Исследование поведения частиц углеродного наноматериала при движении лопасти
Исследование поведения частиц углеродного наноматериала "Таунит" при соприкосновении их с рабочей поверхностью лопасти в процессах смешивания в смесителях с вращающимися рабочими органами тестовых конструкций циркуляционных смесителей сыпучих материалов.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 05.05.2019 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ФГБОУ ВПО "Тамбовский государственный технический университет"
ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ЧАСТИЦ УГЛЕРОДНОГО НАНОМАТЕРИАЛА ПРИ ДВИЖЕНИИ ЛОПАСТИ
Терехова А.А, Попов А.В., Дёмин О.В.
Тамбов, Россия
Проведено исследование поведения частиц углеродного наноматериала "Таунит" при соприкосновении их с рабочей поверхностью лопасти, что необходимо учитывать в процессах смешивания в смесителях с вращающимися рабочими органами традиционных конструкций[1,2,3] и новых типах оборудования. Исследование физико-механических свойств данных материалов позволяет наиболее точно осуществить моделирование процесса смешивания или дозирования и прогнозировать требуемое качество смеси[4,5]. углеродный наноматериал лопасть смеситель
Наблюдалось поведение частиц исследуемого материала в слое модельных материалов: порошкообразного материала (строительная смесь для затирки швов Unis); мелкозернистых материалов(соль поваренная и пшено). Использовалась плоская модель движения лопасти в слое сыпучего материала, на рабочей поверхности которой отдельным слоем размещался наноматериал[6]. Использовалось два вида лопастей прямоугольной формы: стальные лопасти и из прозрачного пластика, что позволило исследовать поведение частиц непосредственно на рабочей поверхности.
Рис. 1. Экспериментальная установка
Лопасти размещались у одного края емкости экспериментальной установки прижимаясь к ее стенке (рис. 2) моделируя тем самым вращение рабочего органа в лопастном смесителе в крайних рядах вдоль смесителя у торцевых стенок реакционной камеры смешивания, а также посередине емкости, моделируя остальные рабочие органы лопастного смесителя(рис.3). В обоих случаях вначале движения лопасти в слое сыпучего материала частицы углеродного наноматериала уплотняются, под действием частиц модельного материала перемещались вверх по лопасти (рис.3,б). Перед лопастью образуется силовое поле и происходит проникновение частиц модельного материала внутрь уплотненного слоя частиц исследуемого материала. Скорость проникновения зависит от плотности модельного материала. Скольжение частиц по рабочей поверхности лопасти наблюдается при увеличении углов ее атаки и также зависит от плотности модельного материала (рис. 2,б и рис. 3,а).
Рис. 2. Локализация частиц углеродного наноматериала перед лопастью при наличии стенки справа: а) пшено; б) строительная смесь.
Рис. 3. Локализация частиц углеродного наноматериала перед лопастью при отсутствии стенки справа: а) пшено; б) соль.
Проникновение частиц модельного материала происходит заметно активнее при наличии стенки с полным замещением наноразмерных частиц на определенной части рабочей поверхности (рис.2).
В случае модернизации традиционных лопастных смесителей для приготовления смесей сыпучих материалов с добавлением наноразмерных частиц необходимо использовать комплексных подход с учетом особенностей их поведения непосредственно в процессе смешивания и при дозировании исходных компонентов[7,8].
Список литературы
1. Макаров Ю.И. Аппараты для смешивания сыпучих материалов / Ю.И. Макаров. - М.: Машиностроение, 1973. - 216 с.
2. Першин В.Ф. Конструирование смесителей сыпучих материалов, обеспечивающих стабильный уровень качества смеси / В.Ф. Першин, М.М. Свиридов // Химическое и нефтегазовое машиностроение. 1999.-№8.- С.13.
3. Селиванов Ю.Т. Некоторые аспекты практического использования циркуляционных смесителей сыпучих материалов / Ю.Т. Селиванов, В.Ф. Першин // Химическая промышленность сегодня. 2011. №2. С. 51-56.
4. Ди Дженнаро А.И., Першина С.В., Першин В.Ф. Определение коэффициента внутреннего трения сыпучих материалов при различных значениях плотности // Вопросы современной науки и практики. Ун-т им. В.И. Вернадского. - 2011. - №3. - С. 366-368.
5. Дурнев А.С., Першин В.Ф. Измерение статического и кинематического коэффициентов внешнего трения сыпучих материалов // Вопросы современной науки и практики. Ун-т им. В.И. Вернадского. - 2013. - №4(47). - С. 152-157.
6. Дёмин О.В., Першин В.Ф., Пасько А.А. Моделирование движения пластины в сыпучем материале // Вестник Тамбовского государственного технического университета. 2002. Т. 8. №3. С. 444-449.
7. Першина С.В. Способ непрерывного весового дозирования сыпучего материала ленточным дозатором и устройство для его осуществления / С.В. Першина, С.А Егоров, А.И. Ди Дженнаро, В.Г. Однолько, А.А. Осипов, В.Ф. Першин, П.М. Явник // Патент на изобретение RUS 2504741 23.04.2012.
8. Першина С.В. Устройство для непрерывного двухстадийного дозирования углеродных наноматериалов / Першина С.В., Ди Д.А. И., Однолько В.Г., Осипов А.А., Першин В.Ф., Явник П.М. патент на полезную модель RUS 113353 24.06.2011.
Размещено на Allbest.ru
Подобные документы
Выбор схемы установки, способа ориентации и расчётных параметров лопасти. Определение коэффициентов идеальной и расчётной мощности. Расчет размерных параметров ветроколеса. Определение нагрузок, действующих на лопасть, ее веса, центробежных сил инерции.
курсовая работа [664,4 K], добавлен 01.12.2014Выявление наиболее приемлемого материала и способа заделки лопасти ветротурбины карусельного типа из условия жесткости. Анализ перемещений в балках при изгибе. Расчет основных силовых факторов, возникающих в балке, в зависимости от типов закреплений.
дипломная работа [2,5 M], добавлен 04.12.2013Обоснование функциональной схемы системы автоматизации процесса дозирования сыпучих материалов. Выбор редуктора и электродвигателя шнековых питателей, силового электрооборудования, датчиков системы. Выбор шкафа электроавтоматики, его компоновка.
курсовая работа [2,8 M], добавлен 30.09.2011- Научно-методические основы управления состоянием хвостохранилищ горно-металлургического производства
Оседание частиц в воде при осветлении в отстойниках, при формировании хвостохранилищ. Аналитическое исследование процесса оседания твердых частиц в неподвижной воде. Методика определения скорости оседания, условия, при которых частицы поднимаются вверх.
методичка [629,2 K], добавлен 05.12.2011 Понятие сыпучих материалов. Классификация методов сепарирования сыпучих сред. Виды сепараторов. Основные характеристики, конструкция и принцип работы устройства для разделения зерен по длине - цилиндрического триера. Расчет его конструктивных размеров.
курсовая работа [1,6 M], добавлен 24.10.2014Факторы, влияющие на процесс формирования пневмопотока в материалопроводе. Проверка эффективности применения механических колебаний ультразвукового диапазона для равномерного истечения сыпучих материалов из камерных питателей на экспериментальном стенде.
статья [814,7 K], добавлен 23.08.2013Назначение, классификация, общее описание конструкций и основные параметры насосов. Методика расчета рабочего колеса, профилирования цилиндрической лопасти, спиральных отводов. Программный модуль расчета конструктивных параметров и характеристик насоса.
курсовая работа [2,9 M], добавлен 03.05.2012Разработка и анализ схем автоматизации технологических процессов в хлебопекарном производстве. Схема системы управления смешивания. Регулирование расходов жидких и сыпучих компонентов (ингредиентов) при их дозировании. Выпечка хлебобулочных изделий.
курсовая работа [231,8 K], добавлен 10.04.2014Особенности формирования структуры и свойств обжиговых керамических композиционных материалов из грубодисперсных непластичных компонентов. Теория и практика плотной упаковки частиц в полидисперных системах. Исследование процессов образования волластонита.
диссертация [4,6 M], добавлен 12.02.2015Классификация машин для перемешивания материалов. Определение производительности пропеллерного смесителя, шага винта лопасти, скорости восходящего потока в зоне пропеллера и мощности электродвигателя смесителя. Особенности перемешивания жидких масс.
курсовая работа [234,9 K], добавлен 02.02.2011