Диофантовы приближения логарифма "золотого сечения"
Применение формул Эйлера, Гаусса и Куммера для гипергеометрической функции. Свойства "золотого сечения", его роль в математике и в теории чисел. Доказательство лемм с помощью схемы Чудновского-Хаты для нахождения числового значения "золотого сечения".
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 27.05.2018 |
Размер файла | 112,7 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.
курсовая работа [416,0 K], добавлен 09.08.2015Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.
реферат [584,7 K], добавлен 22.03.2015Задача нахождения экстремума: сущность и содержание, оптимизация. Решение методами квадратичной интерполяции и золотого сечения, их сравнительная характеристика, определение основных преимуществ и недостатков. Количество итераций и оценка точности.
курсовая работа [779,5 K], добавлен 25.08.2014Использование принципов "золотого сечения" в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; "математика гармонии".
реферат [20,3 K], добавлен 24.11.2009Понятие золотого сечения. История открытия "золотой" пропорции, ее использование в архитектуре, живописи и природе. Проведение исследования, доказывающего утверждение Ле Корбюзье. Примеры золотого сечения. Геометрическая загадка портрета Джоконды.
презентация [7,0 M], добавлен 10.11.2014Методы последовательного поиска: деление отрезка пополам, золотого сечения, Фибоначчи. Механизмы аппроксимации, условия и особенности их применения. Методы с использованием информации о производной функции: средней точки, Ньютона, секущих, кубической.
курсовая работа [361,5 K], добавлен 10.06.2014Определение золотого сечения и его роль в науке. Присутствие золотого сечения в окружающей жизни. Золотое сечение в расположении листьев на стебле и в пропорциях тела. Деление тела точкой пупа. Числа Фибоначчи, золотая пропорция и тело человека.
реферат [2,2 M], добавлен 09.04.2012Понятие "золотое сечение" как пропорции, деления в крайнем и среднем отношении. Математические свойства сечения, его использование в музыке, архитектуре, искусстве. Пропорции тела человека. Исследование распространения "золотого сечения" в природе.
презентация [1,9 M], добавлен 27.02.2012Методы нахождения минимума функции одной переменной и функции многих переменных. Разработка программного обеспечения вычисления локального минимума функции Химмельблау методом покоординатного спуска. Поиск минимума функции методом золотого сечения.
курсовая работа [95,1 K], добавлен 12.10.2009Математическая задача оптимизации. Минимум функции одной и многих переменных. Унимодальные и выпуклые функции. Прямые методы безусловной оптимизации и минимизации, их практическое применение. Методы деления отрезка пополам (дихотомия) и золотого сечения.
курсовая работа [2,0 M], добавлен 26.08.2009