Цифровой этикет: нормативные представления о различных форматах межличностной коммуникации в мессенджерах

Коммуникация в сети через мобильные устройства. Потребности, удовлетворяемые межличностной коммуникацией в мессенджерах. Сравнение средних оценок форматов в разных сценариях. Выбор кластерной модели для оценок пользователя. Суть четырехкластерной модели.

Рубрика Маркетинг, реклама и торговля
Вид дипломная работа
Язык русский
Дата добавления 17.07.2020
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

7,365

4

,596

482

12,357

,000

s7_mistakes

17,191

4

,775

482

22,183

,000

s7_emoj

26,241

4

1,362

482

19,267

,000

s7_divide

23,395

4

,673

482

34,785

,000

s8_audio

35,956

4

1,034

482

34,787

,000

s8_video

5,772

4

,255

482

22,616

,000

s8_audcall

21,612

4

,816

482

26,486

,000

s8_vidcall

2,998

4

,197

482

15,194

,000

s8_CAPS

14,555

4

,705

482

20,645

,000

s8_mistakes

16,428

4

,639

482

25,698

,000

s8_emoj

23,911

4

1,292

482

18,512

,000

s8_divide

8,873

4

,557

482

15,938

,000

s9_audio

110,291

4

1,429

482

77,168

,000

s9_video

38,499

4

,730

482

52,763

,000

s9_audcall

63,224

4

,827

482

76,467

,000

s9_vidcall

29,359

4

,356

482

82,534

,000

s9_CAPS

66,166

4

1,341

482

49,328

,000

s9_mistakes

69,195

4

1,194

482

57,973

,000

s9_emoj

48,348

4

1,172

482

41,237

,000

s9_divide

74,870

4

1,270

482

58,972

,000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Таблица 50.

ANOVA для двухкластерной модели, оценка собеседника

Cluster

Error

F

Sig.

Mean Square

df

Mean Square

df

s1_sobes_text

,033

1

,179

485

,182

,670

s1_sobes_audio

108,158

1

1,049

485

103,116

,000

s1_sobes_video

195,562

1

1,014

485

192,804

,000

s1_sobes_audcall

52,976

1

1,546

485

34,259

,000

s1_sobes_vidcall

60,338

1

,866

485

69,673

,000

s1_sobes_CAPS

64,007

1

1,209

485

52,947

,000

s1_sobes_mistakes

65,166

1

1,047

485

62,265

,000

s1_sobes_emoj

50,353

1

,982

485

51,254

,000

s1_sobes_divide

101,435

1

1,330

485

76,241

,000

s2_sobes_text

,107

1

,065

485

1,641

,201

s2_sobes_audio

107,740

1

,965

485

111,622

,000

s2_sobes_video

236,019

1

1,171

485

201,631

,000

s2_sobes_audcall

115,925

1

1,635

485

70,892

,000

s2_sobes_vidcall

72,127

1

,995

485

72,455

,000

s2_sobes_CAPS

115,723

1

1,244

485

93,031

,000

s2_sobes_mistakes

63,426

1

1,099

485

57,702

,000

s2_sobes_emoj

69,632

1

1,022

485

68,110

,000

s2_sobes_divide

140,314

1

1,337

485

104,955

,000

s3_sobes_text

,053

1

,119

485

,449

,503

s3_sobes_audio

109,723

1

1,280

485

85,695

,000

s3_sobes_video

251,559

1

1,650

485

152,487

,000

s3_sobes_audcall

106,771

1

1,148

485

93,042

,000

s3_sobes_vidcall

67,893

1

,839

485

80,911

,000

s3_sobes_CAPS

49,905

1

1,087

485

45,902

,000

s3_sobes_mistakes

52,129

1

1,321

485

39,462

,000

s3_sobes_emoj

21,444

1

,791

485

27,109

,000

s3_sobes_divide

115,315

1

1,560

485

73,931

,000

s4_sobes_text

,015

1

,034

485

,434

,511

s4_sobes_audio

76,510

1

,885

485

86,481

,000

s4_sobes_video

239,988

1

1,569

485

152,936

,000

s4_sobes_audcall

152,575

1

1,736

485

87,888

,000

s4_sobes_vidcall

156,013

1

1,665

485

93,706

,000

s4_sobes_CAPS

100,515

1

1,235

485

81,414

,000

s4_sobes_mistakes

78,488

1

1,190

485

65,964

,000

s4_sobes_emoj

50,683

1

,866

485

58,533

,000

s4_sobes_divide

136,225

1

1,479

485

92,115

,000

s5_sobes_text

,022

1

,072

485

,307

,580

s5_sobes_audio

180,537

1

1,169

485

154,404

,000

s5_sobes_video

145,808

1

,898

485

162,419

,000

s5_sobes_audcall

76,386

1

1,701

485

44,913

,000

s5_sobes_vidcall

49,357

1

,705

485

69,979

,000

s5_sobes_CAPS

85,007

1

,873

485

97,366

,000

s5_sobes_mistakes

61,809

1

1,070

485

57,782

,000

s5_sobes_emoj

120,898

1

1,374

485

87,958

,000

s5_sobes_divide

83,561

1

,919

485

90,877

,000

s6_sobes_text

,012

1

,144

485

,085

,771

s6_sobes_audio

214,688

1

1,233

485

174,131

,000

s6_sobes_video

253,173

1

1,032

485

245,393

,000

s6_sobes_audcall

93,036

1

1,131

485

82,258

,000

s6_sobes_vidcall

41,261

1

,547

485

75,489

,000

s6_sobes_CAPS

124,055

1

1,083

485

114,524

,000

s6_sobes_mistakes

81,727

1

1,085

485

75,357

,000

s6_sobes_emoj

102,477

1

1,167

485

87,790

,000

s6_sobes_divide

125,078

1

1,072

485

116,626

,000

s7_sobes_text

,817

1

,685

485

1,192

,275

s7_sobes_audio

116,330

1

,962

485

120,983

,000

s7_sobes_video

44,735

1

,457

485

97,976

,000

s7_sobes_audcall

8,514

1

,396

485

21,492

,000

s7_sobes_vidcall

2,294

1

,125

485

18,322

,000

s7_sobes_CAPS

39,473

1

,640

485

61,658

,000

s7_sobes_mistakes

44,801

1

,869

485

51,548

,000

s7_sobes_emoj

83,263

1

1,404

485

59,303

,000

s7_sobes_divide

58,066

1

,736

485

78,913

,000

s8_sobes_text

,074

1

,040

485

1,861

,173

s8_sobes_audio

230,404

1

1,176

485

195,898

,000

s8_sobes_video

222,649

1

1,068

485

208,423

,000

s8_sobes_audcall

117,030

1

1,095

485

106,870

,000

s8_sobes_vidcall

58,470

1

,560

485

104,503

,000

s8_sobes_CAPS

98,210

1

,916

485

107,218

,000

s8_sobes_mistakes

91,109

1

,896

485

101,662

,000

s8_sobes_emoj

90,225

1

1,072

485

84,184

,000

s8_sobes_divide

114,920

1

1,014

485

113,324

,000

s9_sobes_text

,009

1

,079

485

,116

,733

s9_sobes_audio

236,432

1

1,288

485

183,506

,000

s9_sobes_video

309,827

1

1,157

485

267,736

,000

s9_sobes_audcall

135,188

1

1,282

485

105,484

,000

s9_sobes_vidcall

72,258

1

,772

485

93,590

,000

s9_sobes_CAPS

154,222

1

1,107

485

139,304

,000

s9_sobes_mistakes

114,916

1

1,070

485

107,361

,000

s9_sobes_emoj

110,737

1

1,027

485

107,814

,000

s9_sobes_divide

152,333

1

1,268

485

120,134

,000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Таблица 51.

ANOVA для двухкластерной модели со значимыми переменными, оценка собеседника

Cluster

Error

F

Sig.

Mean Square

df

Mean Square

df

s1_sobes_audio

108,158

1

1,049

485

103,116

,000

s1_sobes_video

195,562

1

1,014

485

192,804

,000

s1_sobes_audcall

52,976

1

1,546

485

34,259

,000

s1_sobes_vidcall

60,338

1

,866

485

69,673

,000

s1_sobes_CAPS

64,007

1

1,209

485

52,947

,000

s1_sobes_mistakes

65,166

1

1,047

485

62,265

,000

s1_sobes_emoj

50,353

1

,982

485

51,254

,000

s1_sobes_divide

101,435

1

1,330

485

76,241

,000

s2_sobes_audio

107,740

1

,965

485

111,622

,000

s2_sobes_video

236,019

1

1,171

485

201,631

,000

s2_sobes_audcall

115,925

1

1,635

485

70,892

,000

s2_sobes_vidcall

72,127

1

,995

485

72,455

,000

s2_sobes_CAPS

115,723

1

1,244

485

93,031

,000

s2_sobes_mistakes

63,426

1

1,099

485

57,702

,000

s2_sobes_emoj

69,632

1

1,022

485

68,110

,000

s2_sobes_divide

140,314

1

1,337

485

104,955

,000

s3_sobes_audio

109,723

1

1,280

485

85,695

,000

s3_sobes_video

251,559

1

1,650

485

152,487

,000

s3_sobes_audcall

106,771

1

1,148

485

93,042

,000

s3_sobes_vidcall

67,893

1

,839

485

80,911

,000

s3_sobes_CAPS

49,905

1

1,087

485

45,902

,000

s3_sobes_mistakes

52,129

1

1,321

485

39,462

,000

s3_sobes_emoj

21,444

1

,791

485

27,109

,000

s3_sobes_divide

115,315

1

1,560

485

73,931

,000

s4_sobes_audio

76,510

1

,885

485

86,481

,000

s4_sobes_video

239,988

1

1,569

485

152,936

,000

s4_sobes_audcall

152,575

1

1,736

485

87,888

,000

s4_sobes_vidcall

156,013

1

1,665

485

93,706

,000

s4_sobes_CAPS

100,515

1

1,235

485

81,414

,000

s4_sobes_mistakes

78,488

1

1,190

485

65,964

,000

s4_sobes_emoj

50,683

1

,866

485

58,533

,000

s4_sobes_divide

136,225

1

1,479

485

92,115

,000

s5_sobes_audio

180,537

1

1,169

485

154,404

,000

s5_sobes_video

145,808

1

,898

485

162,419

,000

s5_sobes_audcall

76,386

1

1,701

485

44,913

,000

s5_sobes_vidcall

49,357

1

,705

485

69,979

,000

s5_sobes_CAPS

85,007

1

,873

485

97,366

,000

s5_sobes_mistakes

61,809

1

1,070

485

57,782

,000

s5_sobes_emoj

120,898

1

1,374

485

87,958

,000

s5_sobes_divide

83,561

1

,919

485

90,877

,000

s6_sobes_audio

214,688

1

1,233

485

174,131

,000

s6_sobes_video

253,173

1

1,032

485

245,393

,000

s6_sobes_audcall

93,036

1

1,131

485

82,258

,000

s6_sobes_vidcall

41,261

1

,547

485

75,489

,000

s6_sobes_CAPS

124,055

1

1,083

485

114,524

,000

s6_sobes_mistakes

81,727

1

1,085

485

75,357

,000

s6_sobes_emoj

102,477

1

1,167

485

87,790

,000

s6_sobes_divide

125,078

1

1,072

485

116,626

,000

s7_sobes_audio

116,330

1

,962

485

120,983

,000

s7_sobes_video

44,735

1

,457

485

97,976

,000

s7_sobes_audcall

8,514

1

,396

485

21,492

,000

s7_sobes_vidcall

2,294

1

,125

485

18,322

,000

s7_sobes_CAPS

39,473

1

,640

485

61,658

,000

s7_sobes_mistakes

44,801

1

,869

485

51,548

,000

s7_sobes_emoj

83,263

1

1,404

485

59,303

,000

s7_sobes_divide

58,066

1

,736

485

78,913

,000

s8_sobes_audio

230,404

1

1,176

485

195,898

,000

s8_sobes_video

222,649

1

1,068

485

208,423

,000

s8_sobes_audcall

117,030

1

1,095

485

106,870

,000

s8_sobes_vidcall

58,470

1

,560

485

104,503

,000

s8_sobes_CAPS

98,210

1

,916

485

107,218

,000

s8_sobes_mistakes

91,109

1

,896

485

101,662

,000

s8_sobes_emoj

90,225

1

1,072

485

84,184

,000

s8_sobes_divide

114,920

1

1,014

485

113,324

,000

s9_sobes_audio

236,432

1

1,288

485

183,506

,000

s9_sobes_video

309,827

1

1,157

485

267,736

,000

s9_sobes_audcall

135,188

1

1,282

485

105,484

,000

s9_sobes_vidcall

72,258

1

,772

485

93,590

,000

s9_sobes_CAPS

154,222

1

1,107

485

139,304

,000

s9_sobes_mistakes

114,916

1

1,070

485

107,361

,000

s9_sobes_emoj

110,737

1

1,027

485

107,814

,000

s9_sobes_divide

152,333

1

1,268

485

120,134

,000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Таблица 52.

ANOVA для трехкластерной модели, оценка собеседника

Cluster

Error

F

Sig.

Mean Square

df

Mean Square

df

s1_sobes_text

,412

2

,178

484

2,318

,100

s1_sobes_audio

43,757

2

1,094

484

40,008

,000

s1_sobes_video

102,279

2

,998

484

102,503

,000

s1_sobes_audcall

46,939

2

1,465

484

32,040

,000

s1_sobes_vidcall

52,748

2

,774

484

68,106

,000

s1_sobes_CAPS

57,480

2

1,106

484

51,965

,000

s1_sobes_mistakes

77,876

2

,862

484

90,385

,000

s1_sobes_emoj

42,214

2

,914

484

46,184

,000

s1_sobes_divide

82,475

2

1,202

484

68,616

,000

s2_sobes_text

,137

2

,065

484

2,109

,122

s2_sobes_audio

51,556

2

,977

484

52,781

,000

s2_sobes_video

130,459

2

1,122

484

116,323

,000

s2_sobes_audcall

92,517

2

1,496

484

61,850

,000

s2_sobes_vidcall

68,391

2

,864

484

79,161

,000

s2_sobes_CAPS

93,280

2

1,100

484

84,790

,000

s2_sobes_mistakes

81,491

2

,896

484

90,972

,000

s2_sobes_emoj

54,716

2

,942

484

58,071

,000

s2_sobes_divide

108,520

2

1,181

484

91,878

,000

s3_sobes_text

,040

2

,119

484

,337

,714

s3_sobes_audio

52,064

2

1,295

484

40,216

,000

s3_sobes_video

126,818

2

1,649

484

76,914

,000

s3_sobes_audcall

84,518

2

1,021

484

82,756

,000

s3_sobes_vidcall

60,705

2

,730

484

83,127

,000

s3_sobes_CAPS

47,760

2

,995

484

47,989

,000

s3_sobes_mistakes

75,864

2

1,118

484

67,862

,000

s3_sobes_emoj

17,801

2

,763

484

23,318

,000

s3_sobes_divide

111,852

2

1,339

484

83,531

,000

s4_sobes_text

,031

2

,034

484

,922

,398

s4_sobes_audio

33,943

2

,904

484

37,533

,000

s4_sobes_video

125,127

2

1,551

484

80,662

,000

s4_sobes_audcall

118,628

2

1,565

484

75,818

,000

s4_sobes_vidcall

111,307

2

1,531

484

72,714

,000

s4_sobes_CAPS

74,247

2

1,138

484

65,242

,000

s4_sobes_mistakes

88,159

2

,990

484

89,033

,000

s4_sobes_emoj

46,561

2

,780

484

59,694

,000

s4_sobes_divide

112,788

2

1,297

484

86,941

,000

s5_sobes_text

,015

2

,073

484

,213

,808

s5_sobes_audio

73,960

2

1,239

484

59,690

,000

s5_sobes_video

83,473

2

,856

484

97,526

,000

s5_sobes_audcall

72,150

2

1,564

484

46,133

,000

s5_sobes_vidcall

37,332

2

,654

484

57,041

,000

s5_sobes_CAPS

46,688

2

,858

484

54,441

,000

s5_sobes_mistakes

60,730

2

,949

484

64,017

,000

s5_sobes_emoj

83,416

2

1,282

484

65,046

,000

s5_sobes_divide

51,362

2

,882

484

58,248

,000

s6_sobes_text

,188

2

,144

484

1,306

,272

s6_sobes_audio

91,128

2

1,302

484

69,965

,000

s6_sobes_video

135,858

2

,996

484

136,469

,000

s6_sobes_audcall

82,300

2

,986

484

83,509

,000

s6_sobes_vidcall

40,887

2

,464

484

88,117

,000

s6_sobes_CAPS

70,620

2

1,050

484

67,260

,000

s6_sobes_mistakes

72,348

2

,957

484

75,624

,000

s6_sobes_emoj

65,352

2

1,111

484

58,802

,000

s6_sobes_divide

79,768

2

1,003

484

79,490

,000

s7_sobes_text

,413

2

,687

484

,602

,548

s7_sobes_audio

57,899

2

,965

484

60,022

,000

s7_sobes_video

23,984

2

,451

484

53,196

,000

s7_sobes_audcall

8,014

2

,381

484

21,012

,000

s7_sobes_vidcall

2,294

2

,121

484

18,998

,000

s7_sobes_CAPS

26,232

2

,615

484

42,677

,000

s7_sobes_mistakes

42,545

2

,788

484

54,014

,000

s7_sobes_emoj

59,154

2

1,335

484

44,326

,000

s7_sobes_divide

37,614

2

,702

484

53,589

,000

s8_sobes_text

,054

2

,040

484

1,342

,262

s8_sobes_audio

103,689

2

1,226

484

84,565

,000

s8_sobes_video

124,251

2

1,017

484

122,169

,000

s8_sobes_audcall

100,768

2

,923

484

109,205

,000

s8_sobes_vidcall

45,947

2

,492

484

93,462

,000

s8_sobes_CAPS

61,544

2

,866

484

71,028

,000

s8_sobes_mistakes

74,235

2

,780

484

95,230

,000

s8_sobes_emoj

56,720

2

1,026

484

55,283

,000

s8_sobes_divide

70,875

2

,961

484

73,770

,000

s9_sobes_text

,010

2

,079

484

,132

,877

s9_sobes_audio

100,095

2

1,366

484

73,278

,000

s9_sobes_video

156,519

2

1,153

484

135,753

,000

s9_sobes_audcall

116,332

2

1,083

484

107,431

,000

s9_sobes_vidcall

62,780

2

,664

484

94,616

,000

s9_sobes_CAPS

74,730

2

1,119

484

66,770

,000

s9_sobes_mistakes

85,393

2

,957

484

89,216

,000

s9_sobes_emoj

63,107

2

,997

484

63,280

,000

s9_sobes_divide

83,945

2

1,239

484

67,779

,000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Таблица 53.

ANOVA для трехкластерной модели со значимыми переменными, оценка собеседника

Cluster

Error

F

Sig.

Mean Square

df

Mean Square

df

s1_sobes_audio

43,757

2

1,094

484

40,008

,000

s1_sobes_video

102,279

2

,998

484

102,503

,000

s1_sobes_audcall

46,939

2

1,465

484

32,040

,000

s1_sobes_vidcall

52,748

2

,774

484

68,106

,000

s1_sobes_CAPS

57,480

2

1,106

484

51,965

,000

s1_sobes_mistakes

77,876

2

,862

484

90,385

,000

s1_sobes_emoj

42,214

2

,914

484

46,184

,000

s1_sobes_divide

82,475

2

1,202

484

68,616

,000

s2_sobes_audio

51,556

2

,977

484

52,781

,000

s2_sobes_video

130,459

2

1,122

484

116,323

,000

s2_sobes_audcall

92,517

2

1,496

484

61,850

,000

s2_sobes_vidcall

68,391

2

,864

484

79,161

,000

s2_sobes_CAPS

93,280

2

1,100

484

84,790

,000

s2_sobes_mistakes

81,491

2

,896

484

90,972

,000

s2_sobes_emoj

54,716

2

,942

484

58,071

,000

s2_sobes_divide

108,520

2

1,181

484

91,878

,000

s3_sobes_audio

52,064

2

1,295

484

40,216

,000

s3_sobes_video

126,818

2

1,649

484

76,914

,000

s3_sobes_audcall

84,518

2

1,021

484

82,756

,000

s3_sobes_vidcall

60,705

2

,730

484

83,127

,000

s3_sobes_CAPS

47,760

2

,995

484

47,989

,000

s3_sobes_mistakes

75,864

2

1,118

484

67,862

,000

s3_sobes_emoj

17,801

2

,763

484

23,318

,000

s3_sobes_divide

111,852

2

1,339

484

83,531

,000

s4_sobes_audio

33,943

2

,904

484

37,533

,000

s4_sobes_video

125,127

2

1,551

484

80,662

,000

s4_sobes_audcall

118,628

2

1,565

484

75,818

,000

s4_sobes_vidcall

111,307

2

1,531

484

72,714

,000

s4_sobes_CAPS

74,247

2

1,138

484

65,242

,000

s4_sobes_mistakes

88,159

2

,990

484

89,033

,000

s4_sobes_emoj

46,561

2

,780

484

59,694

,000

s4_sobes_divide

112,788

2

1,297

484

86,941

,000

s5_sobes_audio

73,960

2

1,239

484

59,690

,000

s5_sobes_video

83,473

2

,856

484

97,526

,000

s5_sobes_audcall

72,150

2

1,564

484

46,133

,000

s5_sobes_vidcall

37,332

2

,654

484

57,041

,000

s5_sobes_CAPS

46,688

2

,858

484

54,441

,000

s5_sobes_mistakes

60,730

2

,949

484

64,017

,000

s5_sobes_emoj

83,416

2

1,282

484

65,046

,000

s5_sobes_divide

51,362

2

,882

484

58,248

,000

s6_sobes_audio

91,128

2

1,302

484

69,965

,000

s6_sobes_video

135,858

2

,996

484

136,469

,000

s6_sobes_audcall

82,300

2

,986

484

83,509

,000

s6_sobes_vidcall

40,887

2

,464

484

88,117

,000

s6_sobes_CAPS

70,620

2

1,050

484

67,260

,000

s6_sobes_mistakes

72,348

2

,957

484

75,624

,000

s6_sobes_emoj

65,352

2

1,111

484

58,802

,000

s6_sobes_divide

79,768

2

1,003

484

79,490

,000

s7_sobes_audio

57,899

2

,965

484

60,022

,000

s7_sobes_video

23,984

2

,451

484

53,196

,000

s7_sobes_audcall

8,014

2

,381

484

21,012

,000

s7_sobes_vidcall

2,294

2

,121

484

18,998

,000

s7_sobes_CAPS

26,232

2

,615

484

42,677

,000

s7_sobes_mistakes

42,545

2

,788

484

54,014

,000

s7_sobes_emoj

59,154

2

1,335

484

44,326

,000

s7_sobes_divide

37,614

2

,702

484

53,589

,000

s8_sobes_audio

103,689

2

1,226

484

84,565

,000

s8_sobes_video

124,251

2

1,017

484

122,169

,000

s8_sobes_audcall

100,768

2

,923

484

109,205

,000

s8_sobes_vidcall

45,947

2

,492

484

93,462

,000

s8_sobes_CAPS

61,544

2

,866

484

71,028

,000

s8_sobes_mistakes

74,235

2

,780

484

95,230

,000

s8_sobes_emoj

56,720

2

1,026

484

55,283

,000

s8_sobes_divide

70,875

2

,961

484

73,770

,000

s9_sobes_audio

100,095

2

1,366

484

73,278

,000

s9_sobes_video

156,519

2

1,153

484

135,753

,000

s9_sobes_audcall

116,332

2

1,083

484

107,431

,000

s9_sobes_vidcall

62,780

2

,664

484

94,616

,000

s9_sobes_CAPS

74,730

2

1,119

484

66,770

,000

s9_sobes_mistakes

85,393

2

,957

484

89,216

,000

s9_sobes_emoj

63,107

2

,997

484

63,280

,000

s9_sobes_divide

83,945

2

1,239

484

67,779

,000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Таблица 54.

ANOVA для четырехкластерной модели, оценка собеседника

Cluster

Error

F

Sig.

Mean Square

df

Mean Square

df

s1_sobes_text

,366

3

,178

483

2,064

,104

s1_sobes_audio

48,528

3

,976

483

49,733

,000

s1_sobes_video

85,779

3

,891

483

96,315

,000

s1_sobes_audcall

32,781

3

1,459

483

22,471

,000

s1_sobes_vidcall

37,990

3

,759

483

50,083

,000

s1_sobes_CAPS

34,090

3

1,135

483

30,043

,000

s1_sobes_mistakes

48,273

3

,886

483

54,484

,000

s1_sobes_emoj

28,043

3

,917

483

30,596

,000

s1_sobes_divide

73,480

3

1,090

483

67,438

,000

s2_sobes_text

,095

3

,065

483

1,461

,224

s2_sobes_audio

51,602

3

,872

483

59,192

,000

s2_sobes_video

106,676

3

1,001

483

106,519

,000

s2_sobes_audcall

57,203

3

1,527

483

37,468

,000

s2_sobes_vidcall

49,174

3

,844

483

58,297

,000

s2_sobes_CAPS

54,556

3

1,150

483

47,449

,000

s2_sobes_mistakes

50,357

3

,922

483

54,600

,000

s2_sobes_emoj

36,507

3

,944

483

38,672

,000

s2_sobes_divide

77,438

3

1,152

483

67,224

,000

s3_sobes_text

,158

3

,118

483

1,337

,262

s3_sobes_audio

60,946

3

1,134

483

53,729

,000

s3_sobes_video

122,214

3

1,418

483

86,171

,000

s3_sobes_audcall

66,974

3

,957

483

69,956

,000

s3_sobes_vidcall

47,140

3

,690

483

68,283

,000

s3_sobes_CAPS

23,992

3

1,046

483

22,936

,000

s3_sobes_mistakes

41,562

3

1,176

483

35,336

,000

s3_sobes_emoj

10,166

3

,776

483

13,109

,000

s3_sobes_divide

74,039

3

1,345

483

55,043

,000

s4_sobes_text

,048

3

,034

483

1,428

,234

s4_sobes_audio

38,346

3

,809

483

47,424

,000

s4_sobes_video

103,930

3

1,427

483

72,829

,000

s4_sobes_audcall

82,120

3

1,549

483

53,014

,000

s4_sobes_vidcall

75,928

3

1,523

483

49,847

,000

s4_sobes_CAPS

48,125

3

1,149

483

41,887

,000

s4_sobes_mistakes

57,082

3

1,003

483

56,927

,000

s4_sobes_emoj

31,295

3

,780

483

40,120

,000

s4_sobes_divide

79,969

3

1,270

483

62,953

,000

s5_sobes_text

,041

3

,073

483

,563

,640

s5_sobes_audio

65,810

3

1,139

483

57,772

,000

s5_sobes_video

73,464

3

,747

483

98,342

,000

s5_sobes_audcall

43,951

3

1,593

483

27,591

,000

s5_sobes_vidcall

29,587

3

,627

483

47,215

,000

s5_sobes_CAPS

28,119

3

,878

483

32,025

,000

s5_sobes_mistakes

42,057

3

,941

483

44,700

,000

s5_sobes_emoj

58,199

3

1,269

483

45,862

,000

s5_sobes_divide

40,719

3

,843

483

48,281

,000

s6_sobes_text

,170

3

,144

483

1,185

,315

s6_sobes_audio

92,106

3

1,110

483

82,947

,000

s6_sobes_video

110,631

3

,873

483

126,727

,000

s6_sobes_audcall

49,240

3

1,023

483

48,156

,000

s6_sobes_vidcall

32,457

3

,433

483

75,015

,000

s6_sobes_CAPS

52,002

3

1,022

483

50,904

,000

s6_sobes_mistakes

60,451

3

,883

483

68,480

,000

s6_sobes_emoj

47,676

3

1,088

483

43,812

,000

s6_sobes_divide

61,539

3

,954

483

64,531

,000

s7_sobes_text

,649

3

,686

483

,947

,418

s7_sobes_audio

51,703

3

,885

483

58,406

,000

s7_sobes_video

21,661

3

,417

483

51,999

,000

s7_sobes_audcall

7,868

3

,367

483

21,466

,000

s7_sobes_vidcall

2,516

3

,115

483

21,900

,000

s7_sobes_CAPS

18,057

3

,612

483

29,485

,000

s7_sobes_mistakes

30,535

3

,776

483

39,359

,000

s7_sobes_emoj

47,634

3

1,286

483

37,030

,000

s7_sobes_divide

30,527

3

,669

483

45,597

,000

s8_sobes_text

,011

3

,040

483

,262

,853

s8_sobes_audio

100,273

3

1,035

483

96,861

,000

s8_sobes_video

103,323

3

,892

483

115,847

,000

s8_sobes_audcall

55,174

3

,999

483

55,218

,000

s8_sobes_vidcall

34,531

3

,468

483

73,721

,000

s8_sobes_CAPS

42,226

3

,861

483

49,051

,000

s8_sobes_mistakes

51,196

3

,771

483

66,442

,000

s8_sobes_emoj

41,360

3

1,006

483

41,109

,000

s8_sobes_divide

54,902

3

,915

483

59,988

,000

s9_sobes_text

,029

3

,079

483

,370

,774

s9_sobes_audio

98,143

3

1,174

483

83,620

,000

s9_sobes_video

129,732

3

,998

483

130,033

,000

s9_sobes_audcall

69,993

3

1,132

483

61,828

,000

s9_sobes_vidcall

49,081

3

,620

483

79,161

,000

s9_sobes_CAPS

61,954

3

1,046

483

59,220

,000

s9_sobes_mistakes

60,834

3

,935

483

65,072

,000

s9_sobes_emoj

45,005

3

,981

483

45,872

,000

s9_sobes_divide

70,314

3

1,152

483

61,040

,000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Таблица 55.

ANOVA для четырехкластерной модели со значимыми переменными, оценка собеседника

Cluster

Error

F

Sig.

Mean Square

df

Mean Square

df

s1_sobes_audio

49,612

3

,969

483

51,198

,000

s1_sobes_video

86,087

3

,889

483

96,869

,000

s1_sobes_audcall

31,986

3

1,464

483

21,852

,000

s1_sobes_vidcall

37,762

3

,760

483

49,689

,000

s1_sobes_CAPS

35,293

3

1,127

483

31,310

,000

s1_sobes_mistakes

47,965

3

,888

483

54,019

,000

s1_sobes_emoj

29,452

3

,908

483

32,443

,000

s1_sobes_divide

72,759

3

1,094

483

66,504

,000

s2_sobes_audio

52,345

3

,867

483

60,365

,000

s2_sobes_video

105,545

3

1,008

483

104,655

,000

s2_sobes_audcall

56,843

3

1,529

483

37,178

,000

s2_sobes_vidcall

48,802

3

,846

483

57,697

,000

s2_sobes_CAPS

56,297

3

1,139

483

49,427

,000

s2_sobes_mistakes

49,828

3

,926

483

53,834

,000

s2_sobes_emoj

37,919

3

,935

483

40,545

,000

s2_sobes_divide

74,726

3

1,169

483

63,934

,000

s3_sobes_audio

62,683

3

1,124

483

55,791

,000

s3_sobes_video

124,699

3

1,403

483

88,891

,000

s3_sobes_audcall

67,003

3

,957

483

69,999

,000

s3_sobes_vidcall

47,033

3

,691

483

68,062

,000

s3_sobes_CAPS

25,180

3

1,039

483

24,243

,000

s3_sobes_mistakes

40,245

3

1,184

483

33,979

,000

s3_sobes_emoj

11,042

3

,770

483

14,338

,000

s3_sobes_divide

71,486

3

1,361

483

52,526

,000

s4_sobes_audio

39,307

3

,803

483

48,973

,000

s4_sobes_video

104,080

3

1,426

483

72,981

,000

s4_sobes_audcall

82,065

3

1,549

483

52,967

,000

s4_sobes_vidcall

77,233

3

1,515

483

50,975

,000

s4_sobes_CAPS

47,942

3

1,150

483

41,687

,000

s4_sobes_mistakes

54,773

3

1,017

483

53,854

,000

s4_sobes_emoj

31,349

3

,780

483

40,208

,000

s4_sobes_divide

76,805

3

1,290

483

59,540

,000

s5_sobes_audio

65,123

3

1,143

483

56,956

,000

s5_sobes_video

72,996

3

,750

483

97,337

,000

s5_sobes_audcall

42,836

3

1,600

483

26,774

,000

s5_sobes_vidcall

29,311

3

,628

483

46,648

,000

s5_sobes_CAPS

29,162

3

,872

483

33,459

,000

s5_sobes_mistakes

43,475

3

,932

483

46,644

,000

s5_sobes_emoj

60,140

3

1,257

483

47,846

,000

s5_sobes_divide

40,051

3

,848

483

47,256

,000

s6_sobes_audio

92,293

3

1,109

483

83,202

,000

s6_sobes_video

110,322

3

,875

483

126,095

,000

s6_sobes_audcall

48,723

3

1,026

483

47,501

,000

s6_sobes_vidcall

32,563

3

,432

483

75,376

,000

s6_sobes_CAPS

51,499

3

1,025

483

50,258

,000

s6_sobes_mistakes

58,576

3

,894

483

65,492

,000

s6_sobes_emoj

48,088

3

1,086

483

44,295

,000

s6_sobes_divide

59,717

3

,965

483

61,886

,000

s7_sobes_audio

51,975

3

,884

483

58,826

,000

s7_sobes_video

21,642

3

,417

483

51,939

,000

s7_sobes_audcall

7,824

3

,367

483

21,330

,000

s7_sobes_vidcall

2,517

3

,115

483

21,916

,000

s7_sobes_CAPS

18,143

3

,612

483

29,652

,000

s7_sobes_mistakes

31,190

3

,772

483

40,415

,000

s7_sobes_emoj

49,107

3

1,277

483

38,448

,000

s7_sobes_divide

30,568

3

,669

483

45,677

,000

s8_sobes_audio

100,266

3

1,035

483

96,851

,000

s8_sobes_video

103,760

3

,889

483

116,692

,000

s8_sobes_audcall

54,649

3

1,002

483

54,514

,000

s8_sobes_vidcall

34,693

3

,467

483

74,227

,000

s8_sobes_CAPS

42,257

3

,861

483

49,099

,000

s8_sobes_mistakes

50,545

3

,775

483

65,253

,000

s8_sobes_emoj

41,919

3

1,003

483

41,808

,000

s8_sobes_divide

53,931

3

,921

483

58,541

,000

s9_sobes_audio

98,460

3

1,172

483

84,031

,000

s9_sobes_video

130,840

3

,991

483

132,055

,000

s9_sobes_audcall

69,170

3

1,137

483

60,826

,000

s9_sobes_vidcall

49,116

3

,620

483

79,246

,000

s9_sobes_CAPS

62,062

3

1,046

483

59,361

,000

s9_sobes_mistakes

60,193

3

,939

483

64,114

,000

s9_sobes_emoj

46,247

3

,973

483

47,512

,000

s9_sobes_divide

69,058

3

1,160

483

59,546

,000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Таблица 56.

ANOVA для пятикластерной модели, оценка собеседника

Cluster

Error

F

Sig.

Mean Square

df

Mean Square

df

s1_sobes_text

,348

4

,177

482

1,960

,099

s1_sobes_audio

40,078

4

,947

482

42,311

,000

s1_sobes_video

64,854

4

,888

482

73,022

,000

s1_sobes_audcall

34,034

4

1,383

482

24,601

,000

s1_sobes_vidcall

40,330

4

,662

482

60,932

,000

s1_sobes_CAPS

36,240

4

1,048

482

34,565

,000

s1_sobes_mistakes

48,941

4

,782

482

62,573

,000

s1_sobes_emoj

29,822

4

,846

482

35,271

,000

s1_sobes_divide

69,244

4

,975

482

71,053

,000

s2_sobes_text

,126

4

,065

482

1,941

,102

s2_sobes_audio

35,675

4

,899

482

39,696

,000

s2_sobes_video

77,374

4

1,025

482

75,457

,000

s2_sobes_audcall

62,699

4

1,366

482

45,913

,000

s2_sobes_vidcall

42,570

4

,798

482

53,344

,000

s2_sobes_CAPS

47,313

4

1,099

482

43,047

,000

s2_sobes_mistakes

50,633

4

,817

482

61,940

,000

s2_sobes_emoj

35,243

4

,881

482

40,016

,000

s2_sobes_divide

68,867

4

1,065

482

64,675

,000

s3_sobes_text

,341

4

,117

482

2,918

,021

s3_sobes_audio

38,028

4

1,200

482

31,678

,000

s3_sobes_video

82,620

4

1,496

482

55,218

,000

s3_sobes_audcall

54,107

4

,927

482

58,355

,000

s3_sobes_vidcall

39,300

4

,659

482

59,631

,000

s3_sobes_CAPS

25,420

4

,987

482

25,767

,000

s3_sobes_mistakes

46,301

4

1,053

482

43,966

,000

s3_sobes_emoj

11,390

4

,746

482

15,270

,000

s3_sobes_divide

64,367

4

1,275

482

50,502

,000

s4_sobes_text

,034

4

,034

482

,994

,410

s4_sobes_audio

23,752

4

,852

482

27,883

,000

s4_sobes_video

80,697

4

1,407

482

57,346

,000

s4_sobes_audcall

70,390

4

1,479

482

47,586

,000

s4_sobes_vidcall

72,511

4

1,397

482

51,897

,000

s4_sobes_CAPS

48,376

4

1,049

482

46,101

,000

s4_sobes_mistakes

59,765

4

,864

482

69,162

,000

s4_sobes_emoj

29,665

4

,730

482

40,623

,000

s4_sobes_divide

78,033

4

1,123

482

69,480

,000

s5_sobes_text

,016

4

,073

482

,217

,929

s5_sobes_audio

53,074

4

1,111

482

47,787

,000

s5_sobes_video

52,608

4

,769

482

68,391

,000

s5_sobes_audcall

44,406

4

1,501

482

29,578

,000

s5_sobes_vidcall

29,473

4

,568

482

51,934

,000

s5_sobes_CAPS

25,635

4

,842

482

30,440

,000

s5_sobes_mistakes

38,922

4

,882

482

44,151

,000

s5_sobes_emoj

49,948

4

1,219

482

40,962

,000

s5_sobes_divide

37,400

4

,788

482

47,449

,000

s6_sobes_text

,096

4

,144

482

,664

,617

s6_sobes_audio

70,361

4

1,102

482

63,843

,000

s6_sobes_video

79,439

4

,904

482

87,862

,000

s6_sobes_audcall

43,921

4

,967

482

45,438

,000

s6_sobes_vidcall

31,903

4

,371

482

86,031

,000

s6_sobes_CAPS

39,827

4

1,017

482

39,168

,000

s6_sobes_mistakes

44,765

4

,889

482

50,335

,000

s6_sobes_emoj

39,903

4

1,056

482

37,786

,000

s6_sobes_divide

59,267

4

,847

482

69,989

,000

s7_sobes_text

,582

4

,686

482

,849

,495

s7_sobes_audio

36,647

4

,905

482

40,505

,000

s7_sobes_video

18,255

4

,401

482

45,551

,000

s7_sobes_audcall

12,586

4

,312

482

40,366

,000

s7_sobes_vidcall

3,810

4

,099

482

38,431

,000

s7_sobes_CAPS

14,840

4

,603

482

24,615

,000

s7_sobes_mistakes

27,236

4

,741

482

36,733

,000

s7_sobes_emoj

37,318

4

1,276

482

29,250

,000

s7_sobes_divide

28,293

4

,626

482

45,190

,000

s8_sobes_text

,017

4

,040

482

,431

,786

s8_sobes_audio

72,498

4

1,060

482

68,405

,000

s8_sobes_video

74,571

4

,918

482

81,233

,000

s8_sobes_audcall

51,739

4

,915

482

56,525

,000

s8_sobes_vidcall

26,270

4

,466

482

56,337

,000

s8_sobes_CAPS

30,557

4

,872

482

35,048

,000

s8_sobes_mistakes

38,752

4

,769

482

50,379

,000

s8_sobes_emoj

30,352

4

1,014

482

29,941

,000

s8_sobes_divide

49,504

4

,848

482

58,377

,000

s9_sobes_text

,120

4

,078

482

1,536

,191

s9_sobes_audio

74,303

4

1,170

482

63,489

,000

s9_sobes_video

92,223

4

1,042

482

88,517

,000

s9_sobes_audcall

62,996

4

1,047

482

60,153

,000

s9_sobes_vidcall

44,280

4

,559

482

79,167

,000

s9_sobes_CAPS

46,152

4

1,051

482

43,915

,000

s9_sobes_mistakes

53,776

4

,869

482

61,871

,000

s9_sobes_emoj

39,695

4

,934

482

42,507

,000

s9_sobes_divide

66,183

4

1,043

482

63,472

,000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Таблица 57.

ANOVA для пятикластерной модели со значимыми переменными, оценка собеседника

Cluster

Error

F

Sig.

Mean Square

df

Mean Square

df

s1_sobes_audio

39,346

4

,953

482

41,274

,000

s1_sobes_video

63,760

4

,897

482

71,063

,000

s1_sobes_audcall

34,439

4

1,380

482

24,954

,000

s1_sobes_vidcall

39,326

4

,670

482

58,675

,000

s1_sobes_CAPS

36,546

4

1,046

482

34,940

,000

s1_sobes_mistakes

49,857

4

,775

482

64,368

,000

s1_sobes_emoj

29,611

4

,847

482

34,949

,000

s1_sobes_divide

68,294

4

,982

482

69,515

,000

s2_sobes_audio

37,080

4

,887

482

41,802

,000

s2_sobes_video

78,858

4

1,013

482

77,840

,000

s2_sobes_audcall

61,144

4

1,378

482

44,356

,000

s2_sobes_vidcall

42,274

4

,800

482

52,810

,000

s2_sobes_CAPS

48,573

4

1,089

482

44,618

,000

s2_sobes_mistakes

51,516

4

,810

482

63,591

,000

s2_sobes_emoj

34,836

4

,884

482

39,404

,000

s2_sobes_divide

68,431

4

1,068

482

64,048

,000

s3_sobes_text

,337

4

,117

482

2,888

,022

s3_sobes_audio

40,246

4

1,182

482

34,049

,000

s3_sobes_video

86,257

4

1,466

482

58,836

,000

s3_sobes_audcall

52,113

4

,944

482

55,220

,000

s3_sobes_vidcall

37,536

4

,674

482

55,717

,000

s3_sobes_CAPS

25,292

4

,988

482

25,608

,000

s3_sobes_mistakes

47,229

4

1,045

482

45,178

,000

s3_sobes_emoj

11,862

4

,742

482

15,987

,000

s3_sobes_divide

65,946

4

1,261

482

52,279

,000

s4_sobes_audio

24,874

4

,843

482

29,523

,000

s4_sobes_video

81,777

4

1,398

482

58,486

,000

s4_sobes_audcall

69,779

4

1,484

482

47,012

,000

s4_sobes_vidcall

72,551

4

1,397

482

51,938

,000

s4_sobes_CAPS

48,472

4

1,049

482

46,227

,000

s4_sobes_mistakes

59,939

4

,863

482

69,480

,000

s4_sobes_emoj

27,473

4

,748

482

36,707

,000

s4_sobes_divide

77,663

4

1,126

482

68,962

,000

s5_sobes_audio

54,561

4

1,098

482

49,677

,000

s5_sobes_video

52,268

4

,772

482

67,701

,000

s5_sobes_audcall

44,530

4

1,500

482

29,681

,000

s5_sobes_vidcall

31,886

4

,547

482

58,243

,000

s5_sobes_CAPS

24,848

4

,849

482

29,280

,000

s5_sobes_mistakes

40,177

4

,871

482

46,119

,000

s5_sobes_emoj

49,595

4

1,222

482

40,575

,000

s5_sobes_divide

36,749

4

,794

482

46,307

,000

s6_sobes_audio

71,682

4

1,091

482

65,695

,000

s6_sobes_video

79,122

4

,907

482

87,258

,000

s6_sobes_audcall

44,702

4

,960

482

46,558

,000

s6_sobes_vidcall

33,609

4

,357

482

94,228

,000

s6_sobes_CAPS

39,510

4

1,019

482

38,756

,000

s6_sobes_mistakes

46,318

4

,876

482

52,846

,000

s6_sobes_emoj

39,231

4

1,062

482

36,954

,000

s6_sobes_divide

58,707

4

,851

482

68,950

,000

s7_sobes_audio

35,312

4

,916

482

38,558

,000

s7_sobes_video

17,602

4

,406

482

43,337

,000

s7_sobes_audcall

12,093

4

,316

482

38,279

,000

s7_sobes_vidcall

3,670

4

,100

482

36,586

,000

s7_sobes_CAPS

13,817

4

,611

482

22,598

,000

s7_sobes_mistakes

27,195

4

,742

482

36,660

,000

s7_sobes_emoj

35,701

4

1,289

482

27,691

,000

s7_sobes_divide

25,927

4

,646

482

40,152

,000

s8_sobes_audio

71,957

4

1,064

482

67,609

,000

s8_sobes_video

74,818

4

,916

482

81,685

,000

s8_sobes_audcall

49,269

4

,936

482

52,648

,000

s8_sobes_vidcall

25,206

4

,475

482

53,053

,000

s8_sobes_CAPS

29,145

4

,884

482

32,985

,000

s8_sobes_mistakes

39,624

4

,762

482

52,003

,000

s8_sobes_emoj

29,039

4

1,025

482

28,341

,000

s8_sobes_divide

46,462

4

,873

482

53,206

,000

s9_sobes_audio

76,111

4

1,155

482

65,878

,000

s9_sobes_video

94,386

4

1,024

482

92,181

,000

s9_sobes_audcall

60,436

4

1,069

482

56,562

,000

s9_sobes_vidcall

42,614

4

,573

482

74,350

,000

s9_sobes_CAPS

49,300

4

1,025

482

48,105

,000

s9_sobes_mistakes

56,590

4

,846

482

66,906

,000

s9_sobes_emoj

40,007

4

,931

482

42,960

,000

s9_sobes_divide

67,400

4

1,033

482

65,271

,000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Размещено на Allbest.ru


Подобные документы

  • Природа и классификация слухов, как специфического вида межличностной коммуникации. Предпосылки их возникновения и направления распространения. Позитивное и негативное влияние слухов на имидж организации. Профилактика слухов и технологии противодействия.

    контрольная работа [43,4 K], добавлен 18.04.2012

  • Трансформация традиционной модели коммуникации в виртуальной среде. Потребности потенциальных потребителей. Характеристики целевой аудитории, восприятие информации. Каким образом сайт поддерживает или ограничивает проявление реакции целевой аудитории.

    контрольная работа [27,1 K], добавлен 23.05.2013

  • Бизнес-коммуникации в маркетинговой стратегии фирмы. Анализ связей в социальных сетях как части виртуального сообщества. Взаимодействие субъектов коммуникации в интернете. Суть общения в Инстаграм с точки зрения потребителя и предпринимательства.

    дипломная работа [259,6 K], добавлен 25.08.2017

  • Сущность методов экспертных оценок и методов принятия решений в маркетинге и их программное обеспечение. Провести выбор и оценку поставщика с помощью экспертных методов для конкретного предприятия (рынка). Организация проведения экспертных оценок.

    контрольная работа [80,0 K], добавлен 02.10.2010

  • Семиотика как наука, ее основные понятия. Особенности развития представлений о знаках и языках. Семиотические модели коммуникации Р. Якобсона, М. Лотмана и У. Эко. Семиотические модели в рекламе. Семиотика в культурной сфере. Функции языка в культуре.

    курсовая работа [958,3 K], добавлен 24.07.2014

  • Коммуникация как объект и предмет исследования, ее функции, виды и формы. Специфика и модели коммуникативного процесса. Новые коммуникативные технологии в сфере производства и потребления информации. Анализ семиотического подхода к изучению коммуникации.

    учебное пособие [952,1 K], добавлен 20.05.2011

  • Обзор существующих каналов коммуникации, приемлемых для религиозных организаций. Изучение особенностей российского религиозного рынка, в частности, его потребителя и действующих игроков. Анализ ситуации с маркетингом и коммуникацией в сфере религии.

    дипломная работа [1,7 M], добавлен 30.09.2016

  • Оценка посетителей торгового центра "Кольцо" со средним и высоким уровнем дохода, по сравнению с конкурентами. Сопоставление оценок по характеристикам торговых центров с индивидуальной для каждого респондента. Рейтинг торговых центров с учетом оценок.

    курсовая работа [2,5 M], добавлен 04.03.2011

  • Подходы к сущности паблик рилейшнз. Принципы психографической модели выделения групп общественности. Использование в ПР-практике теории потребностей Маслоу. Функции имиджа в структуре массовой коммуникации. Работа ПР-специалиста в кризисной коммуникации.

    контрольная работа [17,0 K], добавлен 16.10.2010

  • Основные задачи и предназначение PR-специалиста в организации. Модели коммуникационных процессов по Грюнингу и Ханту, их отличительные особенности по целям и природе коммуникации. Коммуникационные модели Лассуэла, Лазарсфельда. Их использование в прессе.

    контрольная работа [20,6 K], добавлен 23.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.