Оптимизация водно-химических режимов систем охлаждения конденсаторов турбин

Распространение оборотных систем охлаждения с градирнями. Основные требования к охлаждающей воде в системах оборотного охлаждения. Использование продувки для снижения накипеобразования. Влияние концентрации хеламина на скорость коррозии латуни в воде.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 21.11.2018
Размер файла 856,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оптимизация водно-химических режимов систем охлаждения конденсаторов турбин

Репин Д. А., ВНИИАМ ОАО, Москва

В нашей стране существует два типа систем охлаждения: прямоточная и оборотная. Известно, что прямоточная система охлаждения требует наличия мощного источника охлаждающей воды и приводит к тепловому загрязнению источника водоснабжения. Организация ВХР прямоточной системы охлаждения не вызывает значительных проблем.

Наиболее распространены оборотные системы охлаждения с градирнями (рис.1).

Рис. 1 Схема оборотной системы охлаждения с градирнями. 1- градирня; 2- циркуляционный насос; 3 - конденсатор

Основные требования к охлаждающей воде в системах оборотного охлаждения сводятся к тому, чтобы она имела необходимую для охлаждения потребителя температуру, не вызывала при нагреве образования отложений и биообрастаний теплопередающих поверхностей и трубопроводов и не приводила к коррозии оборудования и трубопроводов.

В системах оборотного охлаждения в результате многократного повторного использования охлаждающей воды происходит увеличение общего солесодержания и жесткости воды, что существенно влияет, с одной стороны, на интенсивность протекания коррозионных процессов, а с другой - на скорость образования отложений на трубных поверхностях конденсаторов.

Отложения минеральных примесей, как в градирнях, так и на поверхности трубок конденсаторов турбин снижают эффективность теплопередачи, и как следствие, КПД энергоблока. Кроме того, отложения увеличивают гидравлическое сопротивление тракта, что повышает расход электроэнергии при эксплуатации системы. Для предотвращения образования минеральных отложений в конденсаторах турбин применяют:

- продувку системы;

- физическую обработку воды в магнитном или акустическом поле;

- стабилизационную обработку воды с помощью химических реагентов.

Следует отметить, что использование продувки для снижения накипеобразования лимитировано возможностями источника исходной воды и экономическими составляющими (платой за исходную воду и сброс продувочной воды).

Физическая обработка воды в магнитном поле не показала стабильных результатов, поэтому его применение ограничено фактором надежности работы.

Выяснено, что стабилизационная обработка воды используемыми в нашей стране реагентами - кислотой и фосфонатами позволяет снизить скорость роста отложений.

Однако из зарубежных публикаций следует, что наиболее эффективными методами ведения ВХР системы охлаждения являются использование комплексных программ ингибирования и пленкообразующих аминов. Одной из наиболее известных комплексных программ в нашей стране является программа компании GE Water; наиболее распространенными ПАА - хеламин и ОДА. Однако данные по влиянию всех перечисленных реагентов на скорость коррозии латуни отсутствуют.

Проведенный анализ качества добавочной и охлаждающей воды на ТЭЦ-8, ТЭЦ-25 и ТЭЦ-26 ОАО “Мосэнерго”, из которого следует, что качество воды в этих системах значительно отличается, и изменяется в течение сезона. Было установлено, что в данных системах охлаждения имеет место образование отложений солей жесткости и коррозия медьсодержащих сплавов. Кроме того, из расчета коэффициентов упаривания по щелочности, жесткости и хлоридам выявлено, что даже после внедрения ВХР с дозированием ОЭДФК в системе охлаждения ТЭЦ-8 ОАО “Мосэнерго” происходит интенсивное выпадение солей жесткости на теплопередающих поверхностях. Кроме того, было выявлено интенсивное протекание коррозионных процессов медных сплавов в тракте ТЭЦ-26 о чем говорит несоответствие коэффициентов упаривания по меди коэффициентам упаривания по остальным примесям.

Из приведенных данных следует, что состав охлаждающей воды различается значительно и может сильно влиять на протекание коррозионных процессов в тракте системы охлаждения. Поэтому были проведены опыты по изучению скорости коррозии латуни на водах, качество которых характерно для систем оборотного охлаждения в системе ОАО “Мосэнерго”, а также на воде, качество которой характерно для добавочной воды этой энергосистемы. В таблице 1. приведены данные о составе вод, которые использовались для проведения опытов. Из этих данных следует, что использованные в опытах воды значительно различаются, в первую очередь, по содержанию в них хлоридов и сульфатов, т.е. по наличию коррозионно-активных примесей.

Таблица 1

Химический состав вод, на которых проводились опыты

Наименование показателя

рН,

Ед.

Сухой остаток, мг/л

Хлориды, мг/л

Сульфаты, мг/л

Ж, мг-экв/дм3

Щ, мг-экв/дм3

Вода 1

8,40

321

29,7

26,4

-

-

Вода 2

8,32

471

98,1

50,0

-

-

Вода 3

8,45

-

71,8

44,4

5,68

4,0

Вода 4

7,70

193

20,0

27,7

3,63

2,6

Вода 5

8,89

323

54,2

46,9

5,60

3,9

Таблица 2

Результаты экспериментов по определению скорости коррозии латуни Л 68 на водах оборотных систем охлаждения

испытуемой воды

Время испытаний, ч

Скорость коррозии, мг/м2

Ошибка определения, %

Вода 1 (СCl- = 29,7 мг/дм3 ; CSO42- = 26,4 мг/дм3, рН = 8,4)

790

3,40

8

3,12

7

3,21

4

среднее значение

3.24

3

Вода 2 (СCl- = 98,1 мг/дм3 ; CSO42- = 50,0 мг/дм3, рН = 8,32)

1121

16,18

1

16,81

4

15,54

5

среднее значение

16,18

3

Вода 3 (СCl- = 71,8 мг/дм3 ; CSO42- = 44,4 мг/дм3, рН = 8,45)

584

3,28

11

4,35

9

3,83

3

среднее значение

3,82

4

Вода 4 (СCl- = 20,0 мг/дм3 ; CSO42- = 27,7 мг/дм3, рН = 7,7)

525

0,67

8

0,74

15

0,60

13

среднее значение

0,67

11

Вода 5 (СCl- = 54,2 мг/дм3 ; CSO42- = 46,9 мг/дм3, рН = 8,89)

1460

0,74

7

0,92

14

0,54

14

среднее значение

0,73

9

Из экспериментальных данных следует (табл. 2), что воды систем охлаждения обладают повышенной коррозионной активностью по отношению к латуни Л 68. Было установлено, что скорость коррозии латуни в охлаждающей воде в основном зависит от концентрации хлоридов (рис. 2.). В результате обработки экспериментальных данных в программе Mathcad 13, было выведено уравнение, показывающее зависимость скорости коррозии латуни от концентрации хлоридов в охлаждающей воде:

Опыты по изучению влияния дозирования ОЭДФК, хеламина 9100 МК, ОДА и комплексной программы обработки охлаждающей воды реагентами компании GE Water на скорость коррозии латуни показали следующее.

Рис. 2 Изменение скорости коррозии латуни Л-68 в зависимости от содержания хлоридов в охлаждающей воде (рН =7,7 - 8,9)

Наличие ОЭДФК в охлаждающей воде в исследованном диапазоне концентраций (до 10 мг/дм3) приводило к повышению скорости коррозии латуни (рис. 3.).

Рис. 3 Влияние концентрации ОЭДФК на скорость коррозии латуни в воде № 4

Опыты по влиянию хеламина 9100 МК на скорость коррозии латуни показали, что дозирование данного реагента в воду систем охлаждения приводит к увеличению скорости коррозии латуни Л 68 во всем диапазоне исследованных концентраций т.е. до 10 мг/дм3(табл. 3.).

коррозия охлаждение оборотный система

Таблица 3

Влияние концентрации хеламина на скорость коррозии латуни Л-68 в воде № 1, 2, 4

Схел, мг/дм3

№ образца

Скорость коррозии, мг/м2

Вода № 1

Вода № 2

Вода № 4

0

1

3,40

16,18

0,67

2

3,12

16,81

0,74

3

3,21

15,54

0,60

Средние значение

3,24

16,18

0,67

1

1

3,77

16,31

5,09

2

4,03

16,82

5,18

3

3,34

16,18

5,15

Средние значение

3,71

16,44

5,14

5

1

5,22

22,00

4,71

2

5,09

20,99

4,71

3

5,03

23,01

5,10

Средние значение

5,11

22,00

4,84

10

1

5,31

25,34

7,42

2

5,44

23,52

7,23

3

6,01

27,15

7,17

Средние значение

5,59

25,34

7,27

Данные по влиянию дозирования ОДА показывали, что дозирование данного реагента в охлаждающую воду при температуре ? 25 °С во всем диапазоне исследованных концентраций (до 20 мг/дм3) не влияло на скорость коррозии латуни Л 68 (рис. 4).

Результаты испытаний по влиянию комплексной программы обработки охлаждающей воды реагентами GE Water (Inhibitor AZ 8101 в концентрации 15 мг/дм3 и реагент Depositrol BL 5313 в концентрациях от 0 до 15 мг/дм3) показывают, что данная обработка не позволяет снизить скорость коррозии латуни Л-68 в охлаждающей воде (рис. 5).

Рис. 4 Зависимость скорости коррозии латуни Л68 от концентрации ОДА в воде № 1

Рис. 5 Изменение скорости коррозии латуни Л 68 при различных концентрациях реагента Depositrol BL 5313 в воде № 5 в присутствии реагента AZ 8101 в концентрации 15 мг/дм3

Таким образом, результаты экспериментов показали, что ни один из рекомендуемых производителями реагентов, изученных в данной работе, не позволяет снизить скорость коррозии латуни Л-68 в охлаждающей воде различных систем охлаждения ОАО “Мосэнерго”.

Нами были рассмотрены результаты опытов по обработке поверхности конденсаторов турбин ПАА ОДА со стороны охлаждающей воды на скорость коррозии латуни и образования отложений на поверхности латунных трубок.

Данный способ имеет ряд преимуществ по сравнению с ингибированием охлаждающей воды, а именно:

1. Нет необходимости в постоянном дозировании в тракт дорогостоящих химических реагентов;

2. Продувочные воды системы охлаждения не содержат ингибиторов, ПДК на которые, как правило, невелики.

3. Поверхность защищена не только во время работы оборудования, но и во время простоев.

Результаты опытно-промышленных испытаний данного метода на ТЭЦ-8 и ТЭЦ-22 ОАО “Мосэнерго” показали, что обработка поверхности конденсаторов турбин ОДА позволяет существенно снизить как скорость коррозии латуни, так и скорость образования отложений на поверхности латунных трубок (табл. 4).

Таблица 4

Скорость образования отложений и коррозии латуни Л 68 в воде систем охлаждения ТЭЦ-8 и ТЭЦ-22

Показатель

ТЭЦ-8

ТЭЦ-22

Образцы без обработки

Образцы, обработанные ОДА

Образцы без обработки

Образцы, обработанные ОДА

Скорость образования отложений, мг/м2*

1,93

0,59

56,0

28,0

Скорость коррозии, мг/м2

4,38

1,46

0,86

0,62

В рамках договора с ТЭЦ-22 ОАО “Мосэнерго” была разработана схема и методика проведения обработки конденсатора турбины Т-100 со стороны охлаждающей воды, приведенная на рис. 6.

Рис. 6 Схема обработки конденсаторных трубок турбины Т-100 водной эмульсией ОДА. 1 - бак водной эмульсии ОДА, 2 - насос рециркуляции и дозирования раствора реагента, 3 - циркуляционный насос, 4 - теплообменник, 5 - конденсатор

Расчет экономической эффективности данного способа показал, что капитальные затраты на его проведение составляют 4.175.000 руб, годовая экономия - 5.094.000 руб, а период окупаемости - менее 10 месяцев.

Выводы

1. Анализ литературных данных показал, что в настоящее время на ТЭС с оборотными системами охлаждения отсутствуют эффективные методы предотвращения коррозии медьсодержащих материалов.

2. Проведен анализ качества охлаждающей воды конденсаторов на ряде ТЭС показавший, что в системах охлаждения конденсаторов турбин протекают коррозионные процессы конструкционных материалов на основе меди.

3. Установлено, что охлаждающие воды, на которых проводились эксперименты, обладают высокой коррозионной активностью по отношению к латуни Л-68, при этом определяющим факторам, влияющим на скорость коррозии латуни Л 68, является концентрация хлоридов. Выведена математическая зависимость, позволяющая прогнозировать скорость коррозии латуни в охлаждающей воде в зависимости от концентрации хлоридов.

4. Установлено, что дозирование в охлаждающую воду ОЭДФК, хеламина 9100 МК, октадециламина и реагента AZ 8101 не позволяет эффективно снизить скорость коррозии латуни Л-68.

5. Показано, что предварительная обработка поверхности конденсаторных трубок водной эмульсией ОДА является эффективным способом снижения скорости коррозии латуни Л-68 и образования отложений на ее поверхности.

6. Разработана методика и схема обработки конденсаторных трубок со стороны охлаждающей воды конденсаторов с турбинами Т-100.

7. Рассчитано, что срок окупаемости метода защиты поверхности конденсатора турбины Т-100 с помощью нанесения пленки ОДА на поверхность конденсаторных трубок составляет менее 10 месяцев.

Размещено на Allbest.ru


Подобные документы

  • Виды охлаждения, используемые для снижения температуры лопатки: конвективное в каналах охлаждения; перфорационное охлаждение входной кромки; перфорационно-щелевое охлаждение выходной кромки. Расчет перфорационного охлаждения и повышение ресурса лопатки.

    курсовая работа [225,7 K], добавлен 08.02.2012

  • Общая характеристика теплообменных аппаратов, их виды и классификация. Проектирование аппарата воздушного охлаждения масла по исходным данным, с проведением гидравлических расчетов, определением мощности вентилятора и насоса для продувки агрегата.

    курсовая работа [473,3 K], добавлен 01.10.2011

  • Виды систем охлаждения и принцип их работы, устройство и работа приборов жидкостной системы. Проверка уровня и плотности жидкости, заправка системы, регулировка натяжения ремня привода насоса. Основные неисправности и техническое обслуживание системы.

    реферат [4,0 M], добавлен 02.11.2009

  • Правило фаз (закон Гиббса) в термодинамике, его применение для построения кривых охлаждения железоуглеродистых сплавов и анализа превращений. Определение структурных составляющих углеродистых сталей в равновесном состоянии (после полного отжига).

    реферат [2,2 M], добавлен 28.06.2012

  • Факторы, влияющие на жизнедеятельность человека в полёте. Работоспособность авиационных систем охлаждения по высоте и скорости полета. Конструкция и принцип работы турбохолодильника. Система охлаждения аппаратуры средних и заднего технических отсеков.

    дипломная работа [2,0 M], добавлен 14.11.2017

  • Верхний предел температур нагрева для заэвтектоидных сталей. Температура нагрева и скорость охлаждения. Изменения структуры стали при нагреве и охлаждении. Твердость и износостойкость режущего инструмента. Выбор режима охлаждения при закалке стали.

    презентация [209,6 K], добавлен 14.10.2013

  • Теоретические основы и конструкция металлургических печей, закладных кессонов и системы охлаждения закладных кессонов печи взвешенной плавки. Характеристика водоснабжения промышленного предприятия. Анализ роли и значения охлаждения металлургических печей.

    курсовая работа [709,6 K], добавлен 20.11.2010

  • Основные параметры режимов сварки. Стыковая лазерная сварка. Компьютерное моделирование процесса лазерной сварки. Выбор устройства охлаждения для лазера. Подбор охлаждения для головы лазера. Выбор технологической оснастки. Система подачи защитного газа.

    курсовая работа [696,0 K], добавлен 29.05.2015

  • Автомобиль ГАЗ-66: восьмицилиндровый карбюраторный двигатель жидкостного охлаждения. История модификаций, использование в армии и экспорт за границу. Габаритные размеры автомобиля. Система охлаждения и питания, трансмиссия. Строение ведущего моста.

    реферат [3,1 M], добавлен 23.07.2009

  • Краткое описание печи и взвешенной плавки, общая система охлаждения холодной водой. Модель полного расчета системы водяного охлаждения кессонов печи взвешенной плавки, ее практическое значение. Построение характеристики сети, определение потерь тепла.

    курсовая работа [575,8 K], добавлен 20.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.