Формации конечных групп
Простейшие свойства формаций, их основные обозначения и теоремы. Проекторы конечных групп. Формации Гашюца. Характеристика основных позиций теории формации и приведение конкретных примеров. Строение формаций порожденных группами и сущность корадиалов.
Рубрика | Математика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 19.04.2011 |
Размер файла | 2,8 M |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Проблема получения описания строения w-насыщенных формаций конечных групп, имеющих заданную решетку подформаций. Некоторые сведения и варианты решения проблемы описания w-насыщенных формаций Hw-дефекта, не превосходящего 2, для произвольной формации.
курсовая работа [8,6 M], добавлен 21.12.2009Описание Н-критических формаций для некоторых наиболее известных формаций Н. При изучении внутреннего строения, а также классификации насыщенных формаций важную роль играют так называемые минимальные насыщенные не Н-формации или Н-критические формации.
дипломная работа [911,1 K], добавлен 02.03.2010Место теории конечных групп в алгебре. Формация как класс групп, замкнутый относительно гомоморфных образов и конечных подпрямых произведений. Локальный метод Гашюца и его развитие. Свойства частично насыщенных формаций с заданной структурой подформаций.
дипломная работа [613,5 K], добавлен 02.02.2010Формации как классы групп, замкнутые относительно фактор-групп и подпрямых произведений, методика их произведения. Операции на классах групп, приводящие к формациям. Виды простейших свойств локальной формации всех групп с нильпотентным компонентом.
курсовая работа [461,6 K], добавлен 20.09.2009Строение конечных групп по заданным свойствам их обобщенно субнормальных подгрупп. Использование методов абстрактной теории групп и теории формаций конечных групп. Субнормальные и обобщенно субнормальные подгруппы и их свойства. Обобщение теоремы Хоукса.
дипломная работа [288,7 K], добавлен 20.12.2009Изучение строения групп по заданным свойствам системы их подгрупп как направлениt в теории конечных групп. Обзор конечных групп с плотной системой F-субнормальных подгрупп в случаях, когда F - произвольная S-замкнутая формация p-нильпотентных групп.
курсовая работа [163,6 K], добавлен 07.03.2010Определение и основные свойства конечных групп с условием плотности для F-субнормальных подгрупп. Общие свойства, использующиеся для изучения строения конечных групп с плотной системой F-субнормальных подгрупп. Особенности развития теории формаций.
курсовая работа [155,1 K], добавлен 02.03.2010Свойства примитивных конечных разрешимых произведений N-разложимых групп. Условия факторизуемости проекторов конечных разрешимых произведений N-разложимых групп для случая. Порядок определения приложений полученных результатов для классических формаций.
дипломная работа [239,8 K], добавлен 14.12.2009Понятия локальных экранов и формаций, основанных на определении центральных рядов, их роль в теории формаций конечных групп, мультиколец и других алгебраических систем. Определение мультикольца, его идеала, централизатора, теоремы и их доказательства.
дипломная работа [251,7 K], добавлен 18.09.2009Цепь как совокупность вложенных друг в друга подгрупп. Описание и применение теоремы Гольфанда. F-абнормальная максимальная подгруппа из G либо p-нильпотентна как бипримарная группа Миллера-Морено. Понятие группы Фробениуса с циклической подгруппой.
курсовая работа [270,6 K], добавлен 07.03.2010