Задача поиска маршрутов в графе (путей в орграфе)

Алгоритм Тэрри поиска маршрута в связном графе, соединяющем вершины. Выделение простой цепи из полученного пути. Поиск оптимального пути с наименьшим числом дуг или ребер. Прообраз множества вершин, матрица смежности. Определение расстояния в графе.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 18.10.2013
Размер файла 96,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Задача поиска маршрутов в графе (путей в орграфе)

Алгоритм Тэрри поиска маршрута в связном графе, соединяющем вершины и .

Правила.

1) Идя по произвольному ребру всегда отмечать направление его прохождения.

2) Исходя из некоторой вершины всегда следовать по тому ребру, которое не было пройдено или было пройдено в противоположном направлении.

3) Для всякой вершины отмечать ребро, по которому в вершину попали в первый раз

4) Исходя из некоторой вершины идти по первому заходящему в ребру лишь тогда, когда нет других возможностей.

Найти маршрут соед. и . +, значит прошли

Замечание: из полученного пути можно выделить простую цепь.

Поиск оптимального пути (маршрута) (т.е пути с наименьшим числом дуг или ребер)

Утверждения:

1) каждый минимальный путь (маршрут) является простой цепью

Доказательство.

Пусть минимальный путь в орграфе D, не являющийся простой цепью. Тогда i и j такие, что и vi=vj. Рассмотрим путь . Его длина меньше, чем , что противоречит предположению.

2) (о минимальности подпути минимального пути). Пусть - минимальный путь (маршрут) в орграфе D (в графе G). Тогда для i и j таких, что путь (маршрут) тоже является минимальным.

Доказательство. Предположим, что не является оптимальным, тогда т.ч. он короче чем . Тогда заменив на в можно найти более короткий, чем путь не является минимальным. Пришли к противоречию.

Пусть орграф - некоторая вершина .

Обозначим - образ вершины ;

- прообраз вершины ;

- образ множества вершин V1;

прообраз множества вершин V1.

Для неориентированного графа образ и прообраз совпадают.

Пусть граф .

Обозначим - образ вершины ;

- образ множества вершин V1.

Пусть орграф с n2 вершинами и v,w (vw) - заданные вершины из V

Алгоритм поиска минимального пути из в в орграфе D (алгоритм фронта волны).

1) Помечаем вершину индексом 0, затем помечаем вершины образу вершины индексом 1. Обозначаем их FW1 (v). Полагаем k=1.

2) Если или k=n-1, и одновременно то вершина не достижима из . Работа алгоритма заканчивается.

В противном случае продолжаем:

3) Если , то переходим к шагу 4.

В противном случае мы нашли минимальный путь из в и его длина =k. Последовательность вершин

есть этот минимальный путь. Работа завершается.

4) Помечаем индексом k+1 все непомеченные вершины, которые принадлежат образу множества вершин c индексом k. Множество вершин с индексом k+1 обозначаем . Присваиваем k:=k+1 и переходим к 2).

Замечания

Множество называется фронтом волны kго уровня.

Вершины могут быть выделены неоднозначно, что соответствует случаю, если несколько min путей из в .

Пример 1. Дана матрица смежности. Найти минимальный путь из v1 в v6.

Исх\вход

0

0

0

1

1

0

1

0

0

1

1

1

1

1

0

1

1

1

0

1

1

0

1

0

1

1

1

1

0

0

1

1

1

1

1

0

0

2

2

1

1

3

,

Пример 2. Дан орграф.

Задание. Найти минимальный путь из v1 в v6.

Матрица смежности

Исх\вход

0

0

0

1

1

0

1

0

0

0

1

1

1

1

0

1

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

1

3

Расстояния в графе

Пусть - граф (или псевдограф).

Расстоянием между вершинами наз. min длина пути между ними. .

Расстояние в графе удовл. аксиомам метрики

1) ,

2) (не орграф)

3)

4) в связном графе ( в орграфе, если не пути).

Пример

1

2

3

4

5

6

1

1

1

0

0

21

0

2

0

0

1

0

0

0

3

0

0

0

0

0

1

4

1

1

0

0

0

0

5

0

0

1

1

0

0

6

0

1

0

0

0

0

Из 1

0

1

2

2

1

3

Из 2

0

1

2

Из 3

2

0

1

Из 4

1

1

2

0

2

3

Из 5

2

3

1

1

0

2

Из 6

1

2

0

опр || Пусть связный граф (или псевдограф).

Величина - называется диаметром графа G.

Пусть .

Величина - называется максимальным удалением (эксцентриситетом) в графе G от вершины .

Радиусом графа G наз. величина

Любая верш. такая, что наз. центром графа G.

Матрица смежности

0

1

0

0

0

1

0

1

1

0

0

1

0

1

0

0

1

1

0

1

0

0

0

1

0

Матрица расстояний

0

1

2

2

3

1

0

1

1

2

2

1

0

1

2

2

1

1

0

1

3

2

2

1

0

Центры в вершинах 2, 3, 4

Примеры.

Матрица смежности

1

2

3

4

5

6

1

0

1

0

0

1

0

2

1

0

0

1

0

1

3

0

0

0

0

1

1

4

0

1

0

0

1

0

5

1

0

1

1

0

0

6

0

1

1

0

0

0

Матрица расстояний

1

2

3

4

5

6

1

0

1

2

2

1

2

2

1

0

2

1

2

1

3

2

2

0

2

1

1

4

2

1

2

0

1

2

5

1

2

1

1

0

2

6

2

1

1

2

2

0

, центр - все вершины

маршрут граф дуга смежность

Размещено на Allbest.ru


Подобные документы

  • Понятия теории графов. Понятия смежности, инцидентности и степени. Маршруты и пути. Матрицы смежности и инцедентности. Алгоритм поиска минимального пути в ненагруженном ориентированном орграфе на любом языке программирования, алгоритм фронта волны.

    курсовая работа [466,3 K], добавлен 28.04.2011

  • Основные понятия теории графов. Содержание метода Дейкстры нахождения расстояния от источника до всех остальных вершин в графе с неотрицательными весами дуг. Программная реализация исследуемого алгоритма. Построение матриц смежности и инцидентности.

    курсовая работа [228,5 K], добавлен 30.01.2012

  • Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.

    курсовая работа [625,4 K], добавлен 30.09.2014

  • Понятия теории графов, их связность и задача о кратчайшей цепи. Программная реализация метода Дейкстры, его сравнение с методом простого перебора. Описание логики программного модуля. Примеры работы программы нахождения кратчайшей цепи в связном графе.

    курсовая работа [330,2 K], добавлен 25.11.2011

  • Эйлеровы цепи и циклы, теоремы. Алгоритм построения эйлерова цикла. Обоснование алгоритма. Нахождение кратчайших путей в графе. Алгоритм Форда отыскания кратчайшего пути. Задача отыскания кратчайших расстояний между всеми парами вершин. Алгоритм Флойда.

    реферат [108,4 K], добавлен 01.12.2008

  • Основные понятия теории графов. Матричные способы задания графов. Выбор алгоритма Форда–Бэллмана для решения задачи поиска минимальных путей (маршрутов) в любую достижимую вершину нагруженного орграфа. Способы выделения пути с наименьшим числом дуг.

    курсовая работа [109,1 K], добавлен 22.01.2016

  • Доказательство тождества с помощью диаграмм Эйлера-Венна. Определение вида логической формулы с помощью таблицы истинности. Рисунок графа G (V, E) с множеством вершин V. Поиск матриц смежности и инцидентности. Определение множества вершин и ребер графа.

    контрольная работа [463,0 K], добавлен 17.05.2015

  • Поиск кратчайших путей для пар вершин взвешенного ориентированного графа с весовой функцией. Включение матрицы в алгоритм Флойда, содержащую вершину, полученную при нахождении кратчайшего пути. Матрица, которая содержит длины путей из вершины в вершину.

    презентация [36,1 K], добавлен 16.09.2013

  • Основные понятия и свойства эйлеровых и гамильтоновых цепей и циклов в теории графов. Изучение алгоритма Дейкстры и Флойда для нахождения кратчайших путей в графе. Оценки для числа ребер с компонентами связанности. Головоломка "Кенигзберзьких мостов".

    курсовая работа [2,4 M], добавлен 08.10.2014

  • Понятия и определения орграфа и неориентированного графа, методы решения. Неориентированные и ориентированные деревья. Подробное описание алгоритмов нахождения кратчайших путей в графе: мультиграф, псевдограф. Матрица достижимостей и контрдостижимостей.

    курсовая работа [251,0 K], добавлен 16.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.