Исследования бесконтактных двигателей постоянного тока на редкоземельных металлах

Устройство асинхронного двигателя. Назначение электродвигателей постоянного тока. Основные недостатки шаговых двигателей. Преимущества применения бесконтактных двигателей постоянного тока. Расчет коэффициента полезного действия вентильного двигателя.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 30.04.2019
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Ковровская государственная технологическая академия имени

Дегтярева

Исследования бесконтактных двигателей постоянного тока на редкоземельных металлах

Гонин Александр Владимирович

Ковров Россия

Асинхронный двигатель - это двигатель переменного тока, который вращается за счет взаимодействия переменного магнитного поля статора и ротора. Название свое он получил из-за того, что никогда не достигает синхронной скорости (3000об/мин - для 2-х полюсного, 1500об/мин - для 4-х полюсного 50герцовой сети)вращающегося магнитного поля, а как бы догоняет его. Асинхронные двигатели могут быть двух типов - с короткозамкнутым ротором (самый распространенный тип двигателей), в котором переменное магнитное поле индуцируется за счет взаимной индукции, и с фазным ротором (используется в основном на кранах), где ток на обмотки подается через специальные кольца. Асинхронный двигатель незаменим, там, где необходимо просто вращение исполнительного механизма.

Синхронный двигатель - это двигатель переменного тока, который вращается за счет взаимодействия переменного магнитного поля статора и постоянного ротора (двигатель постоянного тока наоборот). На самом деле это не совсем так, но объяснять очень долго. Синхронный двигатель всегда работает на синхронной скорости. Обычно синхронные двигатели имеют большую мощность (свыше 630кВт), иначе его эксплуатация не выгодна (необходимо специальное выпрямительное устройство или генератор постоянного тока на валу). Есть правда синхронные двигатели на малую мощность до 1кВт(синхронные реактивные двигатели).

К преимуществам асинхронных двигателей можно отнести все, кроме малого пускового момента и нелинейности характеристики момент на валу - скорость, малый коэффициент мощности на мощностях ниже номинальной. Преимущество синхронного двигателя - опережающий коэффициент мощности, регулируемый с помощью возбуждения (обмотка ротора). Все остальное - недостатки. Очень трудный пуск (обычно используют асинхронный пуск), а уже потом входят в синхронизм. Очень чувствителен к нагрузкам - если вышел из синхронизма - гасят поле ротора и останавливают. Дорог по стоимости и в эксплуатации.

Электродвигатель постоянного тока(ДПТ) -- электрическая машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию.

Электрические машины постоянного тока предназначены для преобразования электрической энергии как в механическую, так и обратно.

Поэтому в первом случае они называются двигателем, а во втором - генератором. Устройство генераторов и двигателей одинаково. Неподвижная часть машины, называемая статором, состоит из массивного стального корпуса, к которому крепятся главные и дополнительные полюсы. Главные полюсы собираются из стальных листов, что обеспечивает уменьшение потерь мощности от вихревых токов, а дополнительные изготавливаются массивными. На главных полюсах размещаются катушки обмоток возбуждения. На дополнительных полюсах - обмотки

В режиме генератора электромагнитный момент Мэм противодействует вращению. Он уравновешивается моментом приводного двигателя Мдв (турбина, дизель и т.п.). В режиме двигателя момент действует по направлению вращения. При равномерном вращении ему противодействует момент сопротивления Мс приводимого в движение механизма (станок, вентилятор, насос и т.п.).

Плюсы по сравнению с асинхронным и синхронным, например у него нет коллектора, который быстро изнашивается

Шаговый двигатель - это исполнительный привод многих современных аппаратов: станков, приводов, автоматов. Шаговый двигатель в паре со специальным блоком управления призван преобразовывать входной электрический сигнал в механическое перемещение ротора - определенный угол, называемый также основным угловым шагом двигателя. По принципу действия шаговый двигатель относится к двигателям синхронного типа: в нем существует связь между сигналом питания и положением ротора двигателя. В настоящий момент распространены и повсеместно применяются гибридные шаговые двигатели, которые обладают достоинствами двигателей с постоянными магнитами и синхронных реактивных двигателей с переменным магнитным сопротивлением. Гибридные шаговые двигатели имеют вращающий момент, пропорциональный току, и характеризуются большим числом шагов на оборот. Управление шаговым двигателем Шаговые двигатели работают в паре со специальными блоками управления, которые являются источником тока для двигателя, осуществляют при необходимости дробление основного углового шага и выполняют коммутацию фаз двигателя.

Преимущества и недостатки шаговых двигателей Шаговые двигатели имеют существенные преимущества: во-первых, это отсутствие обратной связи, которая обычно используется для управления положением или частотой вращения(это недостаток); во-вторых, не происходит накопление ошибки положения ротора двигателя; в-третьих, шаговые приводы совместимы с современными цифровыми устройствами. Отсутствие обратной связи можно отнести как к достоинствам, т.к. система значительно упрощается, так и к недостаткам - т.к. возможна потеря положения. К недостаткам шаговых двигателей относят и явление резонанса. Однако, этот недостаток в значительной степени устраняется дроблением основного шага двигателя.

С целью улучшения свойств всех предыдущих двигателей были созданы двигатели с бесконтактным коммутатором, называемые бесконтактными двигателями постоянного тока (БДПТ) или вентильные двигатели. Отличие БДПТ от коллекторных двигателей традиционной конструкции состоит в том, что у них щеточно-коллекторный узел заменен полупроводниковым коммутатором (инвертором), управляемым сигналами, поступающими с бесконтактного датчика положения ротора. Рабочая обмотка двигателя -- обмотка якоря -- расположена на сердечнике статора, а постоянный магнит -- на роторе.

асинхронный двигатель шаговой бесконтактный

Рис 1.47 Бесконтакный двигатель постоянного тока: а) - блок-схема, б) - магнитная система блок

Вал двигателя Д (рис. 1.47, а) механически соединен с датчиком положения ротора (ДПР), сигнал от которого поступает в блок коммутатора (БК). Подключение секций обмотки якоря к источнику постоянного тока происходит через элементы блока коммутатора (БК). Назначение ДПР-- выдавать управляющий сигнал в блок коммутатора в соответствии с положением полюсов постоянного магнита относительно секций обмотки якоря.

В качестве датчиков положения ротора применяют различные чувствительные бесконтактные элементы с минимальными размерами и потребляемой мощностью и большой кратностью минимального и максимального сигналов, чтобы не вызывать нарушений в работе блока коммутатора.

Чувствительные элементы ДПР должны надежно работать при внешних воздействиях (температура, влажность, вибрации и т. п.), на которые рассчитан двигатель. Такие свойства присущи ряду чувствительных элементов (датчиков): индуктивных, трансформаторных, магнитодиодов и т. п.

Рис 1.48. Датчик ЭДС Холла

Наиболее целесообразно использовать датчики ЭДС Холла (рис. 1.48), представляющие собой тонкую полупроводниковую пластину с нанесенными на ней контактными площадками, к которым припаяны выводы 1--2, подключенные к источнику напряжения U1, и выводы 3--4, с которых снимают выходной сигнал U2. Если в цепи 1--2 проходит токI, а датчик находится в магнитном поле, вектор индукции В которого перпендикулярен плоскости пластины датчика, то в датчике наводится ЭДС и на выводах 3--4 появляется напряжение U2. Значение ЭДС зависит от тока I и магнитной индукции В, а полярность -- от направления тока I в цепи 1--2 и направления вектора магнитной индукции В.

Рассмотрим работу бесконтактного двигателя постоянного тока, для управления которым применяют датчики Холла и коммутатор, выполненный на транзисторах VT1--VT4 (рис. 1.49). Четыре обмотки (фазы) двигателя w1--w4 расположены на явно выраженных полюсах шихтованного сердечника якоря (см. рис. 1.47).

Датчики Холла ДХ1 иДХ2 установлены в пазах полюсных наконечников двух смежных полюсов. Силовые транзисторы VT1-- VT4 работают в релейном (ключевом) режиме (рис. 1.49). Сигнал на открытие транзистора поступает от соответствующего датчика Холла (датчика положения ротора). Питание датчиков Холла (выводы 1--2) осуществляется от источника напряжением U1.

Каждая обмотка (фаза) выполнена из двух катушек, расположенных на противолежащих полюсах сердечника статора и соединенных последовательно (рис. 1.50). Если по какой-либо из обмоток (фаз) статора проходит ток от начала H1--Н4 к концу К1--К4, то полюсы сердечника статора приобретают полярность соответственно S и N.

При положении ротора, показанном на рис.1.49, в зоне магнитного полюса N находится датчик ДХ1. При этом на выходе датчика появляется сигнал, при котором транзистор VT2 переходит в открытое состояние. В обмотке (фаза) статора w2 появляется ток i2, протекающий от Н2 к К2. При этом полюсы статора 2 и 4 приобретают полярность S и N (рис. 1.51 а). В результате взаимодействия магнитных полей статора и ротора (постоянного магнита) появляется электромагнитный момент М, вращающий ротор. После поворота ротора относительно оси полюсов статора 1--3 на некоторый угол а против часовой стрелки датчик ДХ2 окажется в зоне магнитного полюса ротора S, при этом по сигналу с датчика ДХ2 включается транзистор VT3. В фазной катушке w3 возникает ток i3 и полюсы 3 и 1 приобретают полярность S и N. При этом магнитный поток статора Ф создается совместным действием МДС обмоток фаз w2 и w3. Вектор этого потока повернут относительно оси 2--4 на угол 45° (рис. 1.51 б). Ротор, продолжая вращение, занимает положение по оси полюсов статора 2--4. При этом датчик ДХ1 попадает в межполюсное пространство ротора, а датчик ДХ2 останется в зоне полюса S ротора. В результате транзистор VT2 закрывается, транзистор VT3 останется открытым и магнитный поток Ф, создаваемый МДС обмотки фазы w3, поворачивается относительно оси полюсов 2--4 еще на 45° (рис. 1.51 в). После того как ось вращающегося ротора пересечет ось полюсов статора 2--4, датчики ДХ1 и ДХ2 окажутся в зоне полюса ротора S, что приведет к включению транзисторов VT3 и VT4.

Размещено на http://www.allbest.ru/

Рис 1.49. Принципиальная схема БДПТ

Рис 1.50 Расположение обмоток фаз на полюсах статора БДПТ

Дальнейшую работу элементов схемы БДПТ (рис. 1.51) до завершения вектором потока Ф одного оборота проследим по табл. 1 и рис. 1.51, а--з.

Таблица 1

Рис. 1.51. Магнитное поле статора в четырехполюсном БДПТ.

На рис. 1.52. показано устройство рассмотренного БДПТ. Датчики Холла 3 размещены в специальных пазах полюсных наконечников 1 сердечника статора.

Рис 1.52. Устройство БДПТ

Постоянный магнит 2 не имеет центрального отверстия для посадки на вал, он закладывается в тонкостенную гильзу и закрывается привариваемыми фланцами двух полуосей. Такая конструкция ротора позволяет избежать выполнения центрального отверстия в постоянном магните, что часто является причиной брака (трещины, сколы и т. п.). Блок коммутатора (БК) расположен на панелях 5, отделен от двигателя перегородкой 4 и закрыт металлическим колпаком 6, через который выведены провода 7 для подключения двигателя в сети постоянного тока. Подобная конструкция применена в БДПТ полезной мощностью от 1 до 120 Вт.

Изменение направления вращения (реверс) двигателя осуществляется изменением полярности напряжения U1 в токовой цепи датчиков Холла. Изменение полярности напряжения U на входе двигателя недопустимо, так как при этом прекращается работа блока коммутатора.

Коэффициент полезного действия БДПТ по сравнению с коллекторными двигателями постоянного тока выше, что объясняется отсутствием щеточно-коллекторного узла, а значит, электрических потерь в щеточном контакте и механических потерь в коллекторе.

К достоинствам БДПТ относятся также высокая надежность и долговечность, что объясняется отсутствием у них щеточно-коллекторного узла, т. е. их бесконтактностью. Двигатели могут работать в условиях широкого диапазона температур окружающей среды, в вакууме, в средах с большой влажностью и т. п., где применение коллекторных двигателей недопустимо из-за неработоспособности щеточно-коллекторного узла, не теряет КПД, имеет устойчивые люфты, инерция меньше чем в других двигателях постоянного тока, не нужен зубчатый редуктор.

Недостаток БДПТ -- повышенная стоимость, обусловленная наличием полупроводникового блока коммутатора, чувствительных элементов (датчиков ЭДС Холла) и постоянного магнита на редкоземельных элементах.

Рассмотрев эти двигатели мы можем сделать вывод о том, что БДПТ имееет огромное преимущество над остальными, так как он долговечен и надежен, устойчив к перепадам температур и большой влажности, не теряет КПД, имеет наименьшую инерцию, не нуждается в зубчатом редукторе, что заметно сокращает его габариты. Именно поэтому его использование самый лучший вариант в управлении роботом, который участвует в робофесте.

Список использованной литературы

1.http://ru.wikipedia.org/

2.http://electricalschool.info/main/387-jelektrodvigateli-postojannogo-toka.html

3.http://easyelectronics.ru/dvigatel-postoyannogo-toka-xarakteristiki-i-regulirovanie.html

Размещено на Allbest.ru


Подобные документы

  • Синтез регуляторов системы управления для электропривода постоянного тока. Модели двигателя и преобразователя. Расчет и настройка системы классического токового векторного управления с использованием регуляторов скорости и тока для асинхронного двигателя.

    курсовая работа [3,3 M], добавлен 21.01.2014

  • Универсальные характеристики двигателя тока смешанного возбуждения. Определение скорости и режима его работы при заданных нагрузках. Механические характеристики двигателя постоянного тока последовательного возбуждения при торможении противовключением.

    контрольная работа [167,7 K], добавлен 09.04.2009

  • Конструктивное выполнение машин постоянного тока, их основные узлы, принцип действия. Характеристики ДТП, специфика их пуска. Особенности использования принципа параллельного возбуждения. Описание двигателей смешанного возбуждения и сфера их применения.

    реферат [1,2 M], добавлен 31.03.2014

  • Разработка системы плавного пуска двигателя постоянного тока на базе микроконтроллера. Выбор широтно-импульсного преобразователя. Разработка системы управления транзистором и изготовление печатной платы. Статические и энергетические характеристики.

    курсовая работа [1,5 M], добавлен 29.04.2009

  • Основные виды, устройство и принцип работы шаговых двигателей. Управление шаговым двигателем с помощью автономного контроллера. Управление контроллером с помощью системы программирования PureBasic. Модель крана как пример применения шаговых двигателей.

    дипломная работа [5,7 M], добавлен 06.03.2013

  • Расчет системы стабилизации скорости электропривода постоянного тока. Нагрузочная диаграмма и тахограмма электропривода. Защита от перенапряжений, коммутационных перегрузок. Выбор автоматических выключателей. Анализ и синтез линеаризованных структур.

    курсовая работа [162,0 K], добавлен 03.03.2010

  • Строение электродвигателя постоянного тока. Расчет основных параметров, построение естественной и искусственной механических характеристик. Особенности поведения показателей при изменении некоторых данных: магнитного потока, добавочного сопротивления.

    контрольная работа [3,8 M], добавлен 08.12.2010

  • Разработка схемы управления на магнитном пускателе с кнопочной станцией для трехфазного асинхронного двигателя. Технические характеристики магнитного пускателя. Принципиальная схема пуска двигателя постоянного тока параллельного возбуждения по времени.

    контрольная работа [301,4 K], добавлен 05.12.2013

  • Применение электродвигателей постоянного тока для нажимных устройств с большой частотой включений. Системы управления двухдвигательными электроприводами, методика наладки. Расчет мощности, выбор преобразователя. Смета на приобретение электрооборудования.

    курсовая работа [84,8 K], добавлен 11.09.2009

  • Общее описание устройства дуговой электропечи переменного тока. Шихтовые материалы для печей переменного тока. Дуговые печи постоянного тока и их преимущество. Регуляторы электрического режима при плавке в ДСП. Основные тенденции развития дуговых печей.

    курсовая работа [325,4 K], добавлен 17.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.