Производная и ее приложения

Геометрический и физический смысл производной. Правила дифференцирования, производные высших порядков. Изучение функции с помощью производной. Возрастание и убывание функции, экстремум функции. Общая схема исследования функции и построение ее графика.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 10.04.2010
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Определить, при каком объеме производства удельные затраты будут наибольшими (наименьшими), если функция затрат имеет вид:

К=-х3+98х2+200х. Удельные затраты составят К/х=-х2+98х+200

Наша задача сводится к отысканию наибольшего и наименьшего значения функции У= -х2+98х+200. На промежутке [20;90].

Вывод: x=49, критическая точка функции. Вычисляем значение функции на концах промежутках и в критической точке.

f(20)=1760 f(49)=2601 f(90)=320.

Таким образом, при выпуске 49 тонн цемента в день удельные издержки максимальны, это экономически не выгодно, а при выпуске 90 тонн в день минимально, следовательно можно посоветовать работать заводу на предельной мощности и находить возможности усовершенствовать технологию, так как дальше будет действовать закон убывающей доходности. И без реконструкции нельзя будет увеличить выпуск продукции.

Задача 2.

Задача: Предприятие производит Х единиц некоторой однородной продукции в месяц. Установлено, что зависимость финансовых накопления предприятия от объема выпуска выражается формулой f(x)=-0,02x^3+600x -1000. Исследовать потенциал предприятия.

Функция исследуется с помощью производной. Получаем, что при Х=100 функция достигает максимума.

Вывод: финансовые накопления предприятия растут с увеличением объема производства до 100 единиц, при х =100 они достигают максимума и объем накопления равен 39000 денежных единиц. Дальнейший рост производства приводит к сокращению финансовых накоплений.

Задача 3.

Спрос-это зависимость между ценой единицы товара и количеством товара, которое потребители готовы купить при каждой возможной цене, за определенный период времени и при прочих равных условиях.

Зависимость спроса от цены описывается функцией ,

Данная функция исследуется с помощью производной:

Производная меньше нуля, если P>=0.

Определим точку перегиба функции. Такой точкой является точка (0,5;0,6), т.е. при P<1/2 спрос убывает медленнее, а при P>1/2 спрос убывает все быстрее.

Задача 4.

Выручка от реализации товара по цене p составляет:

(Денежных единиц), где . Исследуем эту функцию с помощью производной.

Производная этой функции:  положительна, если p<1/2 и отрицательна для p>1/2, это означает, что с ростом цены выручка в начале увеличивается ( несмотря на падение спроса) и p=1/2 достигает максимального значения , дальнейшее увеличение цены не имеет смысла, т.как оно ведет к сокращению выручки. Темп изменения выручки выражается второй производной.

 темп положительный темп отрицательный

На промежутке (0,1/2) функция возрастает все медленнее, то есть дальнейшее повышение цены не выгодно. Сначала выручка убывает с отрицательным темпом для , а затем темп убывания становится положительным и для P>0,9 выручка убывает все быстрее и приближается к нулю при неограниченном увеличении цены.

Для наглядной демонстрации выше сказанного составим таблицу и построим график.

p

(0, 1/2)

1/2

U'(p)

+

0

-

-0,47

-

U''(p)

-

 

-

0

+

U (p)

возрастает

выпукла

0,3

max

убывает

выпукла

0,2 точка перегиба

убывает

вогнута

Вывод:

На промежутке (0, 1/2) функция возрастает все медленнее.

Соответствующая часть графика выпукла. Как уже отмечалось, дальнейшее повышение цены не выгодно. Сначала выручка убывает с отрицательным темпом, а затем темп убывания V(p) становится положительным. Для р > 0,9 выручка убывает все быстрее и приближается к нулю при неограниченном увеличении цены. На промежутке функция U(p) вогнута. В точке  график перегибается (см. на рисунке):

8. Применение производной в физике

В физике производная применяется в основном для вычисления наибольших или наименьших значений для каких-либо величин.

Задача 1.

Лестница длиной 5м приставлена к стене таким образом, что верхний ее конец находится на высоте 4м. В некоторый момент времени лестница начинает падать, при этом верхний конец приближается к поверхности земли с постоянным ускорением 2 м/с2. С какой скоростью удаляется от стены нижний конец лестницы в тот момент, когда верхний конец находится на высоте 2м?

Пусть верхний конец лестницы в момент времени t находится на высоте y(0)= 4м, а нижний на расстоянии x(t) от стенки.

Высота y(t) описывается формулой: ,так как движение равноускоренное.

В момент t: y(t) = 2, т.е. 2 = 4 - t2, из которого ;

В этот момент по т. Пифагора, т.е.

Скорость его изменения

Ответ:

Задача 2

Дождевая капля падает под действием силы тяжести; равномерно испаряясь так, что ее масса m изменяется по закону m(t) = 1 - 2/3t. (m изменяется в граммах, t - в секундах). Через сколько времени после начала падения кинематическая энергия капли будет наибольшей?

Скорость капли , её кинетическая энергия в момент t равна

Исследуем функцию на наибольшее с помощью поизводной:

=0 t1=0 t2=1 (t>0)

При t =1 функция Ek(t) принимает наибольшее значение, следовательно кинетическая энергия падающей капли будет наибольшей через 1сек.

Задача 3

Источник тока с электродвижущей силой Е=220 В и внутренним сопротивлением r = 50 Ом подключен к прибору с сопротивлением R.Чему должно быть равно сопротивление R потребителя, чтобы потребляемая им мощность была наибольшей?

По закону Ома сила тока в цепи есть

выделяемая в потребителе мощность P=I2R, то есть

Исследуем функцию P(R) на наибольшее с помощью производной: P'(R) = 0 : r - R = 0, R = r = 50; При R = 50 функция P(R) принимает наибольшее значение. Следовательно, потребляемая мощность будет наибольшей при сопротивлении R =50 Ом.

Ответ: 50 Ом

9. Применение производной в алгебре

9.1 Применение производной к доказательству неравенств

Одно из простейших применений производной к доказательству неравенств основано на связи между возрастанием и убыванием функции на промежутке и знаком ее производной. С помощью теоремы Лагранжа доказана теорема:

Теорема 1. Если функция на некотором интервале имеет производную всюду на , то на монотонно возрастает; если же всюду на , то на монотонно убывает.

Очевидным следствием (и обобщением) этой теоремы является следующая:

Теорема 2. Если на промежутке выполняется неравенство , функция и непрерывны в точке и , то на выполняется неравенство .

Предлагаю несколько задач на доказательство неравенств с использованием этих теорем.

Задача 1. Пусть .Докажите истинность неравенства . (1)

Решение: Рассмотрим на функцию . Найдем ее производную: . Видим, что при . Следовательно, на убывает так, что при . Но Следовательно неравенство (1) верно.

Задача 2. Пусть и положительные числа, Тогда очевидно, что , . Можно ли гарантировать, что неравенство (2)

верно а) при ; б) при ?

Решение: а) Рассмотрим функцию . Имеем:

Отсюда видно, что при функция возрастает. В частности, она возрастает на интервале Поэтому при неравенство (2) справедливо.

б) на интервале , т.е. убывает. Поэтому при любых и , для которых , неравенство (2) неверно, а верно неравенство противоположного смысла:

Задача 3. Доказать неравенство: при (3).

Воспользуемся теоремой 2. и , верно неравенство : на промежутке и выполнимо условие где , в данном случае равно 0. Следовательно неравенство (3) верно.

Задача 4. Доказать неравенство: (4).

Решение: , ;

Неравенство при любых верно. Значит неравенство (4) верно.

Задача 5. Доказать, что если , то (5).

Решение: Пусть Тогда

Чтобы найти, при каких значениях функция положительная, исследуем ее производную . Так как при то

Следовательно, функция возрастает при . Учитывая, что и непрерывна, получаем , при .

Поэтому возрастает на рассматриваемом интервале. Поскольку непрерывна и то при . Неравенство (5) верно.

Задача 6. Выясним, что больше при : или .

Решение: Предстоит сравнить с числом 1 дробь .

Рассмотрим на вспомогательную функцию .

Выясним, будет ли она монотонна на отрезке . Для этого найдем ее производную (по правилу дифференцирования дроби):

при .

В силу теоремы 1 функция вырастает на отрезке . Поэтому, при т.е.

при .

При решении задачи (6) встретился полезный методический прием, если нежно доказать неравенство, в котором участвует несколько букв, то часто целесообразно одну из букв (в данном примере это была буква ) считать применимой (чтобы подчеркнуть это обстоятельство, мы ее заменяли буквой , а значение остальных букв (в данном случае значение буквы ) считать фиксированными. Иногда приходится при решении одной задачи применить указанный прием несколько раз.

Задача 7. Проверить, справедливо ли при любых положительных неравенство: (6).

Решение: Пусть Рассмотрим функцию

.

При имеем .

Отсюда видно (теорема 1), что убывает на Поэтому при имеем т.е. мы получили неравенство:

(7).

Теперь рассмотрим другую вспомогательную функцию . При имеем:

Следовательно, убывает на , т.е. при значит, (8),

Из неравенств (7) и (8) следует неравенство (6). Для выяснения истинности неравенств иногда удобно воспользоваться следующим утверждением, которое непосредственно вытекает из теоремы 1:

Теорема 3: Пусть функция непрерывна на и пусть имеется такая точка с из , что на и на . Тогда при любом х из справедливо неравенство причем равенство имеет место лишь при .

Задача 8. Проверьте, справедливо ли для всех действительных х следующее неравенство:

Решение: Выясним, где функция возрастает, а где убывает. Для этого найдем производную:

.

Видно, что на и на . Следовательно, в силу теоремы 3 т.е. неравенство (9) справедливо, причем равенство имеет место лишь при .

9.2 Применение производной в доказательстве тождеств

Доказательства тождества можно достигнуть иногда, если воспользоваться одним очевидным замечанием:

Если на некотором интервале функция тождественно равна постоянной, то ее производная на этом интервале постоянно равна нулю:

на на .

Задача 1. Проверить тождество:

(1)

Доказательство: Рассмотрим функцию

Вычислим ее производную (по х):

Поэтому (замечание) . Следовательно, что равносильно тождеству (1).

Задача 2. Проверить тождество:

(2)

Доказательство: Рассмотрим функцию

Докажем, что

Найдем ее производную:

Значит. При х=0 ,следовательно,тождество (2) верно.

В связи с рассмотренными примерами можно отметить, что при нахождении постоянной, интегрирования С полезно фиксировать значения переменной, по которой производится дифференцирование, таким образом, чтобы получить возможно более простые выкладки.

9.3 Применение производной для упрощения алгебраических и тригонометрических выражений

Прием использования производной для преобразования алгебраических и тригонометрических выражений основан на том, производная иногда имеет значительно более простой вид, чем исходная функция, благодаря чему, она легко интегрируется, что и позволяет найти искомое преобразование исходного выражения:

Задача 1 Упростить выражение:

Решение: Обозначив данное выражение будем иметь:

Таким образом, заданное выражение (1) равно .

Задача 2. Упростить выражение:

Решение: Обозначив это выражение через , будем иметь:

отсюда .

и при получаем:

Так что

Задача 3. Упростить запись функции:

(2)

Решение: Применение обычного аппарата тригонометрии приведёт к относительно громоздким выкладкам. Здесь удобнее воспользоваться производной:

Отсюда

Найдём :

Таким образом функция (2) равна

Задача 4. Упростить запись многочлена:

(3)

Решение: Обозначим многочлен (3) через и найдём последовательно первую и вторую производные этой функции:

Ясно, что Поэтому , где , найдём : при , .

9.4 Разложение выражения на множители с помощью производной

Задача 1. Разложить на множители выражение:

(1)

Решение: Считая переменной, а и постоянными фиксированными (параметрами) и обозначая заданное выражение через , будем иметь:

Поэтому (2)

где - постоянная, т.е. в данном случае - выражение, зависящее от параметров и . Для нахождения в равенстве положим тогда .

Получим

Задача 2. Разложить на множители выражение:

(3)

Решение: Поскольку переменная входит в данное выражение в наименьшей степени, рассмотрим его, как функцию и будем иметь:

получим:

Таким образом, исходное выражение (3) равно

Задача 3. Разложить на множители выражение:

Решение: Обозначив данное выражение через и считая и постоянными, получим:

откуда , где зависит только от и . Положив в этом тождестве , получим и

Для разложения на множители второго множителя используем тот же приём, но в качестве переменной рассмотрим , поскольку эта переменная входит в меньшей степени, чем . Обозначая его через и считая и постоянными, будем иметь:

отсюда:

Таким образом исходное выражение (4) равно

9.5 Применение производной в вопросах существования корней уравнений

С помощью производной можно определить сколько решений имеет уравнение. Основную роль здесь играют исследование функций на монотонность, нахождение её экстремальных значений. Кроме того, используется свойство монотонных функций:

Задача 1. Если функция возрастает или убывает на некотором промежутке, то на этом промежутке уравнение имеет не более одного корня.

(1)

Решение: Область определения данного уравнения - промежуток определение на этом промежутке функцию , положив

Тогда, на

,

и таким образом функция - возрастающая, так что данное уравнение (1) не может иметь более одного решения.

Задача 2. При каких значениях имеет решения уравнение

(2)

Решение: область определения уравнения - отрезок , рассмотрим функцию , положив

Тогда на открытом промежутке

, так что - единственная критическая точка функции , являющаяся, очевидно, точкой максимума. Поскольку то примет наибольшее значение при , а наименьшее значение - при .

Так как функция непрерывна, то её область значений представляет собой отрезок , между её наименьшим и наибольшим значением. Другими словами, исходное уравнение (2) имеет решения при .

Заключение

Настоящая работа даёт новый подход к многим преобразованиям в математике, которые стандартным путём трудно разрешимы или разрешимы, но громоздкими способами. Рассмотренные подходы нестандартного характера покажутся новыми и необыкновенными, что расширит кругозор и повысит интерес к производной.

Итак, геометрический смысл производной: производная функции в точке x0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x0.

Физический смысл производной: производная функции y = f(x) в точке x0 - это скорость изменения функции f (х) в точке x0

Экономический смысл производной: производная выступает как интенсивность изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора.

Производная находит широкое приложение в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени; для нахождения наибольших и наименьших величин.

Производная является важнейшим инструментом экономического анализа, позволяющим углубить геометрический и математический смысл экономических понятий, а также выразить ряд экономических законов с помощью математических формул.

Наиболее актуально использование производной в предельном анализе, то есть при исследовании предельных величин (предельные издержки, предельная выручка, предельная производительность труда или других факторов производства и т. д.).

Производная применяется в экономической теории. Многие, в том числе базовые, законы теории производства и потребления, спроса и предложения оказываются прямыми следствиями математических теорем

Знание производной позволяет решать многочисленные задачи по экономической теории, физике, алгебре и геометрии.


Подобные документы

  • Определение производной функции, геометрический смысл ее приращения. Геометрический смысл заданного отношения. Физический смысл производной функции в данной точке. Число, к которому стремится заданное отношение. Анализ примеров вычисления производной.

    презентация [696,5 K], добавлен 18.12.2014

  • Геометрический смысл производной. Анализ связи между непрерывностью и дифференцируемостью функции. Производные основных элементарных функций. Правила дифференцирования. Нахождение производной неявно заданной функции. Логарифмическое дифференцирование.

    презентация [282,0 K], добавлен 14.11.2014

  • Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.

    статья [122,0 K], добавлен 11.01.2004

  • Предел отношения приращения функции к приращению независимого аргумента, когда приращение аргумента стремится к нулю. Обозначения производной. Понятие дифференцирования функции производной и ее геометрический смысл. Уравнение касательной к кривой.

    презентация [246,0 K], добавлен 21.09.2013

  • Нахождение частной производной первого порядка. Определение области определения функции. Расчет производной от функции, заданной неявно. Полный дифференциал функции двух переменных. Исследование функции на экстремум, ее наименьшее и наибольшее значения.

    контрольная работа [1,1 M], добавлен 12.11.2014

  • Основные определения и теоремы производной, дифференциала функции; техника дифференцирования. Применение производных к вычислению пределов. Исследование функции на монотонность и точки локального экстремума. Полное исследование функции, асимптоты графика.

    контрольная работа [539,8 K], добавлен 20.03.2016

  • Поиск производной сложной функции как равной производной функции по промежуточному аргументу, умноженной на его производную по независимой переменной. Теорема о связи бесконечно малых величин с пределами функций. Правило дифференцирования сложной функции.

    презентация [62,1 K], добавлен 21.09.2013

  • Сущность предела функции, ее производной и дифференциала. Основные теоремы о пределах и методы их математического вычисления. Производная, ее физический и геометрический смысл. Связь непрерывности и дифференцируемости, основные правила дифференцирования.

    презентация [128,4 K], добавлен 24.06.2012

  • Правило нахождения производной произведения функций. Формулы нахождения производных для функций, заданных параметрически. Геометрический смысл производной. Приращение и дифференциал функции. Наибольшее и наименьшее значения на замкнутом множестве.

    контрольная работа [75,5 K], добавлен 07.09.2010

  • Производная — основное понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Геометрический и механический смысл приращения функции. Правило дифференцирования, критические точки, экстремум; интегрирование.

    презентация [575,4 K], добавлен 11.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.