Производная и ее приложения

Геометрический и физический смысл производной. Правила дифференцирования, производные высших порядков. Изучение функции с помощью производной. Возрастание и убывание функции, экстремум функции. Общая схема исследования функции и построение ее графика.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 10.04.2010
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат

Производная и ее приложения

г.Саратов

Содержание

Введение

1. Понятие производной

2. Геометрический смысл производной

3. Физический смысл производной

4. Правила дифференцирования

5. Производные высших порядков

6. Изучение функции с помощью производной

6.1 Возрастание и убывание функции. Экстремум функции

6.2 Достаточные условия убывания и возрастания функции. Достаточные условия экстремума функции

6.3 .Правило нахождения экстремума

6.4 Точка перегиба графика функции

6.5 Общая схема исследования функции и построение ее графика

6.5 Касательная и нормаль к плоской кривой

7.Экономическое приложение производной.

7.1 Экономическая интерпретация производной

7.2 Применение производной в экономической теории

7.3 Использование производной для решения задач по экономической теории

8. Применение производной в физике

9. Применение производной в алгебре

9.1 Применение производной к доказательству неравенств

9.2 Применение производной в доказательстве тождеств

9.3 Применение производной для упрощения алгебраических и тригонометрических выражений

9.4Разложение выражения на множители с помощью производной

9.5 Применение производной в вопросах существования корней уравнений

Заключение

Список литературы

Введение

Понятие функции является одним из основных понятии математики. Оно не возникло сразу в таком виде, как мы им пользуемся сейчас, а, как и другие фундаментальные понятия прошло длинный путь диалектического и исторического развития. Идея функциональной зависимости восходит к древнегреческой математике. Например, изменение площади, объема фигуры в зависимости от изменения ее размеров. Однако древними греками идея функциональной зависимости осознавалась интуитивно.

Уже в 16 - 17 веках, техника, промышленность, мореходство поставили перед математикой задачи, которые нельзя было решить имеющимися методами математики постоянных величин. Нужны были новые математические методы, отличные от методов элементарной математики.

Впервые термин "функция" вводит в рассмотрение знаменитый немецкий математик и философ Лейбниц в 1694 г. Однако, этот термин (определения он не дал вообще) он употребляет в узком смысле, понимая под функцией изменение ординаты кривой в зависимости от изменения ее абсциссы. Таким образом, понятие функции носит у него "геометрический налет". В современных терминах это определение связано с понятием множества и звучит так: «Функция есть произвольный способ отображения множества А = {а} во множество В = {в}, по которому каждому элементу аА поставлен в соответствие определенный элемент вВ. Уже в этом определении не накладывается никаких ограничений на закон соответствия (этот закон может быть задан Формулой, таблицей, графиком, словесным описанием). Под элементами множеств А и В понимаются при этом элементы произвольной природы.

В математике XVII в. самым же большим достижением справедливо считается изобретение дифференциального и интегрального исчисления. Сформировалось оно в ряде сочинений Ньютона и Лейбница и их ближайших учеников. Введение в математику методов анализа бесконечно малых стало началом больших преобразований. Но наряду с интегральными методами складывались и методы дифференциальные. Вырабатывались элементы будущего дифференциального исчисления при решении задач, которые в настоящее время и решаются с помощью дифференцирования. В то время такие задачи были трех видов: определение касательных к кривым, нахождение максимумов и минимумов функций, отыскивание условий существования алгебраических уравнений квадратных корней.

Первый в мире печатный курс дифференциального исчисления опубликовал в 1696 г. Лопиталь. Этот курс состоит из предисловия и 10 глав, в которых излагаются определения постоянных и переменных величин и дифференциала, объясняются употребляющиеся обозначения dx, dy, и др.

Появление анализа бесконечно малых революционизировало всю математику, превратив ее в математику переменных величин.

Исследование поведения различных систем (технические, экономические, экологические и др.) часто приводит к анализу и решению уравнений, включающих как параметры системы, так и скорости их изменения, аналитическим выражением которых являются производные. Такие уравнения, содержащие производные, называются дифференциальными.

Итак, остановимся подробнее на приложениях производной.

1. Понятие производной

При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом

Тот процесс, с помощью которого из данной функции f(x) получают новую функцию f ' (x), называют дифференцированием и состоит он из следующих трех шагов:

1) даем аргументу x приращение ??x и определяем соответствующее приращение функции ??y = f(x+??x) -f(x);

2) составляем отношение

3) считая x постоянным, а ??x 0, находим, который обозначаем через f ' (x), как бы подчеркивая тем самым, что полученная функция зависит лишь от того значения x, при котором мы переходим к пределу.

Определение: Производной y ' =f ' (x) данной функции y=f(x) при данном x называется предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю, если, конечно, этот предел существует, т.е. конечен.

Таким образом, , или

Заметим, что если при некотором значении x, например при x=a, отношение при ??x0 не стремится к конечному пределу, то в этом случае говорят, что функция f(x) при x=a (или в точке x=a) не имеет производной или не дифференцируема в точке x=a.

2. Геометрический смысл производной

Рассмотрим график функции у = f (х), дифференцируемой в окрестностях точки x0

Рассмотрим произвольную прямую, проходящую через точку графика функции - точку А(x0, f (х0)) и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (АВ) называется секущей. Из ?АВС: АС = ?x; ВС =?у; tg в=?y/?x .

Так как АС || Ox, то ALO = BAC = в (как соответственные при параллельных). Но ALO - это угол наклона секущей АВ к положительному направлению оси Ох. Значит, tgв = k - угловой коэффициент прямой АВ.

Теперь будем уменьшать ?х, т.е. ?х> 0. При этом точка В будет приближаться к точке А по графику, а секущая АВ будет поворачиваться. Предельным положением секущей АВ при ?х> 0 будет прямая (a), называемая касательной к графику функции у = f (х) в точке А.

Если перейти к пределу при ?х > 0 в равенстве tgв =?y/?x, то получим или tg =f '(x0), так как -угол наклона касательной к положительному направлению оси Ох , по определению производной. Но tg = k - угловой коэффициент касательной, значит, k = tg = f '(x0).

Итак, геометрический смысл производной заключается в следующем:

Производная функции в точке x0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x0.

3. Физический смысл производной

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени [t0; t0+ ?t] равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

Vср = ?x/?t. Перейдем к пределу в последнем равенстве при ?t > 0.

lim Vср (t) = (t0) - мгновенная скорость в момент времени t0, ?t > 0.

а lim = ?x/?t = x'(t0) (по определению производной).

Итак, (t) =x'(t).

Физический смысл производной заключается в следующем: производная функции y = f(x) в точке x0 - это скорость изменения функции f (х) в точке x0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

(t) = x'(t) - скорость,

a(f) = '(t) - ускорение, или

a(t) = x"(t).

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращательном движении:

ц = ц(t) - изменение угла от времени,

щ = ц'(t) - угловая скорость,

е = ц'(t) - угловое ускорение, или е = ц"(t).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m(х) - масса,

x [0; l], l - длина стержня,

р = m'(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = -kx, x - переменная координата, k- коэффициент упругости пружины. Положив щ2 =k/m, получим дифференциальное уравнение пружинного маятника х"(t) + щ2x(t) = 0,

где щ = vk/vm частота колебаний (l/c), k - жесткость пружины (H/m).

Уравнение вида у" + щ2y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решением таких уравнений является функция

у = Asin(щt + ц0) или у = Acos(щt + ц0), где

А - амплитуда колебаний, щ - циклическая частота,

ц0 - начальная фаза.

4. Правила дифференцирования

(C)'= 0 С=const

(cos x)'=-sin x

(sin x)'=cos x

(tg x)'=

х)'=аx ln a

(ctg x)'=-

х)'=ex

Производная степенно-показательной функции

, где .

.

Логарифмическое дифференцирование. Пусть дана функция . При этом предполагается, что функция не обращается в нуль в точке . Покажем один из способов нахождения производной функции , если очень сложная функция и по обычным правилам дифференцирования найти производную затруднительно.

Так как по первоначальному предположению не равна нулю в точке, где ищется ее производная, то найдем новую функцию и вычислим ее производную

(1)

Отношение называется логарифмической производной функции . Из формулы (1) получаем

. Или

Формула (2) дает простой способ нахождения производной функции .

5. Производные высших порядков

Ясно, что производнаяфункции y =f (x) есть также функция от x:

Если функция f ' (x) дифференцируема, то её производная обозначается символом y'' =f '' (x) и называется второй производной функции f(x) или производной функции f(x) второго порядка. Пользуясь обозначением можем написать

Очень удобно пользоваться также обозначением , указывающим, что функция y=f(x) была продифференцирована по x два раза.
Производная второй производной, т.е. функции y''=f '' (x) , называется третьей производной функции y=f(x) или производной функции f(x) третьего порядка и обозначается символами .

Вообще n-я производная или производная n-го порядка функции y=f(x) обозначается символами

Дифференцируя производную первого порядка, можно получить производную второго порядка, а, дифференцируя полученную функцию, получаем производную третьего порядка и т.д. Тогда возникает вопрос: сколько производных высших порядков можно получить в случае произвольной функции.

Например:

1) ; ; ; ...;

; .

Разные функции ведут себя по-разному при многократном дифференцировании. Одни имеют конечное количество производных высших порядков, другие - переходят сами в себя, а третьи, хотя и дифференцируемы бесконечное количество раз, но порождают новые функции, отличные от исходной.

Однако все сформулированные теоремы о производных первых порядков выполняются для производных высших порядков.

6. Изучение функции с помощью производной

6.1 Возрастание и убывание функции. Экстремум функции

Определение 1. Функция f(x) называется возрастающей в интервале (a,b), если при возрастании аргумента x в этом интервале соответствующие значения функции f(x) также возрастают, т.е. если f(x2) > f(x1) при x2 > x1.

Из этого определения следует, что у возрастающей в интервале (a,b) функции f(x) в любой точке этого интервала приращения ?x и ?y имеют одинаковые знаки.

График возрастающей функции показан на рисунке1(а).

Если из неравенства x2 > x1 вытекает нестрогое неравенство f (x2) ? f (x1), то функция f (x) называется неубывающей в интервале (a, b ). Пример такой функции показан на рисунке 2(а). На интервале [ x0 , x1 ] она сохраняет постоянное значение C

Определение 2. Функция f (x) называется убывающей в интервале ( a, b ) если при возрастании аргумента x в этом интервале соответствующие значения функции f (x) убывают, т.е. если f(x2) < f(x1) при x2 > x1.

Из этого определения следует, что у убывающей в интервале ( a, b ) функции f (x) в любой точке этого интервала приращения ?x и ?y имеют разные знаки. График убывающей функции показан на рисунке 1(б).

Если из неравенства x2 > x1 вытекает нестрогое неравенство f(x2) ? f(x1), то функция f (x) называется невозрастающей в интервале ( a, b ). Пример такой функции показан на рисунке 2(б). На интервале [ x0 , x1 ] она сохраняет постоянное значение C.

Теорема 1. Дифференцируемая и возрастающая в интервале ( a, b ) функция f (x) имеет во всех точках этого интервала неотрицательную производную.

Теорема 2. Дифференцируемая и убывающая в интервале ( a, b ) функция f (x) имеет во всех точках этого интервала неположительную производную.

Пусть данная непрерывная функция убывает при возрастании x от x0 до x1, затем при возрастании x от x1 до x2 - возрастает, при дальнейшем возрастании x от x2 до x3 она вновь убывает и так далее. Назовем такую функцию колеблющейся.

График колеблющейся функции показан на рисунке 3. Точки A, C, в которых функция переходит от возрастания к убыванию, так же, как и точки B, D, в которых функция переходит от убывания к возрастанию, называются точками поворота или критическими точками кривой y = f (x), а их абциссы - критическими значениями аргумента x

В той точке, где функция переходит от возрастания к убыванию, ордината больше соседних с ней по ту и другую сторону ординат. Так, ордината точки A больше ординат, соседних с ней справа и слева и достаточно к ней близких, т.е. значение функции в точке A, абсцисса которой равна x0, больше значений функции в точках, абсциссы которых достаточно близки к x0 : f (x0) > f (x0+?x).

На рисунке 4(a) изображена функция f (x), непрерывная в интервале ( a, b ). В интервале ( a, x0 ] она возрастает, на интервале [ x0 , x1 ] - сохраняет постоянное значение: f (x0) = f (x1) = C, в интервале [ x1 , b ) - убывает. Во всех точках, достаточно близких к x0 (или x1 ), значения функции f (x) удовлетворяют нестрогому неравенству f (x0)?f (x).

Значение f (x0) функции f (x), при котором выполняется вышеуказанное неравенство, называется максимальным значением функции f (x) или просто максимумом.

Определение 3. Максимумом функции f (x) называется такое значение f (x0) этой функции, которое не меньше всех значений функции f (x) в точках x, достаточно близких к точке x0 , т.е. в точках x, принадлежащих некоторой достаточно малой окрестности точки x0 .
Так, на рисунке 3 показаны два максимума: f (x0) и f (x2) .
В той точке, где функция переходит от убывания к возрастанию, ордината меньше ординат в достаточно близких к ней точках, расположенных справа и слева от нее. Так ордината точки B меньше ординат в точках соседних и достаточно близких к точке x1 справа и слева. Значение функции в точке, абсцисса которой равна x1 , меньше значений функции в точках, абсциссы которых достаточно мало отличаются от x1 : f (x1) < f (x1+?x).

На рисунке 4(б) изображена функция f (x), непрерывная в интервале ( a, b ). В интервале ( a, x0 ] она убывает, на интервале [ x0 , x1 ] - сохраняет постоянное значение: f (x0) = f (x1) = C, в интервале [ x1 , b ) - возрастает. Во всех точках, достаточно близких к x0 (или x1 ), значения функции f (x) удовлетворяют нестрогому неравенству f (x0)?f (x).

Значение f (x0) функции f (x), при котором выполняется вышеуказанное неравенство, называется минимальным значением функции f (x) или просто минимумом.

Определение 4. Минимумом функции f (x) называется такое значение f (x0) этой функции, которое не больше всех значений функции f (x) в точках x, достаточно близких к точке x0 , т.е. в точках x, принадлежащих некоторой достаточно малой окрестности точки x0 .

Так, на рисунке 3 показаны два минимума: f (x1) и f (x3) .

По определению наибольшим значением функции f (x) на интервале [ a, b ] является такое значение f (x0), для которого для всех точек интервала [ a, b ] выполняется неравенство f (x0)?f (x), а наименьшим значением функции f (x) на интервале [ a, b ] является такое значение f (x0), для которого для всех точек интервала [ a, b ] выполняется неравенство f (x0)?f (x).

Из этих определений следует, что функция может достигать своего наибольшего или наименьшего значения как внутри интервала [ a, b ] , так и на его концах a и b. Здесь же максимум и минимум функции f (x) были определены соответственно как наибольшее и наименьшее значения в некоторой окрестности точки x0 .

Если в точке x0 функция f (x) достигает максимума или минимума, то говорят, что функция f (x) в точке x0 достигает экстремума (или экстремального значения).

Функция f (x) может иметь несколько экстремумов внутри интервала [ a, b ], причем может оказаться, что какой-нибудь минимум будет больше какого-нибудь максимума. Таким образом, наибольшее значение функции f (x) на интервале [ a, b ] - это наибольший из экстремумов функции внутри этого интервала и наибольшее из значений функции на концах интервала.

Аналогично наименьшее значение функции f (x) на интервале [ a, b ] - это наименьший из экстремумов функции внутри этого интервала и наименьшее из значений функции на концах интервала.

Например функция, изображенная на рисунке 3, достигает наибольшего значения f (x) в точке x2 , наименьшего - в точке x1 интервала [ x0, x3 ]. На рисунке 5 изображена функция, имеющая бесконечное число минимумов и максимумов.

Теорема 3 (необходимый признак экстремума). Если функция f (x) имеет в точке x0 экстремум, то ее производная в данной точке или равна нулю или не существует.

Но функция f (x) может иметь экстремумы и в тех точках x0, в которых ее производная не существует. Например функция y = | x | в точке x0 = 0 не дифференцируема, но достигает минимума. Точки такого типа называют угловыми. В них кривая не имеет определенной касательной.

На рисунке 6 изображена функция f (x), не имеющая в точке x0 производной [f' (x0) = ?] и достигающая в этой точке максимума. При x ? x0 и x < x0 f' (x) ????, при x ? x0 и x > x0 f' (x) ????. Значит касательная кривой y = f (x) при x = x0 перпендикулярна к оси Ox. Такие точки называются точками возврата кривой y=f(x).

Таким образом, необходимым признаком существования в точке x0 экстремума функции f (x) является выполнение следующего условия: в точке x0 производная f' (x) или равна нулю, или не существует.

Этот признак не является достаточным условием существования экстремума функции f (x) в точке x0 : можно привести много примеров функций, удовлетворяющих этому условию при x = x0 , но, однако, не достигающих экстремума при x = x0.

Например, производная функции y = x3 при x0 = 0 равна нулю, однако эта функция при x0 = 0 не достигает экстремального значения.

6.2.Достаточные условия убывания и возрастания функции. Достаточные условия экстремума функции

Теорема 4.Если функция f(x) имеет в каждой точке интервала (a, b) неотрицательную производную, то она является неубывающей функцией в этом интервале.

Теорема 5. Если функция f(x) в каждой точке интервала (a, b) имеет неположительную производную, то она является невозрастающей функцией в этом интервале.

Теорема 6. (первый достаточный признак экстремума). Если производная f '(x) функции f(x) обращается в нуль в точке x0 или не существует и при переходе через x0 меняет свой знак, то функция f(x) имеет в этой точке экстремум (максимум, если знак меняется с "+" на "-", и минимум, если знак меняется с "-" на "+").

Теорема 7. (второй достаточный признак существования экстремума функции). Если в точке x0 первая производная f '(x) функции f(x) обращается в нуль, а её вторая производная f ''(x) отлична от нуля, то в точке x0 функция f(x) достигает экстремума (минимума, если f ''(x) > 0, и максимума, если f ''(x) < 0). Предполагается, что f ''(x) непрерывна в точке x0 и ее окрестности.

6.3 Правило нахождения экстремума

1. Чтобы найти экстремум функции, надо:

1) найти производную данной функции;

2) приравнять производную нулю и решить полученное уравнение; из полученных корней отобрать действительные и расположить их (для удобства) по их величине от меньшего к большему; в том случае, когда все корни оказываются мнимыми, данная функция не имеет экстремума;

3) определить знак производной в каждом из промежутков, отграниченных стационарными точками ( стационарными точками называют точки в которых производная равна 0);

4) если производная положительна в промежутке, лежащем слева от данной стационарной точки, и отрицательна в промежутке, лежащем справа от нес, то данная точка есть точка максимума функции, если же производная отрицательна слева и положительна справа от данной стационарной точки, то данная точка есть точка минимума функции; если производная имеет один и тот же знак как слева, так и справа от стационарной тонки, то в этой точке нет ни максимума, ни минимума, функции;

5) заменить в данном выражении функции аргумент значением, которое дает максимум или минимум функции; получим значение соответственно максимума или минимума функции.

Если функция имеет точки разрыва, то эти точки должны быть включены в число стационарных точек, разбивающих Ох на промежутки, в которых определяется знак производной.

6.4 Точка перегиба графика функции

Будем говорить, что кривая y = f(x) в точке x0 обращена выпуклостью вверх, если существует такая окрестность точки x0 , что часть кривой, соответствующая этой окрестности, лежит под касательной к этой кривой, проведенной в точке A с абсциссой x0. (см. Рисунок ).

Будем говорить, что кривая y = f(x) в точке x0 обращена выпуклостью вниз, если существует такая окрестность точки x0 , что часть кривой, соответствующая этой окрестности, лежит над касательной к этой кривой, проведенной в точке A с абсциссой x0. (см. Рисунок ).

Из определения выпуклости вверх (вниз) кривой y = f(x) в точке x0 следует, что для любой точки x из интервала (x0 - h, x0 + h), не совпадающей с точкой x0, имеет место неравенство f(x) - y < 0 ( f(x) - y > 0) где f(x) - ордината точки M кривой y = f(x), y - ордината точки N касательной y - y0 = f '(x0 )(x - x0 ) к данной кривой в точке A. (смотри рисунок 1, а, б).

Ясно, что и наоборот, если для любой точки x интервала (x0 - h, x0 + h), не совпадающей с x0, выполняется неравенство f(x) - y < 0 (f(x) - y > 0), то кривая y = f(x) в точке x0 обращена выпуклостью вверх (вниз).

Будем называть кривую y = f(x) выпуклой вверх (вниз) в интервале (a, b), если она выпукла вверх (вниз) в каждой точке этого интервала.

Если кривая y = f(x) обращена выпуклостью вверх в интервале (a, b), то с увеличением аргумента x угловой коэффициент касательной к этой кривой в точке с абсциссой x будет уменьшаться.

В самом деле, пусть абсцисса x1 точки A меньше абсциссы x2 точки B (рис. 2). Проведем касательные t1 и t2 соответствено в точках A и B к кривой y = f(x). Пусть a и j - углы наклона касательных t1 и t2. Тогда из рис. 2 видим, что j - внешний угол треугольника ECD, а поэтому он больше угла a. Следовательно tg? > tg? или f '(x1 ) > f '(x2 ).

Таким образом мы показали, что если в интервале (a, b) кривая y = f(x) обращена выпуклостью вверх, то с увеличением аргумента x функция y = f '(x) убывает. Поэтому вторая производная f ''(x) функции f(x), как производная убывающей фунции f '(x), будет отрицательна или равна нулю в интервале (a, b): f ''(x)?0.

Если кривая y = f(x) обращена выпуклостью вниз, то из рис.2 непосредственно видно, что tg? > tg? т.е. f '(x2 ) > f '(x1 ), а поэтому в интервале (a, b) производная f '(x) возрастает. Тогда вторая производная f ''(x) функции f (x), как производная возрастающей в интервале (a, b) функции f '(x), будет положительна или равна нулю: f ''(x)?0.

Докажем, что и наоборот, если f ''(x)?0 в некотором интервале (a, b), то в этом интервале кривая y = f (x) обращена выпуклостью вверх; если f ''(x)?0 в интервале (a, b), то в этом интервале кривая обращена выпуклостью вниз.

Запишем уравнение касательной y - y0 = f '(x0 )(x - x0 ) к кривой y = f (x) в точке x0, где a < x0 b, в виде y = y0 + f '(x0 )(x - x0 ). Очевидно, y0 = f(x0 ), а потому последнее уравнение можно записать в виде y = f(x0 ) + f '(x0 )(x - x0 ). (1)

Но, согласно формуле Тейлора, при n = 2 имеем:

(2)

Фиксируя x в интервале (a, b) и вычитая почленно из уравнения (2) уравнение (1), получим: (3)

Если f ''[x0 + ?(x - x0 )]?0, где 0 < ? < 1, то имеем f(x) - y ? 0

откуда следует, что кривая y = f(x) в точке x обращена выпуклостью вверх.

Если f ''[x0 + ?(x - x0 )]?0, то имеем f(x) - y ? 0 откуда следует, что кривая y = f(x) в точке x обращена выпуклостью вниз.

Так как была зафиксирована произвольная точка x интервала (a, b), то высказанное выше утверждение доказано.

Точка кривой, в которой кривая меняет направление изгиба, т.е. переходит от выпуклости вверх к выпуклости вниз или наоборот, называется точкой перегиба кривой (рис.4). (В этом определении предполагается, что в точке перехода кривой от выпуклости вверх к выпуклости вниз (или наоборот) имеется единственная касательная).

Теорема 8. Пусть функция f(x) имеет непрерывную вторую производную f ''(x) и пусть A[x0 ; f(x0 )] - точка перегиба кривой y = f(x). Тогда f ''(x0 ) = 0 или не существует.

Доказательство. Рассмотрим для определенности случай, когда кривая y = f(x) в точке перегиба A[x0 ; f(x0 )] переходит от выпуклости вверх в выпуклости вниз (рис.4). Тогда при достаточно малом h в интервале (x0 - h, x0 ) вторая производная f ''(x) будет меньше нуля, а в инетрвале (x0, x0 +h) - больше нуля.

Но f ''(x) - функция непрерывная, а потому, переходя от отрицательных значений к положительным, она при x = x0 обращается в нуль: f ''(x0 ) = 0.

На рис.5 изображен график функции . Хотя при x0 = 0 имеется касательная и точка перегиба, все же вторая производная f ''(x) не равна нулю, она даже не существует в этой точке. В самом деле, имеем

Итак, f ''(0) не существует. Но тем не менее точка O(0; 0) является точкой перегиба, так как при x < 0 f ''(x) > 0 и кривая выпукла вниз, а при x > 0 f ''(x) < 0 и кривая выпукла вверх.

Таким образом в случае непрерывности второй производной f ''(x) обращение в нуль или несуществование ее в какой-нибудь точки кривой y = f(x) является необходимым условием существования точки перегиба. Однако это условие не является достаточным.

Теорема 9. Если вторая производная f ''(x) непрерывна и меняет знак при x = x0, то точка A[x0 ; f(x0 )] является точкой перегиба кривой y = f(x) при условии, конечно, что в точке A существует касательная.

Доказательство. Пусть например f ''(x) < 0 при x0 - h < x < x0 и f ''(x) > 0 при x0 < x < x0 + h. Тогда в интервале (x0 - h; x0 ) кривая y = f(x) обращена выпуклостью вверх, а в интервале (x0 ; x0 + h) - выпклостью вниз (смотри рис.4), т.е. точка A[x0 ; f(x0 )] есть точка перегиба кривой, что и требовалось доказать.

6.5 Общая схема исследования функции и построение ее графика

1. Находим область определения функции f(x)

2. Находим точки пересечения кривой y = f(x) с осями координат и наносим их на чертеж.

3. Определяем, симметрична ли кривая y = f(x) относительно осей координат и начала координат.

4. Исследуем функцию y = f(x) на непрерывность. Если функция имеет в точке x0 разрыв, то отмечаем ее на чертеже.

5. Находим асимптоты кривой, если они имеются.

6. Находим максимум и минимум функции и отмечаем на чертеже точки кривой с максимальной и минимальной ординатами.

7. Исследуем кривую y = f(x) на выпуклость вверх или вниз, находим точки перегиба кривой и отмечаем их на чертеже.

8. Вычерчиваем кривую y = f(x).

6.6 Касательная и нормаль к плоской кривой

Пусть даны кривая y = f(x) и точка M (x1 ; y1) на ней. Требуется составить уравнения касательной и нормали (смотри рисунок).

Как известно, угловой коэффициент k касательной к кривой y = f(x) в точке M (x1 ; y1) равен значению f '(x1) производной y' = f '(x) при x = x1/ Следовательно, уравнение касательной можно записать в виде уравнения прямой, проходящей через данную точку в данном направлении, т.е. в виде y - y1 = f '(x1)(x - x1)

Нормалью называется прямая, проходящая через точку касания перпендикулярно касательной. поэтому ее угловой коэффициент равен , а уравнение записывается в виде

7.Экономическое приложение производной

7.1 Экономическая интерпретация производной

В экономической теории активно используется понятие «маржинальный», что означает «предельный». Введение этого понятия в научный оборот в XIX веке позволило создать совершенно новый инструмент исследования и описания экономических явлений - инструмент, посредством которого стало возможно ставить и решать новый класс научных проблем.

Классическая экономическая теория Смита, Рикардо, Милля обычно имела дело со средними величинами: средняя цена, средняя производительность труда и т.д. Но постепенно сложился иной подход. Существенные закономерности оказалось можно обнаружить в области предельных величин.

Предельные или пограничные величины характеризуют не состояние (как суммарная или средняя величины.), а процесс, изменение экономического объекта. Следовательно, производная выступает как интенсивность изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора.

Надо заметить, что экономика не всегда позволяет использовать предельные величины в силу прерывности (дискретности) экономических показателей во времени (например, годовых, квартальных, месячных и т.д.). В то же время во многих случаях можно отвлечься от дискретности и эффективно использовать предельные величины.

Рассмотрим ситуацию: пусть y - издержки производства, а х - количество продукции, тогда x- прирост продукции, а y - приращение издержек производства.

В этом случае производная выражает предельные издержки производства и характеризует приближенно дополнительные затраты на производство дополнительной единицы продукции ,где MC - предельные издержки (marginal costs); TC - общие издержки (total costs); Q - количество.

Геометрическая интерпретация предельных издержек - это тангенс угла наклона касательной к кривой в данной точке (см. рис.).

Аналогичным образом могут быть определены и многие другие экономические величины, имеющие предельный характер.

Другой пример - категория предельной выручки (MR-- marginal revenue) -- это дополнительный доход, полученный при переходе от производства n-ной к (n+1)-ой единице продукта.

Она представляет собой первую производную от выручки: .

При этом R= PQ, где R-выручка (revenue); P-цена (price).

Таким образом , MR= P.

Это равенство верно относительно условий совершенной конкуренции, когда экономические агенты каждый по отдельности не могут оказать влияния на цену.

Обратимся к теориям потребления: кардиналистской и ординалистской.

Кардиналистский (количественный) подход к теории цен предполагает равное влияние величин полезности товара и затрат на его производства на формирование цены. В основе рассматриваемого подхода - исследования А. Маршалла.

Ординалистский (Порядковый) подход к теории цен разрабатывался И. Фишером, В. Парето. Суть данного подхода состоит в том, что потребители, имеющие определенный уровень доходов, сравнивают между собой цены и полезность различных наборов экономических благ и отдают предпочтение тем наборам, которые при сравнительно низких ценах имеют максимальную полезность для конкретного потребителя.

В соответствии с первой, суммарную полезность U для любого субъекта, если в экономике существует n потребительских благ в объемах х1, x2,… хn, можно выразить в виде кардиналистской функции полезности:

U= U(х1, x2,… xn).

Предельные полезности MU товаров выступают в качестве ее частных производных: . Они показывают, на сколько изменяется полезность всей массы благ, достающихся субъекту, при бесконечно малом приращении количества блага i (i=1,2…n)

В ординалистской теории полагается, что потребитель оценивает полезность не отдельных благ, а потребительских наборов; что он способен сопоставить полезности наборов товаров.

Ординалистская функция полезности исследована подробно, значительный вклад в ее изучение внес Дж. Хикс. После его трудов началось прогрессирующее вытеснение понятия "предельная полезность" категорией предельной нормы замещения (MRS - marginal rate of substitution).

Предположим, что происходит замещение товара y товаром х при движении сверху вниз вдоль кривой безразличия. Предельная норма замещения товара y товаром x показывает, какое количество товара x необходимо для того, чтобы компенсировать потребительскую утрату единицы товара y.

Они определяются так:

.

Т.к. dy отрицательно, знак "-" вводится, чтобы MRS была больше нуля.

Итак, предельная норма замещения геометрически есть касательная к кривой безразличия в данной точке. Значение предельной нормы замещения по абсолютной величине равно тангенсу угла наклона касательной к кривой безразличия.

Приведем еще один пример элементарного анализа на микроуровне, который имеет аналог и на макроуровне.

Любой индивид свой доход Y после уплаты налогов использует на потребление C и сбережение S. Ясно, что лица с низким доходом, как правило, целиком используют его на потребление, так что размер сбережения равен нулю. С ростом дохода субъект не только больше потребляет, но и больше сберегает. Как установлено теорией и подтверждено эмпирическими исследования, потребление и сбережение зависят от размера дохода:

Y= C(Y) + S(Y).

Зависимость потребления индивида от дохода называется функцией склонности к потреблению или функцией потребления.

Использование производной позволяет определить такую категорию, как предельную склонность к потреблению MPC (marginal property to consume), показывающую долю прироста личного потребления в приросте дохода:

.

По мере увеличения доходов MPC уменьшается. Последовательно определяя сбережения при каждом значении дохода, можно построить функцию склонности к сбережению или функцию сбережения. Долю прироста сбережений в приросте дохода показывает предельная склонность к сбережению MPS(marginal propensity to save): .

С увеличением доходов MPS увеличивается.

Еще одним примером использования производной в экономике является анализ производственной функции. Поскольку ограниченность ресурсов принципиально не устранима, то решающее значение приобретает отдача от факторов производства. Здесь также применима производная, как инструмент исследования. Пусть применяемый капитал постоянен, а затраты труда увеличиваются. Можно ввести в экономический анализ следующую категорию - предельный продукт труда MPL(marginal product of labor) - это дополнительный продукт, полученный в результате дополнительных вложений труда (L - labor) при неизменной величине капитала:.

Если вложения осуществляются достаточно малыми порциями, то , т.к. dY - результат, dL - затраты, то MPL - предельная производительность труда.

Аналогично, MPk - предельный продукт капитала - дополнительный продукт, полученный в результате дополнительных вложений капитала K при неизменной величине труда:.

Если вложения осуществляются малыми порциями, то .

MPk - характеризует предельную производительность капитала.

Для исследования экономических процессов и решения других прикладных задач часто используется понятие эластичности функции.

Определение: Эластичностью функции Еx(y) называется предел отношения относительного приращения функции y к относительному приращению переменной x при x0:

.

Эластичность функции показывает приближенно, на сколько процентов изменится функция y= f(x), при изменении независимой переменной x на 1%.

Приведем несколько конкретных иллюстраций такой зависимости. Прямой коэффициент эластичности спроса по цене устанавливает, на сколько процентов увеличивается (уменьшается) спрос Q на товар i при уменьшении (увеличении) его цены P на 1%: .

Перекрестный коэффициент эластичности спроса по цене показывает, на сколько процентов изменится спрос на товар i при однопроцентных колебаниях цены товара j (j = 1,2,…n): .

Количественную сторону взаимодействия дохода и спроса отражает коэффициент эластичности спроса по доходу, который указывает, на сколько процентов изменится спрос на i-тый товар Qi если доход, предназначенный на текущее потребление, изменится на 1%: .

Можно привести и другие примеры использования производной при фокусировке различных категорий и закономерностей. Дальнейшее раскрытие экономического смысла хотелось бы осуществить через рассмотрение экономической интерпретации математических теорем.

7.2 Применение производной в экономической теории

Проанализировав экономический смысл производной, нетрудно заметить, что многие, в том числе базовых законы теории производства и потребления, спроса и предложения оказываются прямыми следствиями математических теорем.

Вначале рассмотрим экономическую интерпретацию теоремы: если дифференцируемая на промежутке X функция y= f(x) достигает наибольшего или наименьшего значения во внутренней точке x0 этого промежутка, то производная функции в этой точке равна нулю, то есть f'(x0) = 0.

Один из базовых законов теории производства звучит так: "Оптимальный для производителя уровень выпуска товара определяется равенством предельных издержек и предельного дохода".

То есть уровень выпуска Qo является оптимальным для производителя, если MC(Qo)=MR(Qo), где MC - предельные издержки, а MR - предельный доход.

Обозначим функцию прибыли за П(Q). Тогда П(Q) = R(Q) -- C(Q), где R - прибыль, а C - общие издержки производства.

Очевидно, что оптимальным уровнем производства является тот, при котором прибыль максимальна, то есть такое значение выпуска Qo, при котором функция П(Q) имеет экстремум (максимум). По теореме Ферма в этой точке П'(Q) = 0. Но П'(Q)=R'(Q) - C'(Q), поэтому R'(Qo) = C'(Qo), откуда следует, что MR(Qo) = MC(Qo).

Другое важное понятие теории производства - это уровень наиболее экономичного производства, при котором средние издержки по производству товара минимальны. Соответствующий экономический закон гласит: “оптимальный объем производства определяется равенством средних и предельных издержек”.

Получим это условие как следствие сформулированной выше теоремы. Средние издержки AC(Q) определяются как , т.е. издержки по производству всего товара, деленные на произведенное его количество. Минимум этой величины достигается в критической точке функции y=AC(Q), т.е. при условии , откуда TC'(Q)Q--TC(Q) = 0 или , т.е. MC(Q)=AC(Q).

Понятие выпуклости функции также находит свою интерпретацию в экономической теории.

Один из наиболее знаменитых экономических законов - закон убывающей доходности - звучит следующим образом: "с увеличением производства дополнительная продукция, полученная на каждую новую единицу ресурса (трудового, технологического и т.д.), с некоторого момента убывает".

Иными словами, величина , где y - приращение выпуска продукции, а x - приращение ресурса, уменьшается при увеличении x. Таким образом, закон убывающей доходности формулируется так: функция y= f(x), выражающая зависимость выпуска продукции от вложенного ресурса, является функцией, выпуклой вверх.

Другим базисным понятием экономической теории является функция полезности U= U(x), где х - товар, а U - полезность (utility). Эта величина очень субъективная для каждого отдельного потребителя, но достаточно объективная для общества в целом. Закон убывающей полезности звучит следующим образом: с ростом количества товара, дополнительная полезность от каждой новой его единицы с некоторого момента убывает. Очевидно, этот закон можно переформулировать так: функция полезности является функцией, выпуклой вверх. В такой постановке закон убывающей полезности служит отправной точкой для математического исследования теории спроса и предложения.

7.3 Использование производной для решения задач по экономической теории

Задача 1.

Цементный завод производит Х т. цемента в день. По договору он должен ежедневно поставлять строительной фирме не менее 20 т. цемента. Производственные мощности завода таковы, что выпуск цемента не может превышать 90 т. в день.


Подобные документы

  • Определение производной функции, геометрический смысл ее приращения. Геометрический смысл заданного отношения. Физический смысл производной функции в данной точке. Число, к которому стремится заданное отношение. Анализ примеров вычисления производной.

    презентация [696,5 K], добавлен 18.12.2014

  • Геометрический смысл производной. Анализ связи между непрерывностью и дифференцируемостью функции. Производные основных элементарных функций. Правила дифференцирования. Нахождение производной неявно заданной функции. Логарифмическое дифференцирование.

    презентация [282,0 K], добавлен 14.11.2014

  • Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.

    статья [122,0 K], добавлен 11.01.2004

  • Предел отношения приращения функции к приращению независимого аргумента, когда приращение аргумента стремится к нулю. Обозначения производной. Понятие дифференцирования функции производной и ее геометрический смысл. Уравнение касательной к кривой.

    презентация [246,0 K], добавлен 21.09.2013

  • Нахождение частной производной первого порядка. Определение области определения функции. Расчет производной от функции, заданной неявно. Полный дифференциал функции двух переменных. Исследование функции на экстремум, ее наименьшее и наибольшее значения.

    контрольная работа [1,1 M], добавлен 12.11.2014

  • Основные определения и теоремы производной, дифференциала функции; техника дифференцирования. Применение производных к вычислению пределов. Исследование функции на монотонность и точки локального экстремума. Полное исследование функции, асимптоты графика.

    контрольная работа [539,8 K], добавлен 20.03.2016

  • Поиск производной сложной функции как равной производной функции по промежуточному аргументу, умноженной на его производную по независимой переменной. Теорема о связи бесконечно малых величин с пределами функций. Правило дифференцирования сложной функции.

    презентация [62,1 K], добавлен 21.09.2013

  • Сущность предела функции, ее производной и дифференциала. Основные теоремы о пределах и методы их математического вычисления. Производная, ее физический и геометрический смысл. Связь непрерывности и дифференцируемости, основные правила дифференцирования.

    презентация [128,4 K], добавлен 24.06.2012

  • Правило нахождения производной произведения функций. Формулы нахождения производных для функций, заданных параметрически. Геометрический смысл производной. Приращение и дифференциал функции. Наибольшее и наименьшее значения на замкнутом множестве.

    контрольная работа [75,5 K], добавлен 07.09.2010

  • Производная — основное понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Геометрический и механический смысл приращения функции. Правило дифференцирования, критические точки, экстремум; интегрирование.

    презентация [575,4 K], добавлен 11.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.