Теория вероятности в азартных играх
Методы исследования древних и современных азартных игр. Нахождение наиболее выгодных комбинаций для игрока путем применения формулы для исчисления математического ожидания. Создание программы для вычисления математического ожидания азартных игр.
Рубрика | Математика |
Предмет | Теория вероятности |
Вид | презентация |
Язык | русский |
Прислал(а) | Г.П. Жарков, А.А. Терещенко |
Дата добавления | 06.05.2014 |
Размер файла | 286,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Определение математической вероятности правильного набора, если на нечетных местах комбинации стоят одинаковые цифры. Использование классического определения вероятности. Расчет математического ожидания и дисперсии для очков, выпавших на игральных костях.
контрольная работа [90,2 K], добавлен 04.01.2011Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Методы решения задач по теории вероятности, определение математического ожидания и дисперсии.
контрольная работа [157,5 K], добавлен 04.02.2012Понятие вероятности, математического ожидания, закона больших чисел, динамика их развития. Введение аксиоматического определения понятия вероятности математического ожидания. Теоремы Бернулли и Пуассона как простейшие формы закона больших чисел.
дипломная работа [388,7 K], добавлен 23.08.2009Определение вероятности наступления определенного события по законам теории вероятности. Вычисление математического ожидания, дисперсии и среднего квадратичного отклонения. Нахождение выборочного уравнения регрессии по данным корреляционной таблицы.
контрольная работа [212,0 K], добавлен 01.05.2010Вычисление математического ожидания, дисперсии и коэффициента корреляции. Определение функции распределения и его плотности. Нахождение вероятности попадания в определенный интервал. Особенности построения гистограммы частот. Применение критерия Пирсона.
задача [140,0 K], добавлен 17.11.2011Длина интервала группирования. Гистограмма относительных частот. Кусочно-постоянная функция. Среднеквадратичное отклонение оценки математического ожидания случайной величины. Коэффициент корреляции. Границы доверительного интервала для ожидания.
курсовая работа [622,9 K], добавлен 18.02.2009Закон распределения суточного дохода трамвайного парка, оценка доверительного интервала для математического ожидания и дисперсии суточного дохода. Особенности определения математического ожидания рассматривающейся случайной величины при решении задач.
курсовая работа [69,5 K], добавлен 02.05.2011Вычисление вероятностей возможных значений случайной величины по формуле Бернулли. Расчет математического ожидания, дисперсии, среднеквадратического отклонения, медианы и моды. Нахождение интегральной функции, построение многоугольника распределения.
контрольная работа [162,6 K], добавлен 28.05.2012Среднее арифметическое наблюдаемых значений, служащее оценкой для математического ожидания. Состоятельность оценки, следующая из теоремы Чебышева. Условия возникновения систематической ошибки, ликвидация смещения. Точечные параметры оценки величин.
презентация [62,3 K], добавлен 01.11.2013Формулы вычисления дисперсии суммы двух случайных величин с использованием категории математического ожидания. Характеристика понятий дисперсии. Особенности ее вычисления во взаимосвязи со средним квадратичным отклонением, определение размерности.
презентация [80,4 K], добавлен 01.11.2013