Теория вероятности в азартных играх
Методы исследования древних и современных азартных игр. Нахождение наиболее выгодных комбинаций для игрока путем применения формулы для исчисления математического ожидания. Создание программы для вычисления математического ожидания азартных игр.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 06.05.2014 |
Размер файла | 286,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Определение математической вероятности правильного набора, если на нечетных местах комбинации стоят одинаковые цифры. Использование классического определения вероятности. Расчет математического ожидания и дисперсии для очков, выпавших на игральных костях.
контрольная работа [90,2 K], добавлен 04.01.2011Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Методы решения задач по теории вероятности, определение математического ожидания и дисперсии.
контрольная работа [157,5 K], добавлен 04.02.2012Понятие вероятности, математического ожидания, закона больших чисел, динамика их развития. Введение аксиоматического определения понятия вероятности математического ожидания. Теоремы Бернулли и Пуассона как простейшие формы закона больших чисел.
дипломная работа [388,7 K], добавлен 23.08.2009Определение вероятности наступления определенного события по законам теории вероятности. Вычисление математического ожидания, дисперсии и среднего квадратичного отклонения. Нахождение выборочного уравнения регрессии по данным корреляционной таблицы.
контрольная работа [212,0 K], добавлен 01.05.2010Вычисление математического ожидания, дисперсии и коэффициента корреляции. Определение функции распределения и его плотности. Нахождение вероятности попадания в определенный интервал. Особенности построения гистограммы частот. Применение критерия Пирсона.
задача [140,0 K], добавлен 17.11.2011Длина интервала группирования. Гистограмма относительных частот. Кусочно-постоянная функция. Среднеквадратичное отклонение оценки математического ожидания случайной величины. Коэффициент корреляции. Границы доверительного интервала для ожидания.
курсовая работа [622,9 K], добавлен 18.02.2009Закон распределения суточного дохода трамвайного парка, оценка доверительного интервала для математического ожидания и дисперсии суточного дохода. Особенности определения математического ожидания рассматривающейся случайной величины при решении задач.
курсовая работа [69,5 K], добавлен 02.05.2011Вычисление вероятностей возможных значений случайной величины по формуле Бернулли. Расчет математического ожидания, дисперсии, среднеквадратического отклонения, медианы и моды. Нахождение интегральной функции, построение многоугольника распределения.
контрольная работа [162,6 K], добавлен 28.05.2012Среднее арифметическое наблюдаемых значений, служащее оценкой для математического ожидания. Состоятельность оценки, следующая из теоремы Чебышева. Условия возникновения систематической ошибки, ликвидация смещения. Точечные параметры оценки величин.
презентация [62,3 K], добавлен 01.11.2013Формулы вычисления дисперсии суммы двух случайных величин с использованием категории математического ожидания. Характеристика понятий дисперсии. Особенности ее вычисления во взаимосвязи со средним квадратичным отклонением, определение размерности.
презентация [80,4 K], добавлен 01.11.2013