретное с абстрактным. «Живое слово» учителя уже является средством наглядности. Искусство владеть словом заключается, прежде всего, в умении вызвать у учащихся яркое представление, «живой образ» того, о чем рассказывает учитель. Без этого рассказ учителя всегда скучен, неинтересен и плохо сохраняется в памяти учащихся. Важно в практике учителя также и умелое сочетание слова с наглядностью. В школьной методической практике установилось прочное убеждение в несомненной пользе наглядного обучения, что относится преимущественно к обучению в начальных классах. Действительно, в учебном процессе предметная наглядность выступает и как объект изучения, и как источник знаний, усваиваемых учащимися в процессе обучения. Наглядность обучения является средством организации разнообразной деятельности учащихся и используется учителем для того, чтобы обучение было наиболее результативным, доступным и способствовало развитию детей. Совместное действие слов и средств наглядности способствует появлению внимания учащихся, поддерживает их интерес к изучаемому вопросу.
Сочетание слова с наглядностью принимает одну из наиболее употребительных форм: слово выступает как условный сигнал для деятельности учащегося, например, как сигнал для начала изучения им программного вопроса, а наглядность служит средством восприятия. Причем, сущность явления воспринимается учащимися из словесного объяснения, а наглядность лишь служит средством, подтверждающим правильность объясняемого, и создает убежденность в этом. Учитель может применять каждый метод в отдельности или оба вместе, но всегда следует помнить, что в физиологическом плане они не однозначны. Если при первом способе применения наглядности у учащихся преобладающим оказывается развитие первой сигнальной системы, что выражается в формировании конкретного представления об изучаемом предмете или явлении, то во втором, напротив, преобладающее развитие получает вторая сигнальная система, что выражается в формировании абстрактного представления, которое играет здесь большую роль, т.к. наглядное только подтверждает абстрактное представление. При правильном применении каждого из этих методов можно добиться необходимого взаимоотношения между первой и второй сигнальными системами, не делая ни одну из них чрезмерно преобладающей. В противном случае у учащегося окажется более развитой или способность воспринимать только конкретное, и тогда он будет в трудном положении каждый раз, когда необходимость заставит его применить способности к абстрагированию, или, может быть, наоборот, -- способность воспринимать только абстрактное будет ставить учащегося в трудное положение каждый раз, когда он должен будет обратиться к конкретному материалу. Следовательно, сочетание словесного объяснения с наглядностью может служить педагогике и оказаться эффективным только в том случае, если учитель найдет средства к установлению необходимой взаимосвязи между первой и второй сигнальными системами действительности, выражающими у людей конкретное и абстрактное представления об окружающей среде.
36. Структурно-функциональная организация промежуточного мозга
Промежуточный мозг располагается выше среднего мозга, под мозолистым телом. Он состоит из таламуса, эпиталамуса, метаталамуса и гипоталамуса.
1. Таламус (зрительный бугор): строение и функциональное значение
Таламус, или зрительный бугор, представляет собой парное образование яйцевидной формы объёмом около 3,3 см3, состоящее в основном из серого вещества. Передний конец таламуса (передний бугорок) заострён, а задний конец (подушка) закруглён.
Медиальная и задняя (дорсальная) поверхности таламуса свободны, поэтому хорошо видны на сагиттальном разрезе мозга. Медиальная поверхность правого и левого таламусов, обращённые друг к другу, образуют боковые стенки III мозгового желудочка (полость промежуточного мозга). На центральном сагиттальном разрезе на медиальных поверхностях таламусов видна межталамическая спайка (сращение), состоящая из волокон, соединяющих зрительные бугры между собой.
Передняя (нижняя) поверхность таламусов сращена с гипоталамусом, через неё с каудальной стороны в промежуточный мозг входят проводящие пути из ножек мозга.
Латеральная поверхность таламуса прилежит к внутренней капсуле.
На разрезах, проходящих через таламус, определяются участки серого вещества, отделённые друг от друга прослойками белого вещества. Это ядра таламуса, всего их более 40. По топографии ядра таламуса объединяют в группы: переднюю, центральную, медиальную, латеральную и несколько вентральных групп, кроме того, выделяют заднюю группу - ядра подушки таламуса. По функциям ядра таламуса делят на сенсорные (специфические и неспецифические), моторные и ассоциативные.
Соответственно, основными функциями таламуса являются:
- переработка сенсорной информации от рецепторов и подкорковых переключающих центров с последующей передачей её коре;
- участие в регуляции движений;
- обеспечение связи и интеграции различных отделов мозга.
2. Эпиталамус: строение и функции
Эпиталамус (надталамическая область) включает шишковидное тело (эпифиз), поводки и треугольники поводков. В треугольниках поводков залегают ядра, относящиеся к обонятельному анализатору. Поводки отходят от треугольников поводков, идут каудально, соединяются посредством спайки и переходят в шишковидное тело. Последнее как бы подвешено на них и располагается между верхними бугорками четверохолмия. Шишковидное тело является железой внутренней секреции. Его функции полностью не установлены, предполагается, что оно регулирует наступление полового созревания.
3. Метаталамус: строение и функции
Метаталамус (заталамическая область) образован парными медиальными и латеральными коленчатыми телами, расположенными позади каждого таламуса. В коленчатых телах располагаются ядра, в которых переключаются импульсы, идущие к корковым отделам зрительного и слухового анализатора.
Медиальное коленчатое тело находится позади подушки таламуса; вместе с нижними холмиками пластинки крыши среднего мозга оно является подкорковым центром слухового анализатора.
Латеральное коленчатое тело располагается книзу от подушки таламуса. Вместе с верхними бугорками четверохолмия оно образует подкорковый центр зрительного анализатора.
4. Гипоталамус: строение и функциональное значение
Гипоталамус (подталамическая область) является вентральной частью промежуточного мозга. Он располагается кпереди от заднего продырявленного вещества. К гипоталамусу относят сосцевидные тела, серый бугор и зрительный перекрёст.
Сосцевидные тела располагаются по бокам средней линии кпереди от заднего продырявленного вещества. Это образования неправильной шаровидной формы белого цвета. Внутри каждого сосцевидного тела находятся два ядра (латеральное и медиальное), они являются подкорковыми центрами обонятельного анализатора, а также входят в лимбическую систему.
Серый бугор располагается кпереди от сосцевидных тел, между зрительными трактами. Серый бугор является полым выступом нижней стенки III желудочка, образованной тонкой пластинкой серого вещества. Верхушка серого бугра вытянута в узкую полую воронку, на конце которой находится мозговой придаток, гипофиз. Гипофиз располагается в специальном углублении основания черепа, «турецком седле». В гипофизе выделяют переднюю долю (аденогипофиз - железистый гипофиз), среднюю долю (метагипофиз) и заднюю долю (нейрогипофиз).
Спереди от серого бугра располагается зрительный перекрёст. В нём происходит переход на противоположную сторону части волокон зрительного нерва, идущей от медиальной половины сетчатки. После перекрёста формируются зрительные тракты, направляющиеся кзади и латерально к правому и левому коленчатому телу.
В сером веществе гипоталамуса выделяют 32 пары ядер, которые подразделяют на передние, средние и задние. В передней части гипоталамуса самыми крупными являются супраоптическое (надзрительное) и паравентрикулярное (околожелудочковое) ядра. В средней части (бугор и околобугорная область) располагаются ядра серого бугра, воронки и другие. В задней части гипоталамуса наиболее крупными ядрами являются медиальное и латеральное ядра в каждом сосцевидном теле, а также заднее гипоталамическое ядро.
В передних ядрах гипоталамуса находятся:
- центр парасимпатического отдела вегетативной нервной системы;
- центр теплоотдачи;
- нейросекреторные клетки, продуцирующие вазопрессин (супраоптическое ядро) и окситоцин (паравентрикулярное ядро);
- центр жажды.
В средних ядрах гипоталамуса находятся:
- центр голода и насыщения;
- центр полового поведения;
- центр агрессии.
В задних ядрах гипоталамуса находятся:
- центр симпатического отдела вегетативной нервной системы;
- центр теплопродукции;
- нейросекреторные клетки, продуцирующие рилизинг-гормоны (либерины и статины), регулирующие продукцию гипофизарных гормонов;
- центр удовольствия.
Ядра гипоталамуса получают обильное кровоснабжение. Капиллярная сеть гипоталамуса по своей разветвлённости в несколько раз больше, чем в других отделах ЦНС. Одной из особенностей капилляров гипоталамуса является их высокая проницаемость, обусловленная истончённостью стенок капилляров и их фенестрированностью. В результате этого в гипоталамусе слабо выражен гематоэнцефалический барьер (ГЭБ), и нейроны гипоталамуса способны воспринимать изменения состава спинномозговой жидкости и крови (температуру, содержание ионов, наличие и количество гормонов и т.д.).
Гипоталамус является центральным звеном, связующим нервные и гуморальные механизмы регуляции вегетативных функций организма. Управляющая функция гипоталамуса обусловлена способностью его клеток к секреции различных регуляторных веществ. Нейросекрет путём аксонального транспорта переносится в другие структуры мозга, спинномозговую жидкость, кровь или в гипофиз, изменяя функциональную активность органов-мишеней. Соответственно основным контурам регуляции, в гипоталамусе выделяют 4 нейроэндокринные системы.
Гипоталамо-экстрагипоталамная система представлена нейросекреторными клетками гипоталамуса, аксоны которых уходят в таламус, структуры лимбической системы, продолговатый мозг. Эти клетки выделяют эндогенные опиоиды, соматостатин и др.
Гипоталамо-аденогипофизарная система связывает ядра заднего гипоталамуса с передней долей гипофиза. По этому пути транспортируются рилизинг-гормоны (либерины и статины). Посредством их гипоталамус регулирует секрецию тропных гормонов аденогипофиза, определяющих секреторную активность желёз внутренней секреции (щитовидной, половых и других).
Гипоталамо-метагипофизарная система связывает нейросекреторные клетки гипоталамуса со средней долей гипофиза. По аксонам этих клеток транспортируются меланостатин и меланолиберин, которые регулируют синтез меланина - пигмента, определяющего окраску кожи, волос, радужки и других тканей организма.
Гипоталамо-нейрогипофизарная система связывает ядра переднего гипоталамуса с задней (железистой) долей гипофиза. По этим аксонам транспортируются вазопрессин и окситоцин, которые накапливаются в задней доле гипофиза и выделяются в кровоток по мере необходимости.
37. Структурно-функциональная организация продолговатого мозга
Продолговатый мозг, луковица мозга (medulla oblongata, bulbus cerebri), часть ствола головного мозга позвоночных, переходящая вниз (кзади) в спинной мозг, а вверх (кпереди) -- в варолиев мост. В продолговатом мозге расположены жизненно важные центры, регулирующие дыхание, кровообращение, обмен веществ. Продолговатый мозг является естественным продолжением спинного мозга, но сегментация у него выражена слабее, а нейронная организация более сложна, чем у спинного мозга.
Продолговатый мозг выполняет проводящую и рефлекторную функции. Через него проходят все пути, соединяющие нейроны спинного мозга с высшими отделами головного мозга. Филогенетически головной мозг является древнейшим утолщением переднего конца нервной трубки, и в нем лежат центры многих важнейших для жизни человека рефлексов. Так, в продолговатом мозге находится дыхательный, центр, нейроны которого подразделяются на инспираторные (вдыхательные) и экспираторные (выдыхательные). Реагируя на повышение уровня углекислоты в крови, инспираторные нейроны возбуждаются, посылая импульсы к мотонейронам спинного мозга; от них импульсы идут к межреберным мышцам и мышцам диафрагмы, заставляя их сокращаться - происходит вдох. Здесь же в продолговатом мозге расположен сосудодвигательный центр. Его нейроны, постоянно разряжаясь нервными импульсами, поддерживают оптимальный просвет артериальных сосудов, обеспечивая нормальное артериальное давление.
Искусственное раздражение нейронов передней части этого центра приводит к сужению артериальных сосудов, подъему давления, учащению сердцебиений. Раздражение нейронов задней части этого центра приводит к обратным эффектам. Нисходящие нервные пути от нейронов этого центра заканчиваются на преганглионарных нейронах симпатической нервной системы, расположенных в боковых рогах серого вещества грудных сегментов спинного мозга.
38. Гипоталамическая регуляция секреторной активности гипофиза
В составе гипоталамуса находятся нейроны, вырабатывающие гормоны или специальные вещества, которые в дальнейшем, действуя на клетки соответствующих эндокринных желез, приводят к выделению или прекращению выделения гормонов. Все эти вещества вырабатываются в нейронах гипоталамуса, затем транспортируются по их аксонам в гипофиз. Ядра гипоталамуса связаны с гипофизом гипоталамо-гипофизарным трактом, который состоит примерно из 200 000 волокон. Свойство нейронов вырабатывать специальные белковые секреты и затем их транспортировать для выброса в кровяное русло называется нейрокринией.
Гипоталамус является частью промежуточного мозга и одновременно эндокринным органом.
Эндокринная система занимает одно из центральных мест в управлении различными процессами жизнедеятельности на уровне целого организма.
Железы внутренней секреции (эндокринные железы) имеют различное происхождение, неодинаковое строение. Однако все они участвуют в обменных процессах, в гуморальной регуляции жизненно важных процессов. Поэтому такие железы объединены по функциональным признакам в единый эндокринный аппарат.
Железы внутренней секреции подразделяются на зависимые и независимые от функций гипофиза. К железам, зависимым от гипофиза, относят щитовидную железу, корковое вещество надпочечников, половые железы.
Гипофиз - это железа размером 10 - 15 мм, ее масса 0,5 - 0,7 г. Расположен гипофиз в гипофизарной ямке турецкого седла клиновидной кости. Гипофиз соединен с гипоталамусом «воронкой». Гипофиз координирует функции многих других эндокринных органов. Кроме того, гипофиз регулирует многие жизненно важные функции.
У гипофиза выделяют три доли - переднюю, среднюю (промежуточную) и заднюю, имеющие различное происхождение и строение.
Подобные документы
Особенности состояния высшей нервной деятельности. Получение материалов, характеризующих особенности высшей нервной деятельности, их изменения в связи с заболеванием туберкулезом. Воздействие на центральную нервную регуляцию физиологических функций.
реферат [27,0 K], добавлен 21.09.2010Методы исследования функции центральной нервной системы. Рефлексы человека, имеющие клиническое значение. Рефлекторный тонус скелетных мышц (опыт Бронджиста). Влияние лабиринтов на тонус мускулатуры. Роль отделов ЦНС в формировании мышечного тонуса.
методичка [34,3 K], добавлен 07.02.2013Виды торможения условных рефлексов, системность в работе коры больших полушарий и выработка динамического стереотипа. Взаимоотношения процессов возбуждения и торможения в коре большого мозга. Типы и особенности высшей нервной деятельности человека.
реферат [169,9 K], добавлен 23.06.2010Общие понятия о вегетативной нервной системе. Проявление симпатических и парасимпатических функций вегетативной нервной системы. Особенности реакции симпатической нервной системы на различные типы раздражения. Влияние на органы человеческого организма.
реферат [361,8 K], добавлен 09.03.2016Регуляция функций организма, согласованная деятельность органов и систем, связь организма с внешней средой как основные функции деятельности нервной системы. Свойства нервной ткани - возбудимость и проводимость. Строение головного мозга и его зоны.
реферат [2,7 M], добавлен 04.06.2010Нейроны как основа нервной ткани. Общее понятие про синапс. Чувствительные, вставочные и исполнительные нейроны. Функциональное деление нервной системы. Безусловные и условные рефлексы. Спинной мозг: строение, функции. Продолговатый мозг и мост, мозжечок.
презентация [1,4 M], добавлен 05.05.2012Основные свойства нервных процессов, определяющие поведение. Типы высшей нервной деятельности и аналитико-синтетическая функция коры головного мозга. Сигнальные системы действительности. Появление первых условных рефлексов и развитие речи у человека.
контрольная работа [7,0 M], добавлен 15.11.2010Изучение расстройств функций вегетативной нервной системы, поражения периферических вегетативных нервов иганглионарного аппарата. Симптомы общих невровегетативных расстройств. Вегетативные яды и рефлексы, их признаки и отличия от соматических рефлексов.
реферат [20,9 K], добавлен 16.06.2010Определение роли и принципов автономной (вегетативной) нервной системы. Общая характеристика влияния симпатического и парасимпатического отделов на эффекторные органы, сенсорные функции. Физиологические основы высшей психической деятельности человека.
презентация [133,4 K], добавлен 25.03.2015Изучение безусловных и условных рефлексов. Процессы иррадиации, концентрации и индукционной восприимчивости как основы развития психической деятельности организма. Описание парасимпатического и симпатического отделов вегетативной нервной системы.
реферат [21,3 K], добавлен 09.07.2010