Распределение Бернулли. Теорема Пуассона.

Сущность теорем распределения Бернулли и Пуассона. Биномиальное распределение (распределение Бернулли). Распределение Пуассона. Определение и основные характеристики закона Пуассона. Дополнительные характеристики распределения Пуассона. Примеры задач.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 08.11.2008
Размер файла 91,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

9

МИНИСТЕРСТВО ОБРАЗОВАНИЯ НАУКИ РФ

СОВРЕМЕННАЯ ГУМАНИТАРНАЯ АКАДЕМИЯ

РЕФЕРАТ

по дисциплине : «Теория вероятностей»

на тему:

«Распределение Бернулли. Теорема Пуассона.

Распределение Пуассона»

Выполнила: студентка группы 07-409

Просвирова Е. А.

Армавир, 2006

Содержание

Введение 3

1. Биномиальное распределение (распределение Бернулли) 5

2.Распределение Пуассона 8

2.1. Определение закона Пуассона 8

2.2.Основные характеристики распределения Пуассона 8

2.3.Дополнительные характеристики распределения Пуассона 10

Заключение 16

Литература 17

Введение

Подчиняются ли каким-либо законам явления, носящие случайный характер? Да, но эти законы отличаются от привычных нам физических законов. Значения СВ невозможно предугадать даже при известных условиях эксперимента, мы можем лишь указать вероятности того, что СВ примет то или иное значение. Зато зная распределение вероятностей СВ, мы можем делать выводы о событиях, в которых участвуют эти случайные величины. Правда, эти выводы будут также носить вероятностный характер.

Пусть некоторая СВ является дискретной, т.е. может принимать лишь фиксированные значения Xi. В этом случае ряд значений вероятностей P(Xi) для всех (i=1…n) допустимых значений этой величины называют её законом распределения.

Закон распределения СВ - это отношение, устанавливающее связь между возможными значениями СВ и вероятностями, с которыми принимаются эти значения. Закон распределения полностью характеризует СВ.

При построении математической модели для проверки статистической гипотезы необходимо ввести математическое предположение о законе распределения СВ (параметрический путь построения модели).

Непараметрический подход к описанию математической модели (СВ не имеет параметрического закона распределения) менее точен, но имеет более широкую область применения.

Точно также, как и для вероятности случайного события, для закона распределения СВ есть только два пути его отыскания. Либо мы строим схему случайного события и находим аналитическое выражение (формулу) вычисления вероятности (возможно, кто-то уже сделал или сделает это за нас!), либо придется использовать эксперимент и по частотам наблюдений делать какие-то предположения (выдвигать гипотезы) о законе распределения.

Конечно же, для каждого из "классических" распределений уже давно эта работа проделана ¬- широко известными и очень часто используемыми в прикладной статистике являются биномиальное и полиномиальное распределения, геометрическое и гипергеометрическое, распределение Паскаля и Пуассона и многие другие.

Для почти всех классических распределений немедленно строились и публиковались специальные статистические таблицы, уточняемые по мере увеличения точности расчетов. Без использования многих томов этих таблиц, без обучения правилам пользования ими последние два столетия практическое использование статистики было невозможно.

Сегодня положение изменилось - нет нужды хранить данные расчетов по формулам (как бы последние не были сложны!), время на использование закона распределения для практики сведено к минутам, а то и секундам. Уже сейчас существует достаточное количество разнообразных пакетов прикладных компьютерных программ для этих целей.

Среди всех вероятностных распределений есть такие, которые используются на практике особенно часто. Эти распределения детально изучены и свойства их хорошо известны. Многие из этих распределений лежат в основе целых областей знаний - таких, как теория массового обслуживания, теория надежности, контроль качества, теория игр и т.п

Среди них нельзя не обратить внимание на труды Пуассона (1781-1840), доказавшего более общую, чем у Якова Бернулли, форму закона больших чисел, а также впервые применившего теорию вероятностей к задачам стрельбы. С именем Пуассона связан один из законов распределения, играющий большую роль в теории вероятностей и ее приложениях.

Именно этому закону распределения и посвящена данная курсовая работа. Речь пойдет непосредственно о законе, о его математических характеристиках, особых свойствах, связи с биномиальным распределением. Несколько слов будет сказано по поводу практического применения и приведено несколько примеров из практики.

Цель нашего реферата - выяснить сущность теорем распределения Бернулли и Пуассона.

Задача - изучить и проанализировать литературу по теме реферата.

1. Биномиальное распределение (распределение Бернулли)

Биномиальное распределение (распределение Бернулли) - распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях, если вероятность появления этого события в каждом испытании равна p (0<P< бином). Ньютона (см. коэффициенты биномиальные - C где n-m, (1-p) (m)="Cpm" Pn вероятностями с n ..., 2, 1, 0, m значения принимающая величина, случайная есть события этого появлений ? число Именно,>

Говорят, что СВ Х распределена по закону Бернулли с параметром p, если она принимает значения 0 и 1 с вероятностями pX(x)єP{X=x} = pxq1-x; p+q=1; x=0,1.

Биноминальное распределение возникает в тех случаях, когда ставится вопрос: сколько раз происходит некоторое событие в серии из определенного числа независимых наблюдений (опытов), выполняемых в одинаковых условиях.

Для удобства и наглядности будем полагать, что нам известна величина p - вероятность того, что вошедший в магазин посетитель окажется покупателем и (1- p) = q - вероятность того, что вошедший в магазин посетитель не окажется покупателем.

Если X - число покупателей из общего числа n посетителей, то вероятность того, что среди n посетителей оказалось k покупателей равна

P(X= k) = , где  k=0,1,…n 1)

Формулу (1) называют формулой Бернулли. При большом числе испытаний биномиальное распределение стремиться к нормальному.

Распределение Бернулли

 

 

Испытание Бернулли - это вероятностный эксперимент с двумя исходами, которые, как правило, называют «успехом» (его принято обозначать символом 1) и «неудачей» (соответственно, обозначается 0). Вероятность успеха принято обозначать буквой p, неудачи - буквой q; конечно, q=1-p. Величину p называют параметром испытания Бернулли.

Биномиальная, геометрическая, паскалева и отрицательная биномиальная случайные величины получаются из последовательности независимых испытаний Бернулли, если эту последовательность оборвать тем или иным способом, например, после n-го испытания или x-го успеха. Принято использовать следующую терминологию:

* - параметр испытания Бернулли (вероятность успеха в отдельном испытании);

* - число испытаний;

* - число успехов;

* - число неудач.

Биномиальная случайная величина (m|n,p) - число m успехов в n испытаниях.

Геометрическая случайная величина G(m|p)- число m испытаний до первого успеха (включая первый успех).

Паскалева случайная величина C(m|x,p)- число m испытаний до x-го успеха (не включая, конечно, сам x-й успех).

Отрицательная биномиальная случайная величина Y(m|x,p) - число m неудач до x-го успеха (не включая x-й успех).

Замечание: иногда отрицательное биномиальное распределение называют паскалевым и наоборот.

2. Распределение Пуассона

2.1. Определение закона Пуассона

Во многих задачах практики приходится иметь дело со случайными величинами, распределенными по своеобразному закону, который носит название закона Пуассона.

Рассмотрим прерывную случайную величину Х, которая может принимать только целые, неотрицательные значения: 0, 1, 2, … , m, … ; причем последовательность этих значений теоретически не ограничена. Говорят, что случайная величина Х распределена по закону Пуассона, если вероятность того, что она примет определенное значение m, выражается формулой:

где а - некоторая положительная величина, называемая параметром закона Пуассона.

Ряд распределения случайной величины Х, распределенной по закону Пуассона, выглядит следующим образом:

хm

0

1

2

m

Pm

e-a

2.2.Основные характеристики распределения Пуассона

Для начала убедимся, что последовательность вероятностей, может представлять собой ряд распределения, т.е. что сумма всех вероятностей Рm равна единице.

Используем разложение функции ех в ряд Маклорена:

Известно, что этот ряд сходится при любом значении х, поэтому, взяв х=а, получим

следовательно

Определим основные характеристики - математическое ожидание и дисперсию - случайной величины Х, распределенной по закону Пуассона. Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности. По определению, когда дискретная случайная величина принимает счетное множество значений:

Первый член суммы (соответствующий m=0) равен нулю, следовательно, суммирование можно начинать с m=1:

Таким образом, параметр а представляет собой не что иное, как математическое ожидание случайной величины Х.

Дисперсией случайной величины Х называют математической ожидание квадрата отклонения случайной величины от ее математического ожидания:

Однако, удобнее ее вычислять по формуле:

Поэтому найдем сначала второй начальный момент величины Х:

По ранее доказанному

кроме того,

следовательно,

Далее можно найти дисперсию случайной величины Х:

2.3.Дополнительные характеристики распределения Пуассона

I. Начальным моментом порядка k случайной величины Х называют математическое ожидание величины Хk:

бk=M(Xk).

В частности, начальный момент первого порядка равен математическому ожиданию:

б1=M(X)=a.

II. Центральным моментом порядка k случайной величины Х называют математическое ожидание величины [X-M(X)]k:

мk=M[X-M(X)]k.

В частности, центральный момент 1-ого порядка равен 0:

м1=М[X-M(X)]=0,

центральный момент 2-ого порядка равен дисперсии:

м2=M[X-M(X)]2=a.

III. Для случайной величины Х, распределенной по закону Пуассона, найдем вероятность того, что она примет значение не меньшее заданного k. Эту вероятность обозначим Rk:

Очевидно, вероятность Rk может быть вычислена как сумма

Однако, значительно проще определить ее из вероятности противоположного события:

В частности, вероятность того, что величина Х примет положительное значение, выражается формулой

Как уже говорилось, многие задачи практики приводят к распределению Пуассона. Рассмотрим одну из типичных задач такого рода.

Пусть на оси абсцисс Ох случайным образом распределяются точки (рис.2). Допустим, что случайное распределение точек удовлетворяет следующим условиям:

1)   Вероятность попадания того или иного числа точек на отрезок l зависит только от длины этого отрезка, но не зависит от его положения на оси абсцисс. Иными словами, точки распределены на оси абсцисс с одинаковой средней плотностью. Обозначим эту плотность, т.е. математическое ожидание числа точек, приходящихся на единицу длины, через л.

2)   Точки распределяются на оси абсцисс независимо друг от друга, т.е. вероятность попадания того или иного числа точек на заданный отрезок не зависит от того, сколько их попало на любой другой отрезок, не перекрывающийся с ним.

3)   Вероятность попадания на малый участок Дх двух или более точек пренебрежимо мала по сравнению с вероятностью попадания одной точки (это условие означает практическую невозможность совпадения двух или более точек).

Выделим на оси абсцисс определенный отрезок длины l и рассмотрим дискретную случайную величину Х - число точек, попадающих на этот отрезок. Возможные значения величины будут 0,1,2,…,m,… Так как точки попадают на отрезок независимо друг от друга, то теоретически не исключено, что их там окажется сколь угодно много, т.е. данный ряд продолжается неограниченно.

Докажем, что случайная величина Х распределена по закону Пуассона. Для этого надо подсчитать вероятность Рm того, что на отрезок попадет ровно m точек.

Сначала решим более простую задачу. Рассмотрим на оси Ох малый участок Дх и вычислим вероятность того, что на этот участок попадет хотя бы одна точка. Будем рассуждать следующим образом. Математическое ожидание числа точек, попадающих на этот участок, очевидно, равно л?Дх (т.к. на единицу длины попадает в среднем л точек). Согласно условию 3 для малого отрезка Дх можно пренебречь возможностью попадания на него двух или больше точек. Поэтому математическое ожидание л?Дх числа точек, попадающих на участок Дх, будет приближенно равно вероятности попадания на него одной точки (или, что в данных условиях равнозначно, хотя бы одной).

Таким образом, с точностью до бесконечно малых высшего порядка, при Дх>0 можно считать вероятность того, что на участок Дх попадет одна (хотя бы одна) точка, равной л?Дх, а вероятность того, что не попадет ни одной, равной 1-c?Дх.

Воспользуемся этим для вычисления вероятности Pm попадания на отрезок l ровно m точек. Разделим отрезок l на n равных частей длиной Условимся называть элементарный отрезок Дх "пустым", если в него не попало ни одной точки, и "занятым", если в него попала хотя бы одна. Согласно вышедоказанному вероятность того, что отрезок Дх окажется "занятым", приближенно равна л?Дх=; вероятность того, что он окажется "пустым", равна 1-. Так как, согласно условию 2, попадания точек в неперекрывающиеся отрезки независимы, то наши n отрезков можно рассмотреть как n независимых "опытов", в каждом из которых отрезок может быть "занят" с вероятностью p=. Найдем вероятность того, что среди n отрезков будет ровно m "занятых". По теореме о повторных независимых испытаниях эта вероятность равна

,

или обозначим лl=a:

.

При достаточно большом n эта вероятность приближенно равна вероятности попадания на отрезок l ровно m точек, т.к. попадание двух или больше точек на отрезок Дх имеет пренебрежимо малую вероятность. Для того, чтобы найти точное значение Рm, нужно перейти к пределу при n>?:

Учитывая, что

и

,

получаем, что искомая вероятность выражается формулой

где а=лl, т.е. величина Х распределена по закону Пуассона с параметром а=лl.

Надо отметить, что величина а по смыслу представляет собой среднее число точек, приходящееся на отрезок l. Величина R1 (вероятность того, что величина Х примет положительное значение) в данном случае выражает вероятность того, что на отрезок l попадет хотя бы одна точка: R1=1-e-a.

Таким образом, мы убедились, что распределение Пуассона возникает там, где какие-то точки (или другие элементы) занимают случайное положение независимо друг от друга, и подсчитывается количество этих точек, попавших в какую-то область. В нашем случае такой областью был отрезок l на оси абсцисс. Однако этот вывод легко можно распространить и на случай распределения точек на плоскости (случайное плоское поле точек) и в пространстве (случайное пространственное поле точек). Нетрудно доказать, что если соблюдены условия:

1)   точки распределены в поле статистически равномерно со средней плотностью л;

2)   точки попадают в неперекрывающиеся области независимым образом;

3)   точки появляются поодиночке, а не парами, тройками и т.д.,

то число точек Х, попавших в любую область D (плоскую или пространственную), распределяется по закону Пуассона:

,

где а - среднее число точек, попадающих в область D.

Для плоского случая а=SD л, где SD - площадь области D,

для пространственного а= VD л, где VD - объем области D.

Для пуассоновского распределения числа точек, попадающих в отрезок или область, условие постоянной плотности (л=const) несущественно. Если выполнены два других условия, то закон Пуассона все равно имеет место, только параметр а в нем приобретает другое выражение: он получается не простым умножением плотности л на длину, площадь или объем, а интегрированием переменной плотности по отрезку, площади или объему.

Распределение Пуассона играет важную роль в ряде вопросов физики, теории связи, теории надежности, теории массового обслуживания и т.д. Всюду, где в течение определенного времени может происходить случайное число каких-то событий (радиоактивных распадов, телефонных вызовов, отказов оборудования, несчастный случаях и т.п.).

Рассмотрим наиболее типичную ситуацию, в которой возникает распределение Пуассона. Пусть некоторые события (покупки в магазине) могут происходить в случайные моменты времени. Определим число появлений таких событий в промежутке времени от 0 до Т.

Случайное число событий, происшедших за время от 0 до Т, распределено по закону Пуассона с параметром l=аТ, где а>0 - параметр задачи, отражающий среднюю частоту событий. Вероятность k покупок в течение большого интервала времени, (например, - дня) составит

P(Z=k) = (2)

Заключение

В заключение хочется отметить то, что распределение Пуассона является достаточно распространенным и важным распределением, имеющим применение как в теории вероятностей и ее приложениях, так и в математической статистике.

Многие задачи практики сводятся в конечном счете к распределению Пуассона. Его особое свойство, заключающееся в равенстве математического ожидания и дисперсии, часто применяют на практике для решения вопроса, распределена случайная величина по закону Пуассона или нет.

Также важен тот факт, что закон Пуассона позволяет находить вероятности события в повторных независимых испытаниях при большом количестве повторов опыта и малой единичной вероятности.

Однако распределение Бернулли применяется в практике экономических расчетов и в частности при анализе устойчивости исключительно редко. Это связано как с вычислительными сложностями, так и с тем, что распределение Бернулли - для дискретных величин, и с тем, что условия классической схемы (независимость, счетное число испытаний, неизменность условий, влияющих на возможность наступления события) не всегда выполняются в практических ситуациях. Дальнейшие исследования в области анализа схемы Бернулли, проводимые в XVIII-XIX вв. Лапласом, Муавром, Пуассоном и другими были направлены на создание возможности использования схемы Бернулли в случае большого, стремящегося к бесконечности количества испытаний.

Литература

1. Вентцель Е.С. Теория вероятностей. - М, "Высшая школа" 1998

2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. - М, "Высшая школа" 1998

3. Сборник задач по математике для втузов. Под ред. Ефимова А.В. - М, Наука 1990


Подобные документы

  • Числовые характеристики положения о распределении Пуассона и разброса. Асимметрия и эксцесс распределения Пуассона, его дополнительные характеристики, точечная и интервальная оценка параметра. Пример условия, при котором возникает распределение Пуассона.

    курсовая работа [116,2 K], добавлен 22.05.2010

  • Распределение случайной величины c помощью закона Пуассона. Вычисления математического ожидания и дисперсии. Метод наибольшего правдоподобия. Асимметрия распределения Пуассона, его дополнительные характеристики, точечная и интервальная оценка параметра.

    презентация [710,3 K], добавлен 01.11.2013

  • Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы данного закона распределения с помощью критерия Колмогорова.

    курсовая работа [134,2 K], добавлен 31.05.2010

  • Правила применения уравнения Бернулли для определения возможности наступления события. Использование формул Муавра-Лапласа и Пуассона при неограниченном возрастании числа испытаний. Примеры решения задач с помощью теоремы Бернулли о частоте вероятности.

    курсовая работа [265,6 K], добавлен 21.01.2011

  • Теория вероятности – математическая наука, изучающая закономерности в случайных явлениях. Метод наибольшего правдоподобия. Доверительные оценки. Точечные оценки и критерий согласия. Теорема Чебышева. Распределение Пуассона. Доверительный интервал.

    курсовая работа [349,0 K], добавлен 16.01.2009

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

  • Закон распределения случайной величины дискретного типа (принимающей отдельные числовые значения). Предельные теоремы схемы Бернулли. Вычисление вероятности появления события по локальной теореме Муавра-Лапласа. Интегральная формула данной теоремы.

    презентация [611,2 K], добавлен 17.08.2015

  • Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.

    курсовая работа [29,7 K], добавлен 31.05.2010

  • Определение математического ожидания и дисперсии параметров распределения Гаусса. Расчет функции распределения случайной величины Х, замена переменной. Значения функций Лапласа и Пуассона, их графики. Правило трех сигм, пример решения данной задачи.

    презентация [131,8 K], добавлен 01.11.2013

  • В каждой из двух урн содержится 6 черных и 4 белых шаров. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.

    контрольная работа [619,9 K], добавлен 19.05.2003

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.