Размышления о мерности пространства

Общая характеристика формулы для определения мерности пространства наблюдателя. Рассмотрение способов изъятия точки с поверхности сферы, с последующим стягиванием поверхности, при неизменном радиусе сферы. Анализ системы аксиом евклидовой геометрии.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 04.09.2013
Размер файла 31,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Понятие и характеристика линейного пространства, его главные свойства и особенности. Исследование аксиом векторного пространства. Анализ отличий и признаков векторного подпространства. Базис и формулы линейного пространств, определение его размерности.

    реферат [249,4 K], добавлен 21.01.2011

  • Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.

    дипломная работа [1,7 M], добавлен 17.05.2010

  • Искривленность пространства. Изучение "параллельных прямых" на поверхности планеты. Первая и вторая основная квадратичная форма. Классификация точек поверхности. "Мыльные пленки", возникающие на замкнутых контурах. Нахождение средних кривизн поверхностей.

    курсовая работа [2,1 M], добавлен 11.03.2014

  • Классификация различных точек поверхности. Омбилические точки поверхности. Строение поверхности вблизи эллиптической, параболической и гиперболической точек. Линии кривизны поверхности и омбилические точки. Поверхность, состоящая из омбилических точек.

    дипломная работа [956,7 K], добавлен 24.06.2015

  • Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.

    презентация [993,0 K], добавлен 12.04.2015

  • Замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Линейчатые поверхности вращения. Точка на поверхности тора и сферы. Понятие меридиональной плоскости. Преобразование комплексного чертежа. Метод замены плоскостей проекций.

    презентация [69,8 K], добавлен 27.10.2013

  • Образование винтовой поверхности (геликоида) винтовым перемещением линии (образующей). Прямые и наклонные, закрытые и открытые геликоиды. Построение разверток поверхности, их свойства и сферы применения. Схемы развертки тел вращения: конус и цилиндр.

    презентация [338,1 K], добавлен 16.01.2012

  • Определение цилиндра (кругового прямого и наклонного), прямого и усечённого конуса, шара и сферы. Основные формулы по расчету геометрических размеров фигур вращения: радиуса, площади боковой и полной поверхности. Объем шара по Архимеду. Уравнение сферы.

    презентация [3,4 M], добавлен 18.04.2013

  • Этапы развития теории описания пространства, сущность принципа относительности, сформулированного Галилеем. Геометрия Минковского как описание пространства – времени, основные понятия ее описания. Разработка практических занятий по данным темам.

    дипломная работа [354,6 K], добавлен 24.02.2010

  • Поверхности и ориентация. Теория внутренней поверхности. Выбор ориентации поверхности при помощи выбора базиса касательных векторов. Выбор вектора единичной нормали. Внутренняя геометрия поверхности, определение развертки и теорема Александрова.

    реферат [144,0 K], добавлен 07.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.