Дискретна інтерполяція на основі варіативного формування різницевих схем кутових параметрів
Керування формою згущеної кривої та її локальна корекція. Поняття безрозмірного коефіцієнту співвідношення кутових параметрів. Дискретна інтерполяція перехідних, прямолінійних ділянок та ділянок дискретно представлених кривих поблизу особливих точок.
Рубрика | Математика |
Вид | автореферат |
Язык | украинский |
Дата добавления | 14.07.2015 |
Размер файла | 389,9 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Суть інтерполяції - у відшуканні значень функції в деякій проміжній точці. Лінійна інтерполяція, в основі якої лежить наближення кривої на ділянці між заданими точками прямою, що проходить через ті ж точки. Інтерполяція за Лагранжем. Практична формула.
презентация [92,6 K], добавлен 06.02.2014Кінцеві різниці різних порядків. Залежність між кінцевими різницями і функціями. Дискретний і неперервний аналіз. Поняття про розділені різниці. Інтерполяційна формула Ньютона. Порівняння формул Лагранжа і Ньютона. Інтерполяція для рівновіддалених вузлів.
контрольная работа [75,6 K], добавлен 06.02.2014Поняття нормованого простору: лінійний простір, оператор, безперервний та обмежений оператор. Простір функцій. Інтеграл Лебега-Стилтьеса. Інтерполяція в просторах сумуємих функцій. Теореми Марцинкевича та Рисса-Торина. Простір сумуємих послідовностей.
курсовая работа [407,3 K], добавлен 16.01.2011Проблеми глобальної та локальної інтерполяції за Лагранжем і Ньютоном; коливна поведінка інтерполяційного многочлена; функції Рунге. Сплайн – група пов'язаних кубічних многочленів з неперервною першою і другою похідною, переваги сплайн-інтерполяції.
презентация [1,3 M], добавлен 06.02.2014Знаходження коефіцієнтів для рівнянь нелінійного виду та аналіз рівняння регресії. Визначення параметрів емпіричної формули. Метод найменших квадратів. Параболічна інтерполяція, метод Лагранжа. Лінійна кореляція між випадковими фізичними величинами.
курсовая работа [211,5 K], добавлен 25.04.2014Основне рівняння молотильного барабана по академіку В.П. Горячкіну та його аналіз. Визначення його критичних і робочої кутових швидкостей. Зв'язок між потужністю і приведеним моментом інерції барабана. Визначення основних параметрів молотильного апарата.
презентация [427,6 K], добавлен 30.08.2014Ознайомлення з історією виникнення теорії множин. Способи опису характеристичних властивостей множин. Декартовий добуток та бінарні відношення. Ін’єктивні, сюр’єктивні та бієктивні відображення. Поняття та властивості бінарної алгебраїчної операції.
лекция [2,5 M], добавлен 28.10.2014Оцінювання параметрів розподілів. Незміщені, спроможні оцінки. Методи знаходження оцінок: емпіричні оцінки, метод максимальної правдоподібності. Означення емпіричної функції розподілу, емпіричні значення параметрів. Задача перевірки статистичних гіпотез.
контрольная работа [57,2 K], добавлен 12.08.2010Закон розподілення дискретної випадкової величини, подання в аналітичній формі за допомогою функції розподілення ймовірності. Числові характеристики дискретних випадкових величин. Значення критерію збіжності Пірсона. Аналіз оцінок математичного чекання.
курсовая работа [105,2 K], добавлен 09.07.2009Методика проведення операції в розширених полях. Сліди і базиси розширеного поля. Двійкове подання елементів у поліноміальному і нормальному базисах. Подання точок кривої у різних координатних системах. Складність арифметичних операцій у групах точок ЕК.
реферат [133,7 K], добавлен 05.02.2011