Использование гомотопического метода для непрерывных конечномерных векторных полей в пространствах любой размерности

Формулирование и доказывание теоремы общего характера об использовании метода гомотопий для произвольных конечномерных полей. Рассмотрение преимуществ использования метода гомотопий. Вычисление индекса изолированной особой точки векторного поля.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 26.04.2019
Размер файла 25,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Сущность математической теории скалярных и векторных полей, ее основные понятия и определения. Характерные черты и отличительные признаки скалярных и векторных полей, доказательства их главных теорем.

    лекция [121,6 K], добавлен 11.02.2010

  • Основные понятия и некоторые классические теоремы теории интерполяции. Определение общих свойств пространств Лоренца. Понятие нормы и спектрального радиуса неотрицательных матриц. Исследование интерполяционных признаков семейств конечномерных пространств.

    курсовая работа [289,9 K], добавлен 12.01.2011

  • Операции в скалярных и векторных полях. Наиболее распространенные типы векторных полей и задачи, которые возникают при изучении этих полей. Потенциальное, гармоническое и соленоидальное векторное поле. Векторный потенциал поля. Задачи Дирихле и Неймана.

    курсовая работа [294,8 K], добавлен 07.11.2013

  • Изучение теории поля с помощью векторного анализа. Векторные поля на плоскости и векторные линии. Вращение, вычисление и свойства дивергенции. Свойство аддитивности циркуляции полей. Ротор и его основные свойства. Рассмотрение формул Грина и Стокса.

    курсовая работа [649,8 K], добавлен 18.12.2011

  • Рассмотрение основ векторных полей, физического смысла дивергенции и ротора. Ознакомление с криволинейными и поверхностными интегралами и методами их вычисления. Изучение основных положений теорем Гаусса-Остроградского и Стокса; примеры решения задач.

    реферат [1,5 M], добавлен 24.03.2014

  • Использование теоретико-числового и алгебраического метода доказательства, с наглядной геометрической верификацией, который был изобретен П. Ферма. Верификация метода бесконечных (неопределенных) спусков, который применяется для доказательства теоремы.

    научная работа [796,8 K], добавлен 11.01.2008

  • Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

    творческая работа [27,7 K], добавлен 17.10.2009

  • Определение роли групп, колец и полей в алгебре и ее приложениях. Рассмотрение свойств групп, колец и полей. Определение бинарной алгебраической операции. Простейшие свойства кольца. Обозначение колей при обычных операциях сложения и умножения.

    курсовая работа [634,5 K], добавлен 24.11.2021

  • Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.

    статья [35,2 K], добавлен 21.05.2009

  • Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.

    реферат [66,4 K], добавлен 14.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.