Евклидовы кольца и кольца главных идеалов
Понятие кольца как непустого множества К с определенными на нем бинарным алгебраическими операциями сложения и умножения, требования к аксиомам. Разновидности кольца К и основные требования, предъявляемые к каждому из них, простейшие свойства и значение.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 10.01.2012 |
Размер файла | 37,1 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Определение роли групп, колец и полей в алгебре и ее приложениях. Рассмотрение свойств групп, колец и полей. Определение бинарной алгебраической операции. Простейшие свойства кольца. Обозначение колей при обычных операциях сложения и умножения.
курсовая работа [634,5 K], добавлен 24.11.2021Абелевы группы по сложению. Кольца, образованные аддитивной группой ZxZ. Кольца, образованные аддитивной группой ZxZxZ. Подкольца поля комплексных чисел и кольца классов вычетов целых чисел. Теория ассоциативных колец.
дипломная работа [28,4 K], добавлен 08.08.2007История развития алгебры как научной дисциплины. Расширения Галуа как универсальный метод решения уравнений любой степени. Определение понятия коммуникативной (абелевой) группы. Сущность кольца и его свойства. Примеры использования конечного поля.
реферат [50,0 K], добавлен 28.05.2014Допустимые кольца и решетки. Допустимые полутела. О единственности расширения. Теория полуколец - раздел современной алгебры, находящий применения в компьютерной алгебре, идемпотентном анализе, теории оптимального управления.
дипломная работа [92,2 K], добавлен 08.08.2007Расширенный алгоритм Евклида, его использование для нахождения наибольшего общего делителя натуральных чисел посредством остатков от деления. Математическая проблема календаря. Евклидовы кольца - аналоги чисел Фибоначчи в кольце многочленов, их свойства.
реферат [571,1 K], добавлен 25.09.2009Основные понятия, леммы и предложения. Доказательство основной теоремы. Полукольцо отличается от ассоциативного кольца с единицей отсутствием операции вычитания. Основные трудности при работе с полукольцами.
дипломная работа [72,7 K], добавлен 08.08.2007Теория полуколец находит своё применение в теории автоматов, компьютерной алгебре и других разделах математики. Построение классического полукольца частных. Построение полного полукольца частных. Связь между полным и классическим полукольцами частных.
реферат [227,2 K], добавлен 27.05.2008Вектор - элемент векторного пространства (некоторого множества с двумя операциями на нем, которые подчиняются восьми аксиомам). Свободный и связанный векторы. Евклидовая норма и правило параллелограмма. Скалярное произведение и умножение вектора на число.
контрольная работа [102,6 K], добавлен 03.07.2011История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.
контрольная работа [22,6 K], добавлен 20.12.2009Аксиомы линейного векторного пространства. Произведение любого вектора на число 0. Аксиомы размерности, доказательство теоремы. Дистрибутивность скалярного произведения векторов относительно сложения векторов. Требования, предъявляемые к системе аксиом.
реферат [80,9 K], добавлен 28.03.2014