Кривые второго порядка
Рассмотрение линий и пучков второго порядка на проективной плоскости. Аффинная геометрия с проективной точки зрения. Диаметральные плоскости, как полярные плоскости несобственных точек. Проективная классификация вещественных поверхностей второго порядка.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 22.01.2015 |
Размер файла | 669,1 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Роль идей и методов проективной геометрии в математической науке. Закономерности кривых второго порядка и кривых второго класса, основные теоремы Паскаля и Брианшона, описывающие замечательное свойство шестиугольника вписанного в кривую второго порядка.
курсовая работа [1,9 M], добавлен 04.11.2013Теоремы Паскаля, Брианшона для пятиугольника, четырехугольника, треугольника. Их использование для решения задач конструктивного типа проективной геометрии линий 2-го порядка на расширенной прямой, связанные с построением точек и касательных к ним.
курсовая работа [967,1 K], добавлен 02.06.2013Эллипс, гипербола, парабола как кривые второго порядка, применяемые в высшей математике. Понятие кривой второго порядка - линии на плоскости, которая в некоторой декартовой системе координат определяется уравнением. Теоремма Паскамля и теорема Брианшона.
реферат [202,6 K], добавлен 26.01.2011Окружность множество точек плоскости, равноудаленных от данной точки. Эллипс, множество точек плоскости, для каждой из которых сумма расстояний до двух точек плоскости. Парабола, множество точек плоскости, равноудаленных от данной точки плоскости.
реферат [197,7 K], добавлен 03.08.2010Исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам. Инвариантность выражения АС-В2. Классификация линий второго порядка. Уравнения, определяющие эллипс и гиперболу. Директрисы кривых второго порядка.
курсовая работа [132,1 K], добавлен 14.10.2011Уравнение для описания поверхности второго порядка в аффинной системе координат. Виды квадрики в прямоугольной системе координат: мнимый эллипсоид, гиперболоид, конус, параболоид, цилиндр, плоскости. Способы приведения квадрики к каноническому виду.
курсовая работа [4,5 M], добавлен 19.09.2012Линейные операторы, собственные значения. Общее понятие о квадратичных формах. Упрощение уравнений второго порядка на плоскости. Упрощение уравнений фигур в пространстве. Ортогональное преобразование, приводящее квадратичную форму к каноническому виду.
курсовая работа [162,9 K], добавлен 13.11.2012Сведения о плоских кривых. Замечательные кривые третьего порядка. Классификация Ньютона кривых третьего порядка. Циссоида и ее свойства. Преобразования плоскости, переводящие кривые второго порядка в кривые третьего порядка. Преобразования Маклорена.
дипломная работа [960,1 K], добавлен 22.04.2011Нахождение координат треугольника по заданным вершинам. Условия перпендикулярности, параллельности и совпадения прямых. Уравнение плоскости, проходящей через точку. Составление канонических уравнений прямой, кривой второго порядка и поверхности.
контрольная работа [259,7 K], добавлен 28.03.2014Уравнения линии на плоскости, их формы. Угол между прямыми, условия их параллельности и перпендикулярности. Расстояние от точки до прямой. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и главные геометрические свойства.
лекция [160,8 K], добавлен 17.12.2010