Acoustic performance analysis of diesel engine silencer

Creation and testing of a model of a diesel engine muffler. Plotting a pressure level diagram inside the device. Analysis of the distribution of the sound field. Assessment energy losses of exhaust gases. Estimation of the spectrum and octave bandwidth.

Рубрика Производство и технологии
Вид статья
Язык английский
Дата добавления 10.10.2024
Размер файла 2,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Jiangsu University of Science and Technology

Ogarev Mordovia State University

Acoustic performance analysis of diesel engine silencer

Liu Fangzhou

Zhenjiang, China.

Saransk, Russia

Abstract

The finite element model of diesel engine muffler is established, the noise reduction function of the muffler is studied and tested, the distribution cloud diagram of sound pressure level inside the muffler is calculated, the sound fields at various frequencies are plotted. The change of sound pressure level inside the muffler is tested. After processing, the line spectrum and octave band results of the transmission loss of the muffler are obtained. The acoustic performance of the muffler can be quantitatively determined by synthesizing the results of the sound field distribution and the transmission loss inside the muffler.

Keywords: silencer, cloud diagram of sound pressure level distribution, frequency sound field, transmission loss.

Аннотация

Анализ акустических характеристик глушителя дизельного двигателя

Лю Фанчжоу, Цзяньсуский университет науки и технологий, Чжэньцзян, Китай;

Национальный исследовательский Мордовский государственный университет им. Н.П. Огарева, г. Саранск, Россия

Создана конечно-элементная модель глушителя дизельного двигателя, исследована и испытана функция шумоподавления глушителя, рассчитана облачная диаграмма распределения уровня звукового давления внутри глушителя, построены звуковые поля на различных частотах. Тестировалось изменение уровня звукового давления внутри глушителя. После обработки получен линейчатый спектр и результаты октавной полосы пропускания глушителя. Акустические характеристики глушителя можно количественно определить путем синтеза результатов распределения звукового поля и потерь при передаче внутри глушителя.

Ключевые слова: глушитель, облачная диаграмма распределения уровня звукового давления, частотное звуковое поле, потеря передачи.

Diesel engine is widely used in daily life. Silencers play an important role in noise reduction of diesel engines. In order to accurately analyze the acoustic performance of diesel engine exhaust muffler, the finite element software is used to simulate the muffler in the acoustic frequency domain, and the transmission loss is used to evaluate the acoustic performance of the muffler, so as to realize the low-noise design of the generator set.

Silencer Design Parameters

(1) Analysis of spectrum characteristics of noise sources

Use professional noise testing equipment to test the overall radiated noise of the engine. The layout of main measuring points is shown in Figure 1.

Figure 1. Radiated Noise Test of Engine

Measuring points 8 and 9 are arranged at the engine exhaust port for exhaust noise measurement. The measurement results of exhaust noise are shown in Figure 2. The spectrum measurement results of exhaust noise are shown in Figure 2. According to the analysis of the measurement results, the maximum exhaust noise is about 80 dB (A), and the noise amplitude is above 70 dB (A) in the frequency range of 500-4000 Hz. The noise amplitude in other frequency bands is low.

Figure 2. Measurement Results of Exhaust Noise Spectrum

Spectrogram

(2) Design silencer parameters

In order to effectively control the impact of engine exhaust noise on the overall radiated noise, the most effective method is to install a muffler. According to the exhaust noise characteristics, the exhaust muffler is designed as a multi chamber resistant muffler. diesel engine muffler sound

The three-dimensional model of muffler is shown in Figure 3. The upper connection port in the figure is the air inlet, which is connected with the engine exhaust pipe. The air inlet pipe and the air outlet pipe are provided with perforated endotracheal tubes, and the interior of the chamber is separated into two noise elimination chambers by a perforated plate [1-4].

Acoustic Finite Element Modeling and Simulation of Muffler

(1) Pretreatment of simulation model

The boundary conditions of hard sound field are generally used in muffler simulation, so the fluid domain inside the muffler needs to be filled to obtain the internal fluid domain model. Due to the large influence of grid accuracy in the simulation, the model needs to be simplified. The simplified muffler model is shown in Figure 4.

(a) Overall model of muffler (b) Internal structure of muffler

Figure 3. Three-dimensional model of muffler

Figure 4. Simplified Model of Silencer

The inlet and outlet planes are set in the software, and the Fill command is selected to fill the interior of the muffler. The fluid domain model is shown in Figure 5.

(2) Acoustic gridding

In the software pressure acoustic module, the fluid domain filling model of the muffler is imported, and the geometric domain of the model is divided. According to the acoustic grid requirements, tetrahedral grid and triangular surface grid are adopted for the grid type, and triangular surface grid is adopted for the internal narrow area and opening area.

Figure 5. Fluid Domain Model in Silencer

The joints of each part are densified to avoid generating too low mass elements. The finite element mesh model of the muffler is shown in Figure 6.

Figure 6. Finite Element Mesh Model of Silencer

After the grid is divided, the grid quality distribution map is drawn in the grid tool, and the analysis shows that the overall unit size of the muffler grid model is controlled below 1mm, the minimum grid unit size is 0.1mm, the overall quality is good, and there are no low-quality units and regions.

Simulation Boundary Conditions

1) Boundary condition of sound field

For the solid boundary, that is, the outer wall of the muffler chamber and the pipe, the hard sound field (wall) boundary condition is used, and the normal velocity imposed on the boundary by this condition is zero.

2) Import and export boundary

The model uses port boundary conditions to simulate the inlet and outlet of the muffler. The port type is circular, and the incident excitation is 1Pa.

3) Parameter setting

Plane wave with inlet pressure of 1 Pa, sound velocity c=340 m/s, temperature T=293.15 K, and frequency calculation range of 50-8000 Hz.

(4) Analysis of simulation results

1) Sound field distribution

After the boundary conditions are set, the distribution cloud diagram of the sound pressure level inside the muffler is obtained through calculation. The sound field distribution at various frequencies inside the chamber is shown in the figures in Figure 7.

The distribution of sound field inside the muffler is shown in Figure 7. When the calculation frequency is low, the sound propagation mode inside the muffler is mainly plane wave. With the increase of frequency, non-plane waves begin to appear inside the muffler. The low-frequency vanishing effect is good, and the sound pressure level inside the muffler changes obviously. The effect of high frequency noise reduction is reduced, resulting in a relatively low drop in the outlet sound pressure level compared with low frequency.

Figure 7. Distribution of Sound Field in Silencer

2) Transmission loss

After the result post-processing, the line spectrum and octave band results of the silencer transmission loss are obtained, as shown in Figure 8, 9.

As shown in Figure 8 and Figure 9, the overall sound elimination effect of the muffler is good, and the sound elimination effect is good at about 5000Hz. The peak value of the transmission loss curve is obvious and the noise elimination frequency band is wide. The maximum value of the transmission loss is 50dB (A). With the increase of frequency, the noise elimination performance will decline after 5000Hz. Analyzing the octave results of transmission loss, it is found that the transmission loss has a high noise reduction in the 7000Hz frequency band. The overall sound elimination effect of the muffler is good, which can effectively control the engine exhaust noise, thus reducing the impact of the overall radiated noise.

Figure 8. Transmission loss of muffler

Figure 9. Transmission loss of muffler 1/3 octave

Conclusion

Based on the results of sound field distribution and transmission loss in the muffler, the maximum transmission loss is 34dB (A). The muffler has good acoustic performance and can effectively control the impact of engine exhaust noise.

References

1. Liu, Liping, Xiao, Fuming, Lu, Chen, & Wang, Zhuwei. (2001). Experimental Study on the Silencing Performance of Mufflers in the Presence of Air Flow. Internal-combustion engine Engineering, (01), 54-57.

2. Middelberg, J. M., Barber, T. J., Leong, S. S., Byrne, K. P., & Leonardi, E. (2004). CFD analysis of the acoustic and mean flow performance of simple expansion chamber mufflers. In ASME International Mechanical Engineering Congress and Exposition (Vol. 47152, pp. 151-156). https://doi.org/10.1115/IMECE2004-61371

3. Jiang, Pengming, Fu, Xi, & Wu, Bangyu (2008), Automotive muffler optimization design and comprehensive evaluation index. Automotive Engineering, 30(3), 247-257.

4. Davis Jr D. D. et al. Theoretical and experimental investigation of mufflers with comments on engine-exhaust muffler design. 1954. №NACA-TR-1192.

Список литературы

1. Liu Liping, Xiao Fuming, Lu Chen, Wang Zhuwei. Experimental Study on the Silencing Performance of Mufflers in the Presence of Air Flow // Internal-combustion engine Engineering. 2001. №01. P. 54-57.

2. Middelberg J. M., Barber T. J., Leong S. S., Byrne K. P., Leonardi E. CFD analysis of theacoustic and mean flow performance of simple expansion chamber mufflers // ASME International Mechanical Engineering Congress and Exposition. 2004. V 47152. P. 151-156. https://doi.org/10.1115/IMECE2004-61371

3. Jiang Pengming, Fu Xi, Wu Bangyu. Automotive muffler optimization design and comprehensive evaluation index [J]. Automotive Engineering, 2008,30(3): 247-257.

4. Davis Jr, D. D., Stokes, G. M., Moore, D., & Stevens Jr, G. L. (1954). Theoretical and experimental investigation of mufflers with comments on engine-exhaust muffler design (No. NACA- TR-1192).

Размещено на Allbest.ru


Подобные документы

  • Общая характеристика конструктивной схемы стенда. Выбор типа датчика. Проектирование кулачкового механизма. Проведение анализа видов и последствий потенциальных отказов Failure Mode and Effects Analysis. Разработка маршрутного технологического процесса.

    курсовая работа [1001,5 K], добавлен 28.09.2014

  • Estimation de l'unite de la resistance des materiaux largement utilises dans les structures statiques et des disciplines connexes a la conception de pieces de machines, les batiments, ponts et routes. Analyse de l'etat de contraintes dans de la tige.

    контрольная работа [397,1 K], добавлен 16.12.2012

  • Diesel fuel is any fuel used in diesel engines. Chemical composition and cetane number. Boiling point and freezing point of representative diesel fuel hydrocarbons. Disadvantages of Diesel Fuel. Environment hazards of sulfur. Fuel value and price.

    реферат [39,2 K], добавлен 25.05.2012

  • The air transport system in Russia. Project on the development of regional air traffic. Data collection. Creation of the database. Designing a data warehouse. Mathematical Model description. Data analysis and forecasting. Applying mathematical tools.

    реферат [316,2 K], добавлен 20.03.2016

  • The process of scientific investigation. Contrastive Analysis. Statistical Methods of Analysis. Immediate Constituents Analysis. Distributional Analysis and Co-occurrence. Transformational Analysis. Method of Semantic Differential. Contextual Analysis.

    реферат [26,5 K], добавлен 31.07.2008

  • Static model analysis. Proof mass, suspension beams, static deflection. Residual stress and Poisson’s ratio. Spring constants. Strain under acceleration. Sensitivity, thermal noise. Resolution due to the ADC. Maximum acceleration. Dynamic model analysis.

    курсовая работа [1,2 M], добавлен 21.09.2010

  • Теоретическое исследование процесса формирования имиджа современной организации. Общая характеристика структурных элементов плана по созданию имиджа на примере фирмы "Diesel". Анализ особенностей создания внешнего, внутреннего и неосязаемого имиджа.

    дипломная работа [227,1 K], добавлен 05.11.2011

  • Evaluation of urban public transport system in Indonesia, the possibility of its effective development. Analysis of influence factors by using the Ishikawa Cause and Effect diagram and also the use of Pareto analysis. Using business process reengineering.

    контрольная работа [398,2 K], добавлен 21.04.2014

  • Study of different looks of linguists on an accentual structure in English. Analysis of nature of pressure of the English word as the phonetic phenomenon. Description of rhythmic tendency and functional aspect of types of pressure of the English word.

    курсовая работа [25,7 K], добавлен 05.01.2011

  • Systematic framework for external analysis. Audience, medium and place of communication. The relevance of the dimension of time and text function. General considerations on the concept of style. Intratextual factors in translation text analysis.

    курс лекций [71,2 K], добавлен 23.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.