Способы промышленной переработки нефти
Состав нефти и химические свойства. Рассмотрение основных методов и способов переработки нефти. Подготовка нефти к первичной переработке. Топливный и топливно-масляной способы переработки нефти. Очищение нефтепродуктов каталитическим крекингом.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 11.06.2019 |
Размер файла | 532,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство науки и высшего образования Российской Федерации
Федеральное государственное автономное образовательное учреждение высшего образования
«Южно-Уральский государственный университет»
Институт спорта, туризма и сервиса
РЕФЕРАТ
Способы промышленной переработки нефти
Проверил, доц., к.т.н.
Н.М. Танклевская
Автор работы (проекта)
студент группы СТ - 121 А.Ю. Тимонина
Челябинск, 2018
Введение
нефть нефтепродукт переработка топливный
Нефтью называется жидкое ископаемое топливо, распространенное в осадочной оболочке литосферы Земли. Свое название нефть получила от персидского слова «нафта» -- вытекающая, просачивающаяся. В н.в общепринята теория органического происхождения нефти, согласно которой она образовалась в результате воздействия бактериального и геологического факторов на останки низших животных и растительных организмов, обитавших в толще воды и на дне водоемов. На сегодня -- одно из важнейших для человечества полезных ископаемых.
Россия обладает одним из самых больших в мире потенциалов топливно-энергетических ресурсов. На 13% территории Земли, в стране, где проживает менее 3% населения мира, сосредоточено около 13% всех мировых разведанных запасов нефти. Так как Россия богата нефтяными запасами, то существует определённые механизмы добычи нефти, её переработки и транспортировки.
Состав нефти
Состав нефти и химические свойства
Нефть - это горная порода. Она относится к группе осадочных пород вместе с песками, глинами, известняками, каменной солью и др. Мы привыкли считать, что порода - это твердое вещество, из которого состоит земная кора и более глубокие недра Земли. Оказывается, есть и жидкие породы, и даже газообразные. Одно из важных свойств нефти - способность гореть.
В зависимости от месторождения нефть имеет различный качественный и количественный состав. Нефти состоят главным образом из углерода - 79,5-87,5% и водорода - 11,0-14,5% от массы нефти. Кроме них в нефти присутствуют еще три элемента - сера, кислород и азот. Их общее количество обычно составляет 0,5-8%. В незначительных концентрациях в нефти встречаются элементы: ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, бор, мышьяк, калий. Их общее содержание не превышает 0,02-0,03% от массы нефти. Указанные элементы образуют органические и неорганические соединения, из которых состоят нефти. Кислород и азот находятся в нефтяи только в связанном состоянии. Сера может встречаться в свободном состоянии или входить в состав сероводорода.
В состав нефти входит около 425 углеводородных соединений. Главную часть нефти составляют три группы УВ: метановые, нафтеновые и ароматические. По углеводородному составу все нефти подразделяются на: 1) метаново-нафтеновые, 2) нафтеново-метановые, 3) ароматическо-нафтеновые, 4) нафтеново-ароматические, 5) ароматическо-метановые, 6) метаново-ароматические и 7) метаново-ароматическо-нафтеновые. Первым в этой классификации ставится название углеводорода, содержание которого в составе нефти меньше.
1. Метановые УВ (алкановые или алканы) химически наиболее устойчивы, они относятся к предельным УВ и имеют формулу Cn H2n+2. Если количество атомов углерода в молекуле колеблется от 1 до 4 (СН4-С4Н10 ), то УВ представляет собой газ, от 5 до 16 (C5H16 -C16H34 ) то это жидкие УВ, а если оно выше 16 (С17Н36 и т.д.) - твердые (например, парафин).
2. Нафтеновые (циклановые или алициклические) УВ (CnH2n) имеют кольчатое строение, поэтому их иногда называют карбоциклическими соединениями. Все связи углерода с водородом здесь также насыщены, поэтому нафтеновые нефти обладают устойчивыми свойствами.
3. Ароматические УВ, или арены (СnНn), наиболее бедны водородом. Молекула имеет вид кольца с ненасыщенными связями углерода. Они так и называются - ненасыщенными, или непредельными УВ. Отсюда их неустойчивость в химическом отношении.
Наряду с углеводородами в нефти присутствуют химические соединения других классов. Обычно все эти классы объединяют в одну группу гетеросоединений (греч. “Гетерос” - другой). В нефти также обнаружено более 380 сложных гетеросоединений, в которых к углеводородным ядрам присоединены такие элементы, как сера, азот и кислород. Большинство из указанных соединений относится к классу сернистых соединений - меркаптанов. Это очень слабые кислоты с неприятным запахом. С металлами они образуют солеобразные соединения - меркаптиды. В нефти меркаптаны представляют собой соединения, в которых к углеводородным радикалам присоединена группа SH.
v Метилмеркаптан. Меркаптаны разъедают трубы и другое металлическое оборудование буровых установок и промысловых объектов.
В нефти так же выделяют неуглеводородные соединения: асфальто-смолистую части, порфирины, серу и зольную часть.
v Асфальто-смолистая часть нефти - это темноокрашенное вещество. Оно частично растворяется в бензине. Растворившаяся часть называется асфальтеном, нерастворившаяся - смолой. В составе смол содержится кислород до 93 % от общего его количества в нефти.
v Порфирины - особые азотистые соединения органического происхождения. Считают, что они образованы из хлорофилла растений и гемоглобина животных. При температуре 200-250о С порфирины разрушаются.
Сера широко распространена в нефти и в углеводородном газе и содержится либо в свободном состоянии, либо в виде соединений (сероводород, меркаптаны). Количество ее колеблется от 0,1% до 5%, но бывает и значительно больше. Так, например, в газе Астраханского месторождения содержание Н2S достигает 24 %.
v Зольная часть - остаток, получающийся при сжигании нефти. Это различные минеральные соединения, чаще всего железо, никель, ванадий, иногда соли натрия.
Кислород в нефти встречается в связанном состоянии также в составе нафтеновых кислот (около 6%) - CnH2n -1(COOH), фенолов (не более 1%) - C6 H5OH, а также жирных кислот и их производных - C6H5O6 (P). Содержание азота в нефти не превышает 1%. Основная его масса содержится в смолах. Содержание смол в нефти может достигать 60% от массы нефти, асфальтенов - 16%.
Асфальтены представляют собой черное твердое вещество. По составу они сходны со смолами, но характеризуются иными соотношениями элементов. Они отличаются большим содержанием железа, ванадия, никеля и др. Если смолы растворяются в жидких углеводородах всех групп, то асфальтены нерастворимы в метановых углеводородах, частично растворимы в нафтеновых и лучше растворяются в ароматических. В “белой” нефти смолы содержатся в малых количествах, а асфальтены вообще отсутствуют.
В таблице №1 приведен пример элементного состава нефти (в %) в зависимости от его местонахождения
Физические свойства
Нефть -- жидкость от светло-коричневого (почти бесцветная) до тёмно-бурого (почти чёрного) цвета (хотя бывают образцы даже изумрудно-зелёной нефти). Средняя молекулярная масса 220--400 г/моль (редко 450--470).
Важнейшими свойствами нефти являются плотность, содержание серы, фракционный состав, вязкость и содержание воды, хлористых солей и механических примесей. Плотность нефти, зависит от содержания тяжелых углеводородов, таких как парафины и смолы.
По плотности можно ориентировочно судить об углеводородном составе нефти и нефтепродуктов, поскольку ее значение для углеводородов различных групп различно. Более высокая плотность сырой нефти указывает на большее содержание ароматических углеводородов, а более низкая - на большее содержание парафиновых углеводородов. Углеводороды нафтеновой группы занимают промежуточное положение. Таким образом, величина плотности до известной степени будет характеризовать не только химический состав и происхождение продукта, но и его качество.
Наиболее качественными и ценными являются легкие сорта сырой нефти. Чем меньше плотность сырой нефти, тем легче процесс ее переработки нефти и выше качество получаемых из нее нефтепродуктов.
По содержанию серы сырую нефть в Европе и России подразделяют на малосернистую (до 0,5%), сернистую (0,51-2%) и высокосернистую (более 2%).
Нефть является смесью нескольких тысяч химических соединений, большинство из которых углеводороды; каждое из этих соединений характеризуется собственной температурой кипения, что является важнейшим физическим свойством нефти, широко используемым в нефтеперерабатывающей промышленности.
Присутствие механических примесей в составе нефти объясняется условиями ее залегания и способами добычи. Механические примеси состоят из частиц песка, глины и других твердых пород, которые, оседая на поверхности воды, способствуют образованию нефтяной эмульсии. В отстойниках, резервуарах и трубах при подогреве нефти часть механических примесей оседает на дне и стенках, образуя слой грязи и твердого осадка. При этом уменьшается производительность оборудования, а при отложении осадка на стенках труб уменьшается их теплопроводность. Массовая доля механических примесей до 0,005% включительно оценивается как их отсутствие.
Вязкость определяется структурой углеводородов, составляющих нефть, т.е. их природой и соотношением, она характеризует свойства распыления и перекачивания нефти и нефтепродуктов: чем ниже вязкость жидкости, тем легче осуществлять ее транспортировку по трубопроводам, производить ее переработку. Особенно важна эта характеристика для определения качества масленых фракций, получаемых при переработке нефти и качества стандартных смазочных масел. Чем больше вязкость нефтяных фракций, тем больше температура их выкипания.
Нефть растворима в органических растворителях, в обычных условиях нерастворима в воде, но может образовывать с ней стойкие эмульсии. В технологии для отделения от нефти воды и растворённой в ней соли проводят обезвоживание и обессоливание.
Нефть является диэлектриком и имеет высокое удельное сопротивление. На этом основаны электрометрические методы установления в разрезе, вскрытом буровой скважиной, нефтеносных пластов
Методы и способы переработки нефти
Переработка нефти очень сложный технологический процесс, который начинается с транспортировки нефтепродуктов на нефтеперерабатывающие заводы. Здесь нефть проходит несколько этапов, прежде чем стать готовым к использованию продуктом:
1. Подготовка нефти к первичной переработке
2. Первичная переработка нефти (прямая перегонка)
3. Вторичная переработка нефти
4. Очистка нефтепродуктов
Подготовка нефти к первичной переработке
Добытая, но не переработанная нефть, содержит различные примеси, например: соль, воду, песок, глина, частицы грунта, попутный газ ПНГ. Срок эксплуатации месторождения увеличивает обводнение нефтяного пласта и, соответственно, содержание воды и других примесей в добываемой нефти. Наличие механических примесей и воды мешает транспортированию нефти по нефтепродуктопроводам для дальнейшей ее переработки, вызывает образование отложений в теплообменных аппаратах и других емкостях, усложняет процесс переработки нефти. Вся добытая нефть проходит процесс комплексной очистки, сначала механической, затем тонкой очистки. На данном этапе также происходит разделение добытого сырья на нефть и газ в сепараторах нефти и газа.
Отстаивание в герметичных резервуарах на холоде или при подогреве способствует удалению большого количества воды и твердых частиц. Для получения высоких показателей работы установок по дальнейшей переработке нефти последнюю подвергают дополнительному обезвоживанию и обессоливанию на специальных электрообессоливающих установках.
Зачастую вода и нефть образуют труднорастворимую эмульсию, в которой мельчайшие капли одной жидкости распределены в другой во взвешенном состоянии.
Выделяются два вида эмульсий:
· гидрофильная эмульсия, т.е. нефть в воде
· гидрофобная эмульсия, т.е. вода в нефти
Существует несколько способов разрушения эмульсий:
Ш механический
Ш химический
Ш электрический
Механический метод разрушения эмульсий в свою очередь делится на:
ь отстаивание
ь центрифугирование
Разность плотностей составляющих эмульсии позволяет легко расслаивать воду и нефть методом отстаивания при нагреве жидкости до 120-160°С под давлением 8-15 атмосфер в течение 2-3 часов. При этом не допускается испарение воды.
Эмульсия также может разделяться под действием центробежных сил в центрифугах при достижении 3500-50000 оборотов в минуту.
При химическом методе эмульсия разрушается путем применения деэмульгаторов, т.е. поверхностно-активных веществ.
Деэмульгаторы имеют большую активность по сравнению с действующим эмульгатором, образуют эмульсию противоположного типа, растворяют адсорбционную пленку. Данный способ применяется вместе с электрическим.
В установках электродегидратора при электрическом воздействии на нефтяную эмульсию частицы воды объединяются, и происходит более быстрое расслоение с нефтью.
Первичная переработка нефти
Добытая нефть есть смесь нафтеновых, парафиновых, ароматических углеводов, которые имеют разный молекулярный вес и температуру кипения, и сернистые, кислородные и азотистые органические соединения. Первичная переработка нефти заключается в разделении подготовленной нефти и газов на фракции и группы углеводородов. При перегонке получают большой ассортимент нефтепродуктов и полупродуктов.
Суть процесса основана на принципе, который называется "Разность температур кипения компонентов добытой нефти". В результате сырье разлагается на фракции - до мазута (светлые нефтепродукты) и до гудрона (масла).
Первичная перегонка нефти может осуществляться с:
и однократным испарением
и многократным испарением
и постепенным испарением
При однократном испарении нефть нагревается в подогревателе до заданной температуры. По мере нагрева образуются пары. При достижении заданной температуры парожидкостная смесь поступает в испаритель (цилиндр, в котором пар отделяется от жидкой фазы).
Процесс многократного испарения представляет собой последовательность однократных испарений при постепенном повышении температуры нагрева.
Перегонка постепенным испарением представляет собой малое изменение состояния нефти при каждом однократном испарении.
Основные аппараты, в которых проходит перегонка нефти, или дистилляция, - это трубчатые печи, ректификационные колонны и теплообменные аппараты.
В зависимости от типа перегонки трубчатые печи делятся на атмосферные печи (АТ), вакуумные печи (ВТ) и атмосферно-вакуумные трубчатые печи (АВТ). В установках АТ осуществляют неглубокую переработку и получают бензиновые, керосиновые, дизельные фракции и мазут. В установках ВТ производят углубленную переработку сырья и получают газойлевые и масляные фракции, гудрон, которые впоследствии используются для производства смазочных масел, кокса, битума и др. В печах АВТ комбинируются два способа перегонки нефти.
Процесс переработки нефти принципом испарения происходит в ректификационных колоннах. Там исходная нефть с помощью насоса поступает в теплообменник, нагревается, затем поступает в трубчатую печь (огневой подогреватель), где нагревается до заданной температуры. Далее нефть в виде парожидкостной смеси входит в испарительную часть ректификационной колонны. Здесь происходит деление паровой фазы и жидкой фазы: пар поднимается вверх по колонне, жидкость стекает вниз.
Вышеперечисленные способы переработки нефти не могут быть использованы для выделения из нефтяных фракций индивидуальных углеводородов высокой чистоты, которые впоследствии станут сырьем для нефтехимической промышленности при получения бензола, толуола, ксилола и др. Для получения углеводородов высокой чистоты в установки перегонки нефти вводят дополнительное вещество для увеличения разности в летучести разделяемых углеводородов.
Полученные компоненты после первичной переработки нефти обычно не используются в качестве готового продукта. На этапе первичной перегонки определяются свойства и характеристики нефти, от которых зависит выбор дальнейшего процесса переработки для получения конечного продукта.
В результате первичной обработки нефти получают следующие основные нефтепродукты:
n углеводородный газ (пропан, бутан)
n бензиновая фракция (температура кипения до 200 градусов)
n керосин (температура кипения 220-275 градусов)
n газойль или дизельное топливо (температура кипения 200-400 градусов)
n смазочные масла (температура кипения выше 300 градусов) остаток (мазут)
Вторичная переработка нефти
В зависимости от физико-химический свойств нефти и от потребности в конечном продукте происходит выбор дальнейшего способа деструктивной переработки сырья. Вторичная переработка нефти заключается в термическом и каталитическом воздействии на нефтепродукты, полученные методом прямой перегонки. Воздействие на сырье, то есть содержащиеся в нефти углеводороды, меняют их природу.
Выделяются варианты переработки нефти:
1) топливный
2) топливно-масляный
3) нефтехимический
1) Топливный способ переработки применяется для получения высококачественных автомобильных бензинов, зимних и летних дизельных топлив, топлив для реактивных двигателей, котельных топлив. При данном методе используется меньшее количество технологических установок. Топливный метод представляет собой процессы, в результате которых из тяжелых нефтяных фракций и остатка получают моторные топлива. К данному виду переработки относят каталитический крекинг, каталитический риформинг, гидрокрекинг, гидроочистка и другие термические процессы.
2) При топливно-масляной переработке наряду с топливами получают смазочные масла и асфальт. К данному виду относятся процессы экстракции и деасфальтизации.
3) При нефтехимической переработке получается наибольшее разнообразие нефтепродуктов. В связи с этим используется большое число технологических установок. В результате нефтехимической обработки сырья вырабатываются не только топлива и масла, но и азотные удобрения, синтетический каучук, пластмассы, синтетические волокна, моющие средства, жирные кислоты, фенол, ацетон, спирт, эфиры и другие химикалии.
Очищение нефтепродуктов
1) Каталитический крекинг
При каталитическом крекинге используется катализатор для ускорения химических процессов, но без изменения сути этих химических реакций. Суть крекинг-процесса, т.е. реакции расщепления, заключается в прогоне нагретых до парообразного состояния нефти через катализатор.
2) Риформинг
Процесс риформинга применяется в основном для производства высокооктанового бензина. Данной переработке могут подвергаться только парафиновые фракции, кипящие в пределах 95-205°С.
Виды риформинга:
o термический риформинг
o каталитический риформинг
При термическом риформинге фракции первичной переработки нефти подвергаются воздействию только высокой температуры.
При каталитическом риформинге воздействие на исходные фракции происходит как температурой, так и с помощью катализаторов.
3) Гидрокрекинг и гидроочистка
Данный метод переработки заключается в получении бензиновых фракций, реактивного и дизельного топлива, смазочных масел и сжиженных газов за счет воздействия водорода на высококипящие нефтяные фракции под воздействием катализатора. В результате гидрокрекинга исходные нефтяные фракции проходят также гидроочистку.
Гидроочистка заключается в удалении серы и других примесей из сырья. Обычно установки гидроочистки совмещают с установками каталитического риформинга, так как в результате последнего выделяется большое количество водорода. В результате очистки качество нефтепродуктов повышается, уменьшается коррозия оборудования.
4) Экстракция и деасфальтизация
Процесс экстракции заключается в разделения смеси твердых или жидких веществ при помощи растворителей. В используемом растворителе хорошо растворяются извлекаемые компоненты. Далее проводится депарафинизация для снижения температуры застывания масла. Получение конечного продукта заканчивается гидроочисткой. Данный метод переработки применяется для получения дистдизельного топлива и извлечения ароматических углеводородов.
В результате деасфальтизации из остаточных продуктов дестиляции нефти получаются смолисто-асфальтеновые вещества. Впоследствии деасфальтизат используется для производства битума, применяется в качестве сырья для каталитического крекинга и гидрокрекинга.
5) Коксование
Для получения нефтяного кокса и газойлевых фракций из тяжелых фракций перегонки нефти, остатков деасфальтизации, термического и каталитического крекинга, пиролиза бензинов используют процесс коксования. Данный вид переработки нефтепродуктов заключается в последовательном протекании реакций крекинга, дегидрирования (выделение водорода из сырья), циклизации (образование циклической структуры), ароматизации (увеличение ароматических углеводородов в нефти), поликонденсации (выделение побочных продуктов, таких как, вода, спирт) и уплотнения для образования сплошного "коксового пирога". Летучие продукты, выделяющиеся в процессе коксования, подвергают процессу ректификации, чтобы получить целевые фракции и их стабилизировать.
6) Изомеризация
Процесс изомеризации заключается в превращении из исходного сырья его изомеров. Подобные превращения приводят к получении бензинов с высоким октановым числом.
7) Алкинирование
Путем введения в соединения алкиновых групп получают высокооктановые бензины из углеводородных газов.
Следует отметить, что в процессе переработки нефти и для получения конечного продукта используется весь комплекс нефтегазовых и нефтехимических технологий. Сложность и разнообразие готовых продуктов, которые можно получить из добытого сырья, определяют и разнообразность нефтеперерабатывающих процессов.
Заключение
В настоящее время нефтехимия дает почти четверть всей химической продукции. Нефть - ценнейшее природное ископаемое, открывшее перед человеком удивительные возможности “химического перевоплощения”. Всего производных нефти насчитывается уже около 3 тысяч.
На основе вышеизложенного, следует отметить, что нефть и продукты её переработки в настоящее время играют огромную роль в экономическом развитии любого государства. И те страны, которые имеют на своей территории запасы нефти, имеют большое преимущество перед другими странами и львиную долю доходов их бюджетов составляют именно доходы, полученные от реализации на экспорт нефти и нефтепродуктов.
В промышленности нефть и нефтепродукты нашли своё широкое применение в силу своих особенностей, дающих возможность использовать их как различные виды топлива и химические вещества. Но для того, чтобы нефтепродукты использовались в качестве готового продукта, нужно осуществить ряд процессов по перегонке и переработке нефти и нефтепродуктов, в результате которых получаются различные виды углеводородов. Большое распространение из углеводородов получили бензин, керосин, дизельное топливо, мазут и прочие.
Библиографический список
1. Газовик [Электронный ресурс]: Продукция/Статьи/Этапы переработки нефти https://gazovik-pgo.ru/cat/articles/pererabotka_nefti/ (6.10.2018).
2. Википедия [Электронный ресурс]: Нефть https://ru.wikipedia.org/wiki/Нефть (6.10.2018).
3. Lektsii.org [Электронный ресурс]: Подготовка нефти к переработке https://lektsii.org/16-19536.html (6.10.2018).
Размещено на Allbest.ru
Подобные документы
Классификация нефтей и варианты переработки. Физико-химические свойства Тенгинской нефти и ее фракций, влияние основных параметров на процессы дистилляции, ректификации. Топливный вариант переработки нефти, технологические расчеты процесса и аппаратов.
курсовая работа [416,8 K], добавлен 22.10.2011Кривая истинных температур кипения нефти и материальный баланс установки первичной переработки нефти. Потенциальное содержание фракций в Васильевской нефти. Характеристика бензина первичной переработки нефти, термического и каталитического крекинга.
лабораторная работа [98,4 K], добавлен 14.11.2010Способы регулирования температурного режима по высоте колонны первичной переработки нефти. Схема работы парциального конденсатора и циркуляционного неиспаряющегося орошения. Варианты подачи орошения в сложной ректификационной колонне по переработке нефти.
презентация [1,8 M], добавлен 26.06.2014Характеристика современного состояния нефтегазовой промышленности России. Стадии процесса первичной переработки нефти и вторичная перегонка бензиновой и дизельной фракции. Термические процессы технологии переработки нефти и технология переработки газов.
контрольная работа [25,1 K], добавлен 02.05.2011Физико-химическая характеристика нефти. Первичные и вторичные процессы переработки нефти, их классификация. Риформинг и гидроочистка нефти. Каталитический крекинг и гидрокрекинг. Коксование и изомеризация нефти. Экстракция ароматики как переработка нефти.
курсовая работа [71,9 K], добавлен 13.06.2012Задачи нефтеперерабатывающей и нефтехимической промышленности. Особенности развития нефтеперерабатывающей промышленности в мире. Химическая природа, состав и физические свойства нефти и газоконденсата. Промышленные установки первичной переработки нефти.
курс лекций [750,4 K], добавлен 31.10.2012Характеристика и организационная структура ЗАО "Павлодарский НХЗ". Процесс подготовки нефти к переработке: ее сортировка, очистка от примесей, принципы первичной переработки нефти. Устройство и действие ректификационных колонн, их типы, виды подключения.
отчет по практике [59,5 K], добавлен 29.11.2009Характеристика нефти по ГОСТ Р 51858-2002 и способы ее переработки. Выбор и обоснование технологической схемы атмосферно-вакуумной трубчатой установки (АВТ). Расчет количества и состава паровой и жидкой фаз в емкости орошения отбензинивающей колонны.
курсовая работа [1,3 M], добавлен 07.09.2012Общая характеристика нефти, определение потенциального содержания нефтепродуктов. Выбор и обоснование одного из вариантов переработки нефти, расчет материальных балансов технологических установок и товарного баланса нефтеперерабатывающего завода.
курсовая работа [125,9 K], добавлен 12.05.2011Классификация и физические свойства нефти и нефтепродуктов, ограниченность их ресурсов. Проблема рационального использования нефти: углубление уровня ее переработки, снижение удельного расхода топлива на производство тепловой и электрической энергии.
курсовая работа [3,4 M], добавлен 05.09.2011