Основные объекты магистрального газопровода, их назначение и устройство

Основные объекты и сооружения магистрального газопровода. Объекты компрессорной станции. Расходование газа промышленными и особенно коммунально-бытовыми потребителями. Подземные хранилища газа. Принцип работы мокрого газгольдера. Требования к трубам.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 26.11.2020
Размер файла 3,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

"Московский государственный нефтяной технический университет"

Кафедра транспорта и хранения нефти и газа

Реферат

Основные объекты магистрального газопровода, их назначение и устройство

Содержание

Введениe

1.Классификация магистральных газопродов

2. Головные сооружения

3. Компрессорные станции

4. Газораспределительные станции

5. Газовые хранилища

5.1 Подземные хранилища газа

5.2 Газгольдеры

6. Линейные сооружения

6.1 Требования к трубам и материалам

6.2 Защита от коррозии

6.3 Трубопроводная арматура

Заключение

Использованная литература

Введение

Сегодня газ широко применяется как в быту, так и в промышленности. Существует множество способов для транспортировки газа из районов добычи в районы потребления. Одним из основных видов является трубопроводный транспорт.

Основными достоинствами трубопроводного транспорта являются:

1) возможность прокладки трубопровода в любом направлении и на любое расстояние - это кратчайший путь между начальным и конечным пунктами;

2) бесперебойность работы и соответственно гарантированное снабжение потребителей, независимо от погоды, времени года и

суток;

3) наибольшая степень автоматизации;

4) высокая надежность и простота в эксплуатации;

5) разгрузка традиционных видов транспорта.

К недостаткам, трубопроводного транспорта относятся:

1) большие первоначальные затраты на сооружение магистрального трубопровода, что делает целесообразным применение трубопроводов только при больших, стабильных грузопотоках;

2) определенные ограничения на количество сортов (типов, марок) энергоносителей, транспортируемых по одному трубопроводу;

3) «жесткость» трассы трубопровода, вследствие чего для организации снабжения энергоносителями новых потребителей нужны дополнительные капиталовложения.

Добываемый в России природный газ поступает в магистральные газопроводы, объединенные в Единую систему газоснабжения (ЕСГ) России. ЕСГ является крупнейшей в мире системой транспортировки газа и представляет собой уникальный технологический комплекс, включающий в себя объекты добычи, переработки, транспортировки, хранения и распределения газа. ЕСГ обеспечивает непрерывный цикл поставки газа от скважины до конечного потребителя.

В состав ЕСГ входят 168,3 тыс. км магистральных газопроводов и отводов; 222 линейные компрессорные станции, на которых установлено 3738 газоперекачивающих агрегатов общей мощностью в 43,87 тыс. МВт; 25 объектов подземного хранения газа.

Благодаря централизованному управлению, большой разветвленности и наличию параллельных маршрутов транспортировки ЕСГ обладает существенным запасом надежности и способна обеспечивать бесперебойные поставки газа даже при пиковых сезонных нагрузках.

Магистральный газопровод -- один из основных элементов газотранспортной системы и главное составное звено Единой системы газоснабжения России.

Единая система газоснабжения России принадлежит «Газпрому»

1.Классификация магистральных газопроводов

Основные объекты и сооружения магистрального газопровода

Магистральным газопроводом (МГ) называется трубопровод, предназначенный для транспортировки газа, прошедшего подготовку из района добычи в районы его потребления. Движение газа по магистральному газопроводу обеспечивается компрессорными станциями (КС), сооружаемыми по трассе через определенные расстояния.

Ответвлением от магистрального газопровода называется трубопровод, присоединенный непосредственно к МГ и предназначенный для отвода части транспортируемого газа к отдельным населенным пунктам и промышленным предприятиям.

Магистральные газопроводы классифицируются по величине рабочего давления и по категориям.

В зависимости от рабочего давления в трубопроводе магистральные газопроводы подразделяются на два класса:

I класс - рабочее давление от 2,5 до 10 МПа включительно;

II класс - рабочее давление от 1,2 МПа до 2,5 МПа включительно.

В зависимости от назначения и диаметра, с учетом требований безопасности эксплуатации магистральные газопроводы и их участки подразделяются на пять категорий: В, I, II, III и IV. Категория газопроводов определяется способом прокладки, диаметром и условиями монтажа.

По магистральным газопроводам транспортируют следующие группы газов:

* газ с чисто газовых месторождений, не содержащий тяжелых углеводородов; такой газ состоит в основном из метана СН4 (до 98%), остальную часть представляют предельные углеводороды (этан, пропан, бутан и пентан) и примеси азота, углекислого газа, иногда сероводорода, водорода, гелия и др.;

* газ газоконденсатных месторождений;

* попутный нефтяной газ, отделяемый при добыче нефти;

* искусственный газ, получаемый путем сжигания горючих сланцев и пр.

В состав МГ входят следующие основные объекты (рис. 1.):

1) головные сооружения;

2) компрессорные станции

3) газораспределительные станции (ГРС);

4) подземные хранилища газа;

5) линейные сооружения.

Рис. 1 Схема магистрального газопровода:

1 - газосборные сети; 2 - промысловый пункт сбора газа; 3 - головные сооружения; 4 - компрессорная станция; 5 - газораспределительная станция; 6 - подземные хранилища; 7 - магистральный трубопровод; 8 - ответвления от магистрального трубопровода; 9 - линейная арматура; 10 - двухниточный проход через водную преграду

Рисунок 2. Схема промысловых сооружений и магистрального газопровода:

1 -- промыслы; 2 -- газосборный пункт; 3 -- промысловый коллектор; 4 -- установка подготовки газа; 5 -- головная компрессорная станция (ГКС); 6 -- магистральный трубопровод; 7 -- промежуточная КС; 8 -- линейные запорные устройства; 9 -- подводный переход с резервной ниткой; 10 -- переход под железной дорогой; 11 -- отвод от магистрального газопровода; 12 -- газораспределительная станция (ГРС); 13 -- конечная ГРС; 14 -- станция подземного хранения газа (СПХГ); 15 -- газорегуляторный пункт (ГРП); 16 -- тепловая электростанция; 17 -- газоперерабатывающий завод (ГПЗ)

В зависимости от конкретных условий эксплуатации состав сооружений магистрального газопровода может изменяться. Так, на газопроводах небольшой протяженности может не быть промежуточных КС. Если в добываемом газе отсутствует сероводород или углекислый газ, то необходимость в установках по очистке газа от них отпадает. Станции подземного хранения газа обычно сооружаются только вблизи крупных городов или районов газопотребления.

2.Головные сооружения

На головных сооружениях производится подготовка добываемого газа к транспортировке (очистка, осушка и т.д.). В начальный период разработки месторождений давление газа, как правило, настолько велико, что необходимости в головной компрессорной станции нет. Ее строят позднее, уже после ввода газопровода в эксплуатацию.

Головными сооружениями магистрального газопровода называют производственный комплекс, размещающийся на стыке газового промысла и газопровода и осуществляющий всестороннюю подготовку газа к дальнейшей транспортировке.

Комплекс головных сооружений зависит от состава газа, добываемого на промысле и поступающего из газосборного пункта. Как правило, в этот комплекс входят установки по очистке газа от пыли и механических примесей, осушке и одоризации. В необходимых случаях включаются также установки по отделению от газа серы и высокоценных компонентов (гелия и др.).

К головным сооружениям относят и компрессорную станцию, подключаемую на начальном участке газопровода. На территории этой станции, как правило, и размещается весь комплекс установок по подготовке газа.

Газ, попадающий на головные сооружения магистрального газопровода со сборных пунктов промысла, содержит механические примеси (песок, пыль. металлическую окалину и др.) и жидкости (пластовую воду, конденсат, масло). Перед подачей в газопровод его очищают и осушают, так как без предварительной подготовки он будет засорять трубопровод, вызывать преждевременный износ запорной и регулирующей арматуры, нарушать работу контрольно-измерительных приборов. Твердые частицы, попадая в компрессорные установки, ускоряют износ поршневых колец, клапанов и цилиндров. В центробежных нагнетателях они ускоряют износ рабочих колес и самого корпуса нагнетателя. Жидкие примеси, скапливаясь в пониженных местах газопровода, будут сужать его сечение, способствовать образованию гидратных и гидравлических пробок.

Для очистки природного газа от мехпримесей используются аппараты 2-х типов:

работающие по принципу «мокрого» улавливания пыли (масляные);

работающие по принципу «сухого» отделения пыли (циклонные);

На рис. 3 представлена конструкция вертикального масляного пьшеуловителя. Это вертикальный цилиндрический сосуд со сферическими днищами. Пылеуловитель состоит из трех секций: промывочной А (от нижнего днища до перегородки 5), в которой все время поддерживается постоянный уровень масла; осадительной Б ( от перегородки 5 до перегородки 6), где газ освобождается от крупных частиц масла, и отбойной (скрубберной) секции В (от перегородки 6 до верхнего днища), где происходит окончательная очистка газа от захваченных частиц масла.

Пылеуловитель работает следующим образом. Очищаемый газ входит в аппарат через патрубок 10. Натекая на козырек 9, он меняет направление своего движения. Крупные же частицы мехпримесей, пыли и жидкости по инерции продолжают двигаться горизонтально. При ударе о козырек их скорость гасится и под действием силы тяжести они выпадают в масло. Далее газ направляется в контактные трубки 4, нижний конец которых расположен в 20...50 мм над поверхностью масла. При этом газ увлекает за собой масло в контактные трубки, где оно обволакивает взвешенные частицы пыли.

В осадительной секции скорость газа резко снижается. Выпадающие при этом крупные частицы пыли и жидкости по дренажным трубкам 11 стекают вниз. Наиболее легкие частицы из осадительной секции увлекаются газовым потоком в верхнюю скрубберную секцию В. Ее основной элемент - скруббер, состоящий из нескольких рядов перегородок 8, расположенных в шахматном порядке. Проходя через лабиринт перегородок, газ многократно меняет направление движения, а частицы масла по инерции ударяются о перегородки и стекают сначала на дно скрубберной секции, а затем по дренажным трубкам 11 в нижнюю часть пылеуловителя.

Очищенный газ выходит из аппарата через газоотводящий патрубок 7.

Осевший на дно пылеуловителя шлам периодически (раз в 2...3 месяца) удаляют через люк 12. Загрязненное масло через трубку 1 сливают в отстойник. Взамен загрязненного в пылеуловитель по трубе 2 доливается очищенное масло. Контроль за его уровнем ведется по шкале указателя уровня 3.

Наряду с «мокрым» для очистки газов от твердой и жидкой взвеси применяют и «сухое» пылеулавливание. Наибольшее распространение получили циклонные пылеуловители.

Схема, поясняющая работу циклонного пылеуловителя, приведена на рис. 4. Газ входит в аппарат через патрубок 2 и попадает в батарею циклонов 3. Под действием центробежной силы твердые и жидкие частицы отбрасываются к периферии, затормаживаются о стенку циклона и выпадают в нижнюю часть аппарата, откуда выводятся через патрубок 6. А очищенный газ, изменяя направление движения, попадает в верхнюю часть аппарата, откуда выводится через патрубок 7.

В товарном газе содержание мехпримесей не должно превышать 0,05 мг/м3.

Осушку газа на головных сооружениях осуществляют двумя способами: абсорбционным (с жидкими поглотителями) и адсорбционным (с твердыми поглотителями). Газ после пылеуловителей попадает в абсорберы, где очищается от взвешенных капель жидкости и водяных паров путем активного контакта с абсорбентом, чаще всего диэтиленгликолем.

В последнее время определенное значение приобретает осушка газа твердыми поглотителями. В качестве адсорбентов применяют активированную окись алюминия, флюорит, боксит, силикагель или другие реагенты. Установка такой осушки состоит из группы адсорберов (не менее двух), подогревателя газа и теплообменников. Влажный газ после очистки от пыли поступает в адсорбер, где проходит через один или несколько слоев адсорбента. Периодически часть адсорберов отключают от системы для регенерации адсорбента.

Для улавливания жидкости и твердых примесей, остающихся в газе после очистных устройств, на головном участке магистрального газопровода врезают конденсатосборники и предусматривают дренажные устройства. Практика показала, что наиболее эффективно это делать на восходящих участках газопровода.

Головная компрессорная станция или установка комплексной подготовки газа (УКПГ) отличается от линейной тем, что на ее территории размещены все установки по подготовке газа к дальнему транспорту.

3. Компрессорные станции

Как известно, все основные месторождения газа расположены на значительном расстоянии от крупных потребителей. Подача газа к ним осуществляется по магистралям газопроводам различного диаметра. При движении газа из-за разного рода гидравлических сопротивлений по длине трубопровода происходит падение его давления, что приводит к снижению пропускной способности газопровода. Поэтому транспортировать газ в достаточном количестве и на большие расстояния только за счет естественного пластового давления нельзя.

Для поддержания заданного расхода транспортируемого газа и обеспечения его оптимального давления в трубопроводе по трассе газопровода устанавливаются компрессорные станции (КС). Современная компрессорная станция -- это сложное инженерное сооружение, обеспечивающее основные технологические процессы по подготовке и транспорту природного газа.

На магистральных газопроводах различают три основных типа КС: головные, линейные и дожимные.

Головные компрессорные станции (ГКС) устанавливаются непосредственно после газового месторождения и предназначены они для поддержания необходимого давления технологического газа для его дальнейшего транспорта по магистральным газопроводам, когда в результате разработки газового месторождения пластовое давление в нём снижается.

Характерной особенностью ГКС является высокая степень сжатия на станции, обеспечиваемая последовательной работой нескольких газоперекачиваемых агрегатов (ГПА). На ГКС предъявляются повышенные требования к качеству подготовки технологического газа - очистке от механических примесей, осушке от газового конденсата и влаги, а так же удаления, при их наличии, побочных продуктов: сероводорода, углекислоты и т.д.

Линейные компрессорные станции устанавливаются на магистральных газопроводах, как правило, через 100-150 км. Назначением КС является компримирование поступающего на станцию природного газа, с давления входа до давления выхода, обусловленных проектными данными, для обеспечения постоянного и заданного расхода газа по магистральному газопроводу. Крупные магистральные газопроводы строятся в основном на давления Р=5.5 и 7.5 МПа.

Дожимные компрессорные станции (ДКС) устанавливаются на подземных хранилищах газа (ПХГ). Назначением ДКС является подача газа в подземное хранилище газа от магистрального газопровода и отбор природного газа из подземного хранилища (как правило, в зимний период времени) для последующей подачи его в магистральный газопровод или непосредственно потребителям газа. ДКС строятся также и на газовом месторождении при падении пластового давления ниже давления в магистральном трубопроводе. Отличительной особенностью ДКС от линейных КС является высокая степень сжатия, улучшенная подготовка технологического газа (осушители, сепараторы, пылеуловители), поступающего из подземного хранилища, с целью его очистки от механических примесей и влаги, выносимой с газом.

Вид привода компрессорных станций и их мощность в основном определяются пропускной способностью газопровода. Для станций подземного хранения газа, где требуются большие степени сжатия и малые расходы, используются газомотокомпрессоры, а также газотурбинные агрегаты, которые могут обеспечивать заданные степени сжатия. Для газопроводов с большой пропускной способностью наиболее эффективное применение находят центробежные нагнетатели с приводом от газотурбинных установок или электродвигателей.

Оборудование и обвязка компрессорных станций приспособлены к переменному режиму работы газопровода. Количество газа, перекачиваемого через КС, можно регулировать включением и отключением числа работающих газоперекачивающих агрегатов (ГПА), изменением частоты вращения силовой турбины у ГПА с газотурбинным приводом и т. п. Однако во всех случаях стремятся к тому, чтобы необходимое количество газа перекачать меньшим числом агрегатов, что приводит к меньшему расходу топливного газа на нужды перекачки и. как следствие, к увеличению подачи товарного газа по газопроводу.

Наибольшее влияние на режим работы КС и отдельных ГПА оказывают сезонные изменения производительности газопровода. Обычно максимум подачи газа приходится на декабрь -- январь, а минимум -- на летние месяцы года.

Принципиальная технологическая схема компрессорной станции приведена на рис. 2. Газ из магистрального газопровода 1 через открытый кран 2 поступает в блок пылеуловителей 4. После очистки от жидких и твердых примесей газ компримируется газоперекачивающими агрегатами (ГПА) 5. Далее он проходит через аппараты воздушного охлаждения (АВО) 7 и через обратный клапан 8 поступает в магистральный газопровод 1.

Рис. 5 Технологическая схема компрессорной станции с центробежными нагнетателями:

1- магистральный газопровод; 2 -- кран; 3 -- байпасная линия; 4 - пылеуловители; 5 - газоперекачивающий агрегат; 6 -- продувные свечи; 7 - АВО газа; 8 - обратный клапан

Объекты компрессорной станции, где происходит очистка, компримирование и охлаждение, т.е. пылеуловители, газоперекачивающие агрегаты и АВО, называются основными. Для обеспечения их нормальной работы сооружают объекты вспомогательного назначения", системы водоснабжения, электроснабжения, вентиляции, маслоснабжения и т.д.

Основные объекты компрессорной станции:

Узел подключения КС к МГ

Камеры запуска и приема очистных устройств

Установка очистки технологического газа

Компрессорный цех

Технологические трубопроводы обвязки КС с запорной, предохранительной и регулирующей арматурой

Блок подготовки топливного, пускового и импульсного газа

Вспомогательное оборудование

Энергетическое оборудование

Главный щит управления и системы телемеханики

Оборудование ЭХЗ

Газоперекачивающие агрегаты

Основным оборудованием на КС являются ГПА. При выборе типа ГПА учитывают их технико-экономические показатели в зависимости от типа нагнетателей и характеристики привода. Многочисленные исследования эффективности применения различных видов привода центробежных нагнетателей показали наибольшую экономичность газотурбинного привода. Однако в некоторых случаях, например при небольших расстояниях между КС и источником электроэнергии (30 -- 50 км), электропривод являегся конкурентоспособным. Так, достаточно большое количество КС в Европейской части России оборудовано электроприводом. Однако большинство КС в России (и практически на всей территории бывшего Советского Союза), с учетом их удаленности от линий электропередач, оборудуют ГПА, состоящими из центробежных нагнетателей с приводом от ГТУ.

В качестве газоперекачивающих агрегатов применяются поршневые газомотокомпрессоры или центробежные нагнетатели.

Поршневые газомотокомпрессоры представляют собой агрегат, в котором объединены силовая часть (привод) и компрессор для сжатия газа. Принцип работы поршневого компрессора такой же, как у поршневого насоса.

Наиболее распространенными типами газомотокомпрессоров являются 10 ГК, 10 ГКН, МК-10 и ГПА-5000 (табл. 15.3), имеющие подачу от 0,8 до 10,0 млн. м:1/сут и развивающие давление 5,5 МПа. Поршневые газомотокомпрессоры отличаются высокой эксплуатационной надежностью, способностью работать в широком диапазоне рабочих давлений, возможностью регулировать подачу за счет изменения «вредного» пространства и частоты вращения.

Область преимущественного применения поршневых газомотокомпрессоров - трубопроводы для перекачки нефтяного газа и станции подземного хранения газа.

На магистральных газопроводах пропускной способностью более 10 млн. м3/сут применяют центробежные нагнетатели с газотурбинным приводом или электроприводом.

Принцип работы центробежных нагнетателей аналогичен работе центробежных насосов. Наиболее распространенным приводом нагнетателей на компрессорных станциях является газотурбинный. На газопроводах применяются газовые турбины мощностью от 2500 до 25000кВт. Недостатком газотурбинного привода является относительно невысокий кпд (не выше 30 %), а также высокое потребление газа на собственные нужды в качестве топлива.

В состав газотурбинной установки входят (рис. 15.5): турбодетандер 1, редуктор 2, воздушный компрессор 3, блок камер сгорания 4, турбины высокого 5 и низкого 6 давлений. Турбодетандер является пусковым двигателем установки, работающим на природном газе. Расчетная продолжительность пуска агрегата из холодного состояния - 15 мин.

Турбодетандер 1 через редуктор 2 запускает в работу воздушный компрессор 3. Атмосферный воздух засасывается компрессором и сжимается в нем до рабочего давления. Далее сжатый воздух направляется в блок камер сгорания 4,

где он нагревается за счет сжигания природного газа. Продукты сгорания направляются в газовую турбину (сначала высокого, а затем низкого давления), где они расширяются.

Процесс расширения сопровождается падением давления и температуры, но увеличением скорости потока газа, используемого для вращения ротора турбины. Отработавший газ через выхлопной патрубок выходит в окружающую среду

Аппараты для охлаждения газа

Необходимость охлаждения газа обусловлена следующим. При компримировании он нагревается. Это приводит к увеличению вязкости газа и, соответственно, затрат мощности на перекачку. Кроме того, увеличение температуры газа отрицательно влияет на состояние изоляции газопровода, вызывает дополнительные продольные напряжения в его стенке.

Газ охлаждают водой и воздухом. При его охлаждении водой используют различные теплообменные аппараты (кожухотрубные, оросительные), которые с помощью системы трубопроводов и насоса подключены к устройствам для охлаждения воды. Данный способ охлаждения газа используется, как правило, совместно с поршневыми газомотокомпрессорами.

Рис. 7 . АВО

На магистральных газопроводах наиболее широкое распространение получил способ охлаждения газа атмосферным воздухом. Для этой цели применяют аппараты воздушного охлаждения (АВО) газа различных типов(рис.7).

Конструктивно АВО представляет собой мощный вентилятор с диаметром лопастей 2...7 м, который нагнетает воздух снизу вверх, где по пучкам параллельных труб движется охлаждаемый газ. Для интенсификации теплообмена трубы выполняют оребренными. В качестве привода вентиляторов используются электродвигатели мощностью от 10 до 100 кВт.

Достоинствами АВО являются простота конструкции, надежность работы, отсутствие необходимости в предварительной подготовке хладагента (воздуха).

4. Газораспределительные станции

азораспределительные станции сооружают в конце каждого магистрального газопровода или отвода от него.

Высоконапорный газ, транспортируемый по магистральному газопроводу, не может быть непосредственно подан потребителям, поскольку газовое оборудование, применяемое в промышленности и в быту, рассчитано на сравнительно низкое давление. Кроме того, газ должен быть очищен от примесей (механических частиц и конденсата), чтобы обеспечить надежную работу оборудования. Наконец, чтобы обнаруживать и предотвращать возможные утечки газа, перед подачей в магистральный газопровод ему придают специфический запах с помощью одорантов -- веществ, обладающих резким запахом (этилмеркаптан, сульфан, метилмеркантан, пропилмеркаптан и др.). Примерная среднегодовая норма расхода одоранта -- 16 г на 1000 м3 газа. Одорированный газ достаточно длительное время сохраняет приобретенное качество и доходит к потребителям почти с начальной степенью одоризации.

Понижение давления газа до требуемого уровня, его очистка, одоризация и измерение расхода осуществляются на газораспределительной станции (ГРС). Принципиальная схема ГРС приведена на рис. 3.

Газ по входному трубопроводу 1 поступает на ГРС. Здесь он последовательно очищается в фильтре 2, нагревается в подогревателе 3 и редуцируется в регуляторах давления 4. Далее расход газа измеряется расходомером 5 и в него с помощью одоризатора 6 вводится одорант.

Рис. 8.Принципиальная схема ГРС:

1 - входной трубопровод; 2 - фильтр; 3 - подогреватель газа; 4 - контрольный клапан; 5 - регулятор давления типа «после себя»; б -- расходометр газа; 7 - одоризатор; 8 - выходной трубопровод; 9 - манометр; 10 - байпас.

Различают:

собственно газораспределительные станции, сооружаемые на конечных пунктах магистральных газопроводов или отходящих от них газопроводах производительностью до 500 тысяч куб м в час;

промысловые газораспределительные станции;

контрольно-распределительные пункты;

газорегуляторные пункты;

автоматические газораспределительные станции.

Промысловые газораспределительные станции служат для обработки газа, добываемого на промыслах, а также для снабжения газом близлежащего к промыслу населенного пункта, контрольно-распределительные пункты -- промышленных или сельскохозяйственных объектов, а также для питания кольцевой системы газопроводов, сооружаемых вокруг города. Автоматические газораспределительные станции снабжают газом небольшие населенные пункты, совхозы и колхозы на ответвлениях от магистральных газопроводов.

Необходимость подогрева газа перед редуцированием связана с тем, дросселирование давления сопровождается (согласно эффекту Джоуля-Томсона) охлаждением газа, создающим опасность закупорки трубопроводов ГРС газовыми гидратами.

5. Газовые хранилища

Расходование газа промышленными и особенно коммунально-бытовыми потребителями, как правило, неравномерно и колеблется в течении суток, недели и года.

В часы приготовления и потребления пищи расходование газа выше, чем в другое время суток. В выходные дни расход газа выше, чем в будни. Зимой расход газа всегда больше, чем летом, когда выключается отопительная система. Поскольку газ по газопроводу подается в одном и том же количестве, исходя из среднечасового расхода, то в одни периоды времени (днем, в выходные и воскресные дни) возможно возникновение его нехватки, а в другие (ночью, в будни) - появляется избыток газа.

Для компенсации суточной неравномерности газопотребления используют также газгольдеры высокого и низкого давления - сосуды специальной конструкции.

Для покрытия сезонной неравномерности газопотребления требуются крупные хранилища. На газгольдеры в этом случае расходуется слишком много стали и требуются значительные площади для их установки. Поэтому компенсацию сезонной неравномерности газопотребления осуществляют с помощью подземных хранилищ, удельный расход металла на сооружение которых в 20...25 раз меньше

5.1 Подземные хранилища газа

Подземным газохранилищем (ПХГ) называется хранилище газа, созданное в горных породах.

Различают два типа ПХГ: в искусственных выработках и в пористых пластах. Первый тип хранилищ получил ограниченное распространение. Так, в США по состоянию на 1.09.94 г. на них приходилось лишь 6 % из 371 ПХГ: 1 - в переоборудованной угольной шахте и 21 - в отложениях каменной соли. Остальные 349 ПХГ относятся к хранилищам второго типа: из них 305 размещены в отработанных нефтяных и газовых месторождениях, а 44 - в водоносных пластах.

Широкое использование хранилищ в истощенных нефтегазовых месторождениях объясняется минимальными дополнительными затратами на оборудование ПХГ, поскольку саму ловушку с проницаемым пластом природа уже «изготовила».

Принципиальная схема подземного газохранилища приведена на рис. 5

Газ из магистрального газопровода 1 по газопроводу-отводу 2 поступает на компрессорную станцию 4, предварительно пройдя очистку в пылеуловителях 3. Сжатый и нагревшийся при компримировании газ очищается от масла в сепараторах 5, охлаждается в градирне (или АВО) 6 и через маслоотделители 7 поступает на газораспределительный пункт (ГРП) 8. На ГРП осуществляется распределение газа по скважинам.

Рис. 9 Принципиальная схема наземных сооружений ПХГ:

I - магистральный газопровод; 2 - газопровод-отвод;

3,9 - пылеуловители; 4 - компрессорная станция; 5 - сепаратор;

6 - холодильник (градирня); 7 - маслоотделитель;

8 - газораспределительный пункт; 10 - установка осушки газа;

I1 - расходомер

Давление закачиваемого в подземное хранилище газа достигает 15 МПа. Для закачки, как правило, используются газомотокопрессоры.

При отборе газа из хранилища его дросселируют на ГРП 8, производят очистку и осушку газа в аппаратах 9,10, а затем после замера количества расходомером 11 возвращают в магистральный газопровод 1. Если давление газа в подземном хранилище недостаточно высоко, его предварительно компримируют и охлаждают (на рис. 16.4 не показано).

Очистка газа от пыли, окалины и частиц масла перед его закачкой в хранилище имеет очень большое значение, т.к. в противном случае засоряется призабойная зона и уменьшается приемистость скважин.

Оптимальная глубина, на которой создаются подземные газохранилища, составляет от 500 до 800 м. Это связано с тем, что с увеличением глубины возрастают затраты на обустройство скважин. С другой стороны, глубина не должна быть слишком малой, т.к. в хранилище создаются достаточно высокие давления.

Подземное хранилище заполняют газом несколько лет, закачивая каждый сезон несколько больший объем газа, чем тот, который отбирается.

Общий объем газа в хранилище складывается из двух составляющих: активной и буферной. Буферный объем обеспечивает минимально необходимое заполнение хранилища, а активный - это тот объем газа, которым можно оперировать.

5.2 Газгольдеры

Газгольдерами называют сосуды большого объема, предназначенные для хранения газов под давлением. Различают газгольдеры низкого (4000 Па) и высокого (от 7*104 до 30*104 Па) давления. В газгольдерах первого типа рабочий объем является переменным, а давление газа в процессе наполнения или опорожнения изменяется незначительно. Они бывают мокрые и сухие. Мокрые газгольдеры (рис. 10 а) состоят из двух основных частей - вертикального цилиндрического резервуара 1, заполненного водой (неподвижная часть) и колокола 2, помещенного внутри резервуара и представляющего собой цилиндр, открытый снизу и имеющий сферическую кровлю (подвижная часть). Для облегчения перемещения колокола служат ролики 3. Закачка и отбор газа осуществляются по газопроводу 4.

Рис. 10. Принципиальная схема газгольдеров низкого давления:

а) мокрый; б) сухой;

1 - резервуар; 2 - колокол; 3 - ролики; 4 - газопровод; 5 - шайба; 6 - уплотнение; 7 - ограничитель хода.

Принцип работы мокрого газгольдера следующий. При закачке газа в газгольдер давление под колоколом возрастает и вода частично вытесняется в кольцевое пространство между резервуаром и колоколом. Она играет роль гидравлического уплотнения. Как только давление газа превысит нагрузку, создаваемую массой колокола, последний начинает перемещаться вверх, освобождая объем для новых количеств газа. При опорожнении газгольдера давление газа под колоколом уменьшается и он опускается.

Для более полного использования объема колокола его высота должна быть равна высоте резервуара. У газгольдеров большого (свыше 6000 м3) объема подвижную часть разбивают на несколько звеньев, вкладывающихся друг в друга подобно телескопу. Чтобы избежать перекосов при перемещении подвижных частей, а также для восприятия горизонтальных нагрузок (например, ветровых) к резервуару крепят направляющие, по которым перемещаются ролики, закрепленные в верхней части колокола (на рисунке не показаны).

Сухие газгольдеры (рис. 10 б) состоят из вертикального корпуса цилиндрической или многогранной формы с днищем и кровлей, внутри которого находится подвижная шайба (поршень), снабженная специальным уплотнением. Принцип работы сухого газгольдера аналогичен работе паровой машины. Под давлением газа, подаваемого под шайбу, она поднимается вверх до определенного предела, а при отборе газа - опускается вниз, поддерживая своей массой постоянное давление в газгольдере. Сухие газгольдеры менее надежны, чем мокрые, но и менее металлоемки.

Недостатком газгольдеров низкого давления является то, что они обладают относительно низкой аккумулирующей способностью.

Газгольдеры высокого давления имеют неизменный геометрический объем, но давление в них по мере наполнения или опорожнения изменяется. Хотя геометрический объем газгольдеров этого класса много меньше объема газгольдеров низкого давления, количество хранимого в них газа может быть значительным, благодаря высокому давлению. Так, если в мокром газгольдере объемом м3 под давлением 4000 Па можно хранить 104 м3 газа, то в газгольдере с давлением 1,6 МПа того же геометрического объема - 1700 м3, т.е. почти в 17 раз больше.

Газгольдеры высокого давления бывают цилиндрические и сферические. Цилиндрические газгольдеры имеют геометрический объем от 50 до 270 м3. Поскольку у всех них внутренний диаметр равен 3,2 м, то различаются они лишь длиной цилиндрической части - обечайки 1. С обеих сторон к обечайке приварены днища 2, имеющие вид полусферы. Для контроля за давлением газа в газгольдере используются манометры 3. Газгольдер устанавливается на фундамент 4 горизонтально, либо вертикально.

Цилиндрические газгольдеры рассчитаны на давление от 0,25 до 2 МПа. Толщина их стенки может достигать 30 мм.

Сферические газгольдеры в нашей стране имеют геометрический объем от 300 до 4000 м3 и толщину стенки от 12 до 34 мм. Сферическая форма сосуда для хранения газа под высоким давлением является наиболее выгодной по металлозатратам и общей стоимости. Монтируют сферические газгольдеры из отдельных лепестков, раскроенных в виде апельсиновых долек, а также из верхнего и нижнего днищ, имеющих форму шарового сегмента. Опоры газгольдеров выполняют в виде цилиндрического стакана из железобетона со стальным опорным кольцом или в виде стоек-колонн, прикрепленных к шару по экваториальной линии и связанных между собой системой растяжек.

Батареи стальных газгольдеров высокого давления (до 1,5 МПа) были применены в Москве с целью компенсации неравномерности потребления газа, поступавшего в относительно небольших количествах по газопроводу Саратов-Москва. Однако с развитием газопроводов и ростом объемов потребления газа потребовались газохранилища вместимостью в миллионы кубических метров. Обеспечить хранение таких количеств газа могли только подземные газохранилища.

6. Линейные сооружения

К линейным сооружениям относятся собственно магистральный трубопровод, линейные запорные устройства, узлы очистки газопровода, переходы через искусственные и естественные препятствия, станции противокоррозионной защиты, дренажные устройства. К линейным сооружениям также относятся линии технологической связи, отводы от магистрального газопровода для подачи части транспортируемого газа потребителям и сооружения линейной эксплуатационной службы (ЛЭС).

Расстояние между линейными запорными устройствами (кранами) должно быть не более 30 км. Управление линейными кранами следует предусматривать дистанционным из помещения операторной компрессорной станции, а также ручным по месту. Линейная запорная арматура должна оснащаться автоматическими механизмами аварийного перекрытия.

При параллельной прокладке двух и более магистральных газопроводов в одном технологическом коридоре предусматривается соединение их перемычками с запорной арматурой. Перемычки следует размещать на расстоянии не менее 40 км и не более 60 км друг от друга у линейных кранов, а также до и после компрессорных станций.

Вспомогательные линейные сооружения магистрального газопровода принципиально не отличаются от сооружений магистрального нефтепровода. К ним относятся линии связи, вдольтрассовые дороги, вертолетные площадки, площадки аварийного запаса труб, усадьбы линейных ремонтеров и т.д.

Газопроводы, эксплуатируемые при давлениях менее 1,2 МПа, к магистральным газопроводам не относятся. Длина магистрального газопровода может составлять от десятков до нескольких тысяч километров, а диаметр - от 150 до 1420 мм. Большая часть газопроводов имеет диаметр от 720 до 1420 мм. Трубы и арматура магистральных газопроводов рассчитаны на рабочее давление до 7,5 МПа с пропускной способностью до 50-60 млрд. м3 газа в год. 

6.1 Требования к трубам и материалам

газопровод компрессорный газгольдер

Для строительства магистральных газопроводов должны применяться трубы стальные бесшовные, электросварные прямо шовные, спиральные и другие специальные конструкции, изготовленные из:

- спокойных и полуспокойных углеродистых, реже легированных сталей диаметром 50 миллиметров включительно;

- спокойных и полуспокойных низколегированных сталей диаметром до 1020 миллиметров;

- низколегированных сталей в термически или термодинамически упрочнённом состоянии для труб диаметром до 1420 миллиметров;

Трубы должны иметь сварное соединение, равнопрочное основному металлу трубы. Сварные швы труб должны быть плотными, непровары и трещины любой протяжённости и глубины не допускаются. Отклонение от номинальных размеров наружных диаметров торцов труб не должны превышать величин, приведённых в ГОСТах, а для труб диаметром свыше 800 миллиметров не должны превышать плюс минус 2 миллиметра.

Овальность концов труб, то есть отношение разности между наибольшими и наименьшими диаметрами в одном сечении к номинальному диаметру, не должна превышать 1%. Овальность труб толщиной 20 миллиметров и более не должна превышать 0,8%.

Кривизна труб не должна превышать 1,5 миллиметров на 1 метр длины, а общая кривизна не более 0,2% длины трубы.

Длина поставляемых заводом труб должна быть в пределах 10,5 - 11,6 метров.

Трубы диаметром 1020 миллиметров и более должны изготавливаться из листовой и рулонной стали, прошедшей 100% контроль физическими неразрушающими методами.

Отношение предела текучести к временному сопротивлению (то есть пределу прочности) и относительное удлинение металла труб должны удовлетворять требования СП.

Кольцевые сварные соединения должны выполняться с применением дуговых методов сварки (в том числе ручной, автоматической под флюсом, механизированной в среде защитных газов, механизированной само защитной порошковой проволокой), а также электроконтактной сваркой - оплавлением.

Сталь труб должна хорошо свариваться.

Зачистка внешних дефектов труб (кроме трещин) допускается при условии, что толщины стенки труб после зачистки не выходят за пределы допусков на толщину стенки.

Сварные соединения труб должны иметь плавный переход от основного металла к металлу шва без острых углов, подрезов, непроваров, утяжек, осевой рыхлости и других дефектов в формировании шва. Усиление наружного шва для труб с толщиной стенки до 10 миллиметров должно находиться в пределах 0,5 - 2,5 миллиметров, а более 10 миллиметров 0,5 - 3 миллиметров. Высота усиления внутреннего шва должна быть не менее 0,5 миллиметров.

Смещение наружного и внутреннего слоёв заводского сварного шва не должно превышать 20% толщины стенки при толщине до 16 миллиметров и 15% более 16 миллиметров.

Концы труб должны быть обрезаны под прямым углом и иметь раздел покромок под сварку. Форма разделки покромок определяется техническими условиями.

Косина реза торцов труб должна быть не более 2 миллиметров.

Каждая труба должна проходить на заводах изготовителях испытания гидростатическим давлением.

Все сварные соединения труб должны быть полностью проверены физическими не разрушающимися методами контроля (ультразвуком с последующей расшифровкой дефектных мест расшифровкой просвечиванием).

6.2 Защита от коррозии

Коррозией металлов называется разрушение или изменение его свойств, вызванное химическими или электрохимическими процессами при взаимодействии с окружающей средой.

Все способы, продляющие срок службы трубопровода, можно условно разделить на четыре группы.

Пассивная защита. Заключается в нанесении на поверхность трубы защитного изоляционного покрытия на основе битума, полимерных лент или напыленного полимера. Изоляционные покрытия должны обладать сплошностью, высокой диэлектрической способностью, адгезией, механической прочностью, водонепроницаемостью, эластичностью, биостойкостью, термостойкостью, долговечностью и недифицитностью.

Введение в металл компонентов, повышающих коррозионную стойкость. Метод применяется на стадии изготовления металла. Одновременно из металла удаляются примеси, понижающие коррозионную устойчивость.

Воздействие на окружающую среду. Метод основан на введение ингибиторов коррозии для дезактивации агрессивной среды.

Активная защита. К этому методу относятся катодная, протекторная и дренажная защита.

Катодная защита. При катодной защите трубопровода положительный полюс источника постоянного тока (анод) подключается к специальному анодному заземлителю, а отрицательный (катод) - к защищаемому сооружению (рис. 11).

Рис. 11. Схема катодной защиты трубопровода

Принцип действия катодной защиты аналогичен электролизу. Под воздействием электрического поля начинается движение электронов от анодного заземлителя к защищаемому сооружению. Теряя электроны, атомы металла анодного заземлителя переходят в виде ионов в раствор почвенного электролита, то есть анодный заземлитель разрушается. На катоде (трубопроводе) наблюдается избыток свободных электронов (восстановление металла защищаемого сооружения).

Протекторная защита. При прокладке трубопроводов в труднодоступных районах, удаленных от источников электроэнергии, применяется протекторная защита (рис. 12)

Рис. 12. Схема протекторной защиты

Принцип действия протекторной защиты аналогичен гальванической паре. Два электрода - трубопровод и протектор (изготовленный из более электроотрицательного металла, чем сталь) соединяются проводником. При этом возникает разность потенциалов, под действием которой происходит направленное движение электронов от протектора-анода к трубопроводу-катоду. Таким образом, разрушается протектор, а не трубопровод.

Электродренажной защитой называется отведение блуждающих токов от трубопровода на источник блуждающих токов или специальное заземление (рис. 13).

Электродренажная защита предназначена для защиты трубопровода от блуждающих токов. Источником блуждающих токов является электротранспорт, работающий по схеме «провод-земля».

Если поблизости находится трубопровод с нарушенной изоляцией, ток проходит по трубопроводу до тех пор, пока не будет благоприятных условий для возвращения к минусовой шине тяговой подстанции. В месте выхода тока трубопровод разрушается. Разрушение происходит за короткое время, поскольку блуждающий ток стекает с небольшой поверхности.

6.3 Трубопроводная арматура

Под этим названием подразумевается широкий спектр разнообразных устройств, предназначенных для управления токами среды (жидкой, газообразной, газожидкостной и т.?п.), транспортируемой по трубопроводам. При помощи арматуры производятся включение/отключение подачи, изменение давления или направления газового или жидкостного потоков, контроль уровней жидкостей, автоматическое удаление газов и жидкостей.

Основные части арматуры -- запорное или дроссельное устройство и привод. Они заключены в закрытый корпус, внутри которого перемещается затвор. Корпус оснащен присоединительными концами, которыми он герметично крепится на трубопроводе. Перемещение затвора внутри корпуса относительно его седел меняет гидравлическое сопротивление прохода -- фактически его площадь.

В зависимости от назначения трубопроводная арматура подразделяется на следующие классы:

I -- запорная, предназначенная для полного перекрытия потока среды;

II -- регулирующая, управляющая давлением или расходом среды путем изменения проходного сечения;

III -- предохранительная, обеспечивающая частичный выпуск среды в случае необходимости или полное прекращение ее подачи для предотвращения повышения давления, угрожающего прочности системы, а также предотвращающая недопустимый по технологическим соображениям обратный поток среды;

IV -- резервуарная, контрольная и прочая арматура различного назначения.

Способы присоединения арматуры. Основные способы -- фланцевое, муфтовое, сварное (неразъемное). Чаще применяется фланцевая арматура, преимущества которой очевидны: возможность многократного монтажа и демонтажа на трубопроводе, надежность герметизации стыков и возможность их подтяжки, большая прочность и пригодность для широкого диапазона давлений и проходов. К недостаткам относятся возможность ослабления затяжки и потеря герметичности, сравнительная трудоемкость сборки и разборки, большие размеры и масса.

Распространенные типы запорной арматуры. В зависимости от характера перемещения запорных элементов запорная арматура делится на следующие

- задвижки; 

- краны; 

- клапаны.

Задвижки -- запорные устройства, перекрывающие проход перемещением затвора в направлении, перпендикулярном к движению потока транспортируемой среды. В сравнении с другими видами запорной арматуры задвижки обладают следующими преимуществами: 

- незначительным гидравлическим сопротивлением при полностью открытом проходе; 

- отсутствием поворотов потоков; 

- возможность применения для перекрытия 

- потоков среды большой вязкости;

- простотой обслуживания; 

- возможностью подачи среды в любом направлении. 

К недостаткам, общим для всех конструкций задвижек, относятся: 

- невозможность использования для сред с кристаллическими включениями; 

- небольшой допускаемый перепад давления на затворе (в сравнении с вентилями); 

- невысокая скорость срабатывания затвора; 

- возможность получения гидравлического удара в конце хода; 

- большая высота; 

- трудности ремонта изношенных уплотнительных поверхностей при эксплуатации; 

- невозможность применения постоянной смазки уплотняющих поверхностей седла и затворов.

Рис14.а Рис 14.б. Рис.14в

Рис. 14а Задвижка шиберная 1-шибер; 2-пластина направляющая; 3-седло; 4-корпус; 5-кольцо; 6-шток; 7-пакет уплотнений; 8-маховик; 9-указатель; 10-корпус подшипников; 11-крышка; 12-масленка; 13-кольцо

Рис.14б. Шариковый кран

Рис.14в Запорный клапан

Клапаны -- запорная трубопроводная арматура с поступательным перемещением затвора в направлении, совпадающем с направлением потока транспортируемой среды. Перемещение затвора осуществляется ввинчиванием шпинделя в ходовую гайку. В основном клапаны предназначены для перекрывания потоков, но часто на их основе создаются дросселирующие устройства с любыми расходными характеристиками.

По сравнению с другими видами запорной арматуры клапаны обладают следующими преимуществами: 

возможностью работы при высоких перепадах давлений на золотнике и при больших рабочих давлениях; 

- простотой конструкции, обслуживания и ремонта; 

- малым ходом золотника (по сравнению с задвижками), необходимым для перекрытия прохода (обычно не более 1/4Dу); 

- небольшими габаритными размерами и массой; 

- герметичностью перекрытия прохода; 

- возможностью использования в качестве регулирующего органа и установки на трубопроводе в любом положении (вертикальном/горизонтальном); 

- безопасностью относительно возникновения гидравлического удара.

К общим недостаткам клапанов относятся:

- высокое гидравлическое сопротивление;

- невозможность их применения на потоках сильнозагрязненных сред;

- большая строительная длина (по сравнению с задвижками и дисковыми затворами);

- подача среды только в одном направлении, заданном конструкцией вентиля;

- сравнительно высокая стоимость.

Однако для управления потоками с высокими рабочими давлениями, а также низкими или высокими температурами рабочей среды клапанам нет альтернатив.

Заключение

Из всего вышесказанного можно сделать вывод, что магистральный трубопровод представляет собой сложное инженерное сооружение, эксплуатируемое в довольно разнообразных климатических условиях.

Основные месторождения газа в России расположены на значительном расстоянии от крупных потребителей. Подача газа к ним осуществляется по газопроводам различного диаметра.

Все это свидетельствует о том, что транспорт газа на большие расстояния представляет собой весьма сложную техническую задачу, от решения которой во многом зависит развитие газовой промышленности и экономики страны в целом.

Использованная литература

Коршак А.А., Шаммазов А.М.. Основы нефтегазового дела. ООО “ДизайнПолиграфСервис”. 2005.

Шаммазов А.М., В.Н. Александров, Г.Е. Коробков. Проектирование и эксплуатации насосных и компрессорных станций. ООО Недра-Бизнесцентр 2003.

Коршак А.А., Нечваль А.М.Проектирование и эксплуатация газонефтепроводов. Недра 2008

Мустафин Ф.М., Быков Л.И. Технология сооружения газонефтепроводов. Уфа: Нефтегазовое дело, 2007

Мустафин Ф.М., Гумеров А.Г., Кантемиров И.Ф. Трубопроводная арматура. Уфа: УГНТУ, 2007

Размещено на Allbest.ru


Подобные документы

  • Основные этапы проектирования газопровода Уренгой-Н. Вартовск: выбор трассы магистрального газопровода; определение необходимого количества газоперекачивающих агрегатов, аппаратов воздушного охлаждения и пылеуловителей. Расчет режимов работы газопровода.

    курсовая работа [85,1 K], добавлен 20.05.2013

  • Общая характеристика газовой промышленности РФ. Анализ трассы участка, сооружаемого газопровода, состав технологического потока. Механический расчет магистрального газопровода, определение количества газа. Организация работ, защита окружающей среды.

    дипломная работа [109,9 K], добавлен 02.09.2010

  • Расчет производительности магистрального газопровода в июле. Определение физических свойств на входе нагнетателя. Оценка соответствия установленного оборудования условиям работы магистрального газопровода. Оценка мощности газоперекачивающего агрегата.

    курсовая работа [807,7 K], добавлен 16.09.2017

  • Исследование назначения и устройства компрессорной станции магистрального газопровода. Оборудование, входящее в состав газотурбинной установки. Основные технические характеристики центробежного нагнетателя. Правила эксплуатации системы маслоснабжения.

    курсовая работа [70,6 K], добавлен 26.02.2015

  • Выбор рабочего давления и определение диаметра газопровода. Расчет свойств перекачиваемого газа. Определение расстояния между компрессорными станциями и их оптимального числа. Уточненный тепловой, гидравлический расчет участка газопровода между станциями.

    контрольная работа [88,8 K], добавлен 12.12.2012

  • Определение оптимальных параметров магистрального газопровода: выбор типа газоперекачивающих агрегатов, нагнетателей; расчет количества компрессорных станций, их расстановка по трассе, режим работы; гидравлический и тепловой расчет линейных участков.

    курсовая работа [398,9 K], добавлен 27.06.2013

  • Назначение и описание компрессорной станции. Система подготовки транспортируемого газа на КС. Назначение и технические данные газоперекачивающего агрегата. Техническое обслуживание и ремонт ГПА. Устройство и работа агрегата, система пожаротушения.

    отчет по практике [582,0 K], добавлен 11.11.2014

  • Выбор рабочего давления газопровода и расчет свойств перекачиваемого газа. Уточненный тепловой и гидравлический расчеты участка газопровода между двумя компрессорными станциями. Установка газотурбинных агрегатов, оборудованных центробежными нагнетателями.

    дипломная работа [766,5 K], добавлен 10.06.2015

  • Общая характеристика работы компрессорной станции. Данные о топографии и расположении объекта. Описание работы газоперекачивающих агрегатов компрессорных цехов. Гидравлический расчет газопровода, системы очистки газа; обслуживание и ремонт роторов.

    дипломная работа [486,1 K], добавлен 19.07.2015

  • Состав и назначение объектов магистрального газопровода, устройство подводного перехода. Классификация дефектов и ремонта линейной части газопроводов. Виды работ при ремонте газопровода с заменой труб. Определение объема земляных работ и подбор техники.

    курсовая работа [218,1 K], добавлен 11.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.