Распределение Бернулли. Теорема Пуассона.
Сущность теорем распределения Бернулли и Пуассона. Биномиальное распределение (распределение Бернулли). Распределение Пуассона. Определение и основные характеристики закона Пуассона. Дополнительные характеристики распределения Пуассона. Примеры задач.
Рубрика | Математика |
Предмет | Теория вероятностей |
Вид | реферат |
Язык | русский |
Прислал(а) | elen |
Дата добавления | 08.11.2008 |
Размер файла | 91,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Числовые характеристики положения о распределении Пуассона и разброса. Асимметрия и эксцесс распределения Пуассона, его дополнительные характеристики, точечная и интервальная оценка параметра. Пример условия, при котором возникает распределение Пуассона.
курсовая работа [116,2 K], добавлен 22.05.2010Распределение случайной величины c помощью закона Пуассона. Вычисления математического ожидания и дисперсии. Метод наибольшего правдоподобия. Асимметрия распределения Пуассона, его дополнительные характеристики, точечная и интервальная оценка параметра.
презентация [710,3 K], добавлен 01.11.2013Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы данного закона распределения с помощью критерия Колмогорова.
курсовая работа [134,2 K], добавлен 31.05.2010Правила применения уравнения Бернулли для определения возможности наступления события. Использование формул Муавра-Лапласа и Пуассона при неограниченном возрастании числа испытаний. Примеры решения задач с помощью теоремы Бернулли о частоте вероятности.
курсовая работа [265,6 K], добавлен 21.01.2011Теория вероятности – математическая наука, изучающая закономерности в случайных явлениях. Метод наибольшего правдоподобия. Доверительные оценки. Точечные оценки и критерий согласия. Теорема Чебышева. Распределение Пуассона. Доверительный интервал.
курсовая работа [349,0 K], добавлен 16.01.2009Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.
контрольная работа [55,2 K], добавлен 19.12.2013Закон распределения случайной величины дискретного типа (принимающей отдельные числовые значения). Предельные теоремы схемы Бернулли. Вычисление вероятности появления события по локальной теореме Муавра-Лапласа. Интегральная формула данной теоремы.
презентация [611,2 K], добавлен 17.08.2015Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.
курсовая работа [29,7 K], добавлен 31.05.2010Определение математического ожидания и дисперсии параметров распределения Гаусса. Расчет функции распределения случайной величины Х, замена переменной. Значения функций Лапласа и Пуассона, их графики. Правило трех сигм, пример решения данной задачи.
презентация [131,8 K], добавлен 01.11.2013В каждой из двух урн содержится 6 черных и 4 белых шаров. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
контрольная работа [619,9 K], добавлен 19.05.2003