Моделирование условий эксплуатации мешалок резервуаров и емкостей технологического назначения средствами системы SolidWorks
Описание процесса поэтапного расчета и обоснования конструктивно-геометрических характеристик мешалки лопастного типа, применяемой в резервуарах и емкостях технологического назначения. Расчет и моделирование в системе инженерного анализа SolidWorks.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 21.06.2020 |
Размер файла | 462,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Институт механики и энергетики, Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский Мордовский государственный университет
им. Н.П. Огарёва»
Моделирование условий эксплуатации мешалок резервуаров и емкостей технологического назначения средствами системы SolidWorks
Борисов Виталий Иванович
кандидат технических наук, доцент, кафедра
механизации переработки сельскохозяйственной продукции
Зайцев Владислав Олегович, студент
Аннотация
В статье описывается процесс поэтапного расчета и обоснования конструктивно-геометрических характеристик мешалки лопастного типа, применяемой в резервуарах и емкостях технологического назначения в условиях ее эксплуатации. Расчет осуществлялся моделированием в системе инженерного анализа SolidWorks методом конечных элементов.
Любое пищевое производство невозможно представить без использования в них емкостей и резервуаров различного назначения [1-3], которые в настоящее время выпускаются промышленностью в большом количестве. Современные конструкции от выпускаемых ранее отличаются усовершенствованными устройствами автоматики и управления процессами, обеспечения безопасности и удобства обслуживания. При этом все конструктивные элементы, непосредственно влияющие на работу оборудования, не претерпели серьезных изменений.
Наиболее распространенная конструкция технологического резервуара представляет собой трехстенный цилиндрический сосуд с эллиптическим, коническим или наклонным днищем [1-3]. Внутренняя емкость является рабочей, контактирует с продуктом и изготавливается из нержавеющей стали. Между внутренней и средней стенкой находится пространство для подачи тепло- или хладоносителя - пароводяная рубашка. Пространство между средней и наружной стенками заполнено теплоизоляционным материалом. Перемешивание продукта осуществляется мешалками преимущественно лопастного типа.
Основным способом повышения эффективности работы резервуаров и емкостей [3-4] является интенсификация процесса теплообмена между хладоносителем и продуктом с целью ускорения технологического процесса, что в свою очередь достигается усовершенствованием конструкций перемешивающих устройств.
Любое изменение конструктивно-геометрических характеристик, вызванных модернизацией или совершенствованием конструкций резервуаров и емкостей, предполагает их прочностной расчет с определением основных физико-механических характеристик. Выполнение данного вида расчета аналитическими методами вызывает затруднения и требует значительных временных ресурсов.
В последнее время широкое распространение получили методы численного моделирования, которые позволяют существенно сократить стоимость и сроки создания новых конструкций различных машин и аппаратов, в том числе отдельных узлов и механизмов. Наиболее важным инструментом этих исследований многие инженеры считают метод конечных элементов.
В настоящее время существует ряд специализированных программных продуктов для анализа методом конечных элементов, так называемые CAE - системы или системы компьютерного инженерного анализа [5-6]. Данные системы, используемые для анализа и оценки функциональных свойств проектируемых узлов и деталей, охватывают широкий круг задач моделирования напряженно-деформированного состояния конструкций. Отлично зарекомендовавшей себя системой инженерного анализа считается система SolidWorks.
С целью оценки работоспособности мешалки и обоснования ее конструктивно-геометрических характеристик проведено численное исследование влияния различных нагрузок на элементы конструкций деталей устройства. В качестве образца принята наиболее распространенная и унифицированная мешалка лопастного типа резервуара Р4-ОТН-2.
Для проверочного расчета на прочность и обоснования основных геометрических размеров устройства применен вычислительный комплекс SolidWorks Simulation, основанный на методе конечных элементов и имеющий большое количество моделей, описывающих механические свойства материалов нагружаемых деталей.
Мешалка резервуара представляет собой сборочный узел, состоящий из четырех деталей: собственно мешалки, вала и двух штифтов, обеспечивающих соединение указанных деталей. В качестве материала деталей из библиотеки SolidWorks Materials выбрана отожженная нержавеющая сталь AISI 321, являющаяся аналогом российской нержавеющей стали 12Х18Н10Т ГОСТы 2590-2006, 7417-75 и 7350-77, широко применяемой в качестве материала для емкостного, теплообменного оборудования пищевой промышленности. Механическое поведение деталей сборочного узла определяется линейным, упругим, изотропным типом модели указанного материала. Отожженная нержавеющая сталь AISI 321 имеет следующие физико-механические характеристики [6]:
- предел текучести - 2,34422·108 Н/м2;
- предел прочности при растяжении - 6,2·108 Н/м2;
- модуль упругости - 1,93·1011 Н/м2;
- коэффициент Пуассона - 0,27;
- массовая плотность - 8000 кг/м3;
- коэффициент теплового расширения - 1,7·105 1/К.
Для реализации указанных выше целей в программном комплексе SolidWorks построена твердотельная модель сборочного узла мешалки резервуара, представленная на рисунке 1.
Рис. 1. Твердотельная модель сборочного узла мешалки резервуара в SolidWorks
В качестве креплений и нагрузок (рис. 2), действующих на элементы конструкций сборочного узла мешалки, представлены следующие параметры и значения [1]:
- зафиксированный шарнир (наружная поверхность вала и подпятника);
- зафиксированная геометрия (торцевая поверхность подпятника);
- давление, оказываемое столбом смеси, находящемся в резервуаре, на поверхности лопасти мешалки: p=с·g·h=1033,3·9,81·1,4=14200 Н/м2 (где h - высота столба смеси, h=1,4 м);
- центробежная сила, выраженная через угловую скорость: щ=2р·n=2·3,14·0,933=5,9 рад/с;
- вращающий момент: Т=22,4 Н·м.
Рис. 2. Схема креплений и нагрузок на твердотельную модель сборочного узла мешалки резервуара в SolidWorks Simulation
Твердотельные модели сборочного узла мешалки с помощью сеточного генератора на основе кривизны были разбиты соответственно на 56235 узлов и 30256 конечных элементов (рис. 3), что обеспечило достаточную точность вычислений. Максимальная размер элемента составил 30,2258 мм, минимальный - 6,04517 мм.
По результатам расчета были построены эпюры напряжений по Мизесу, абсолютных перемещений и запаса прочности, представленные на рисунках 4-6.
Рис. 3. Сетка конечных элементов твердотельной модели сборочного узла мешалки резервуара в SolidWorks Simulation
Рис. 4. Эпюра напряжений твердотельной модели сборочного узла мешалки резервуара в SolidWorks Simulation
Рис. 5. Эпюра перемещений твердотельной модели сборочного узла мешалки резервуара в SolidWorks Simulation
Рис. 6. Эпюра запаса прочности твердотельной модели сборочного узла мешалки резервуара в SolidWorks Simulation
мешалка резервуар solidworks
Из расчетов следует, что наиболее нагруженным элементом сборочного узла является лопасть мешалки в месте ее примыкания к втулке. Как видно из эпюры напряжений (рис. 4) указанное место примыкания лопасти к втулке мешалки является зоной концентраций напряжений, чье максимальное значение достигает 8,077·107 Н/м2. Однако, минимальный коэффициент запаса прочности (рис. 4) составляет величину 2,902. Следовательно, условие прочности выполняется, а рассматриваемый сборочный узел с заданными конструктивно-геометрическим характеристиками является работоспособным.
Список использованных источников
1. Курочкин А. А. Оборудование и автоматизация перерабатывающих производств: учеб. для студ. вузов. М.: КолосС, 2007. 591 с.
2. Березин М. А., Борисов В. И., Борисов В. С. Оборудование для переработки молока и производства молочных продуктов. Саранск: Мордовия-Экспо, 2011. 92 с.
3. Борисов В. С., Борисов В. И. Современное оборудование для охлаждения молока // Повышение эффективности функционирования механических и энергетических систем: труды междунар. науч.-техн. конф. Саранск: [б. и.], 2007. С. 369-373.
4. Березин М. А., Истихин С. В., Слепцов Р. Ю. Расширение технологических возможностей резервуаров для производства кисломолочных продуктов // Повышение эффективности функционирования механических и энергетических систем: материалы Всерос. науч.-техн. конф. Саранск: Изд-во Мордов. ун-та, 2009. С. 404-408.
5. Что такое CAD, CAM, CAE - технологии? [Электронный ресурс]: сайт о системах автоматизированного проектирования. URL: http://www.procae.ru/articles/15-other/10-what-is-it.html (дата обращения: 20.05.2018).
6. Что такое SolidWorks [Электронный ресурс]: сайт о системах автоматизированного проектирования. URL: http://www.procae.ru/articles/19-cads-program/22-solidworks-what-it-is.html (дата обращения: 20.05.2018).
Размещено на Allbest.ru
Подобные документы
Моделирование насосной станции с преобразователем частоты. Описание технологического процесса, его этапы и значение. Расчет характеристик двигателя. Математическое описание системы. Работа насосной станции без частотного преобразователя и с ним.
курсовая работа [1,0 M], добавлен 16.11.2010Автоматизированное проектирование конструкции и технологического процесса изготовления ролика в среде SprutCAD, SprutTP, SprutCAM 2007 и SolidWorks. Физические, химические свойства стали 20, применяемой как основной материал производства стальных фланцев.
курсовая работа [3,7 M], добавлен 07.07.2013Назначение и конструкция шахтных вентиляторов; их виды: главные, вспомогательные, местного проветривания. Принцип работы осевого и центробежного вентилятора. Поверхностное и гибридное моделирование. Отличительные особенности базового модуля SolidWorks.
реферат [889,7 K], добавлен 12.11.2013Анализ служебного назначения детали, физико-механических характеристик материала. Выбор типа производства, формы организации технологического процесса изготовления детали. Разработка технологического маршрута обработки поверхности и изготовления детали.
курсовая работа [76,5 K], добавлен 22.10.2009Определение назначения детали типа вал. Разработка технологического процесса изготовления шестерни, выбор материалов и оборудования. Расчет режимов резанья, технической нормы времени, конструкции элементов приспособления и производственного участка цеха.
курсовая работа [283,9 K], добавлен 21.12.2010Описание назначения детали и условий работы ее основных поверхностей. Описание типа производства и формы организации работы. Анализ технологичности детали. Обоснование выбора базирующих поверхностей. Расчет режимов резания и техническое нормирование.
курсовая работа [69,9 K], добавлен 07.03.2011Изучение служебного назначения, технических условий и норм точности изготовления втулки. Расчет полной себестоимости заготовки, элементов режима резанья и основного времени. Технико-экономические показатели разработанного технологического процесса.
курсовая работа [31,2 K], добавлен 13.01.2012Типы мешалок и их характеристика. Равномерное распределение твердой фазы в жидкости. Мощность, затрачиваемая непосредственно на перемешивание среды. Расчет размеров сечений лопастей мешалки. Расчет мощности электродвигателя привода рамной мешалки.
контрольная работа [1,9 M], добавлен 07.12.2013Анализ служебного назначения машины, узла, детали и условий ее эксплуатации. Технические требования на изготовление детали "Штампующий барабан". Определения типа производства и организационных условий работы. Основные этапы технологического процесса.
дипломная работа [3,1 M], добавлен 16.11.2011Определение назначения и описание условий работы детали "Червяк" и обоснование типа её производства. Изучение технологии изготовления детали "Червяк": характеристика материала, параметры заготовки, расчет операционных припусков и расчет режимов резания.
дипломная работа [998,0 K], добавлен 10.07.2014