Защита трубопроводов от коррозии

Понятие и разновидности коррозии. Причины и механизм ее проявления на трубопроводах. Сравнительная характеристика различных способов их защиты, оценка их преимуществ и недостатков: специальные покрытия, электрохимическая и электродренажная защита.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 09.05.2018
Размер файла 23,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Защита трубопроводов от коррозии

Коррозия в зависимости от механизма реакций, протекающих на поверхности металла, подразделяется на химическую и электрохимическую.

Химическая коррозия представляет собой процесс разрушения металла при взаимодействии с сухими газами (газовая коррозия) или жидкими неэлектролитами (коррозия в неэлектролитах) по законам химических реакций и не сопровождается возникновением электрического тока. Продукты коррозии в этом случае образуются непосредственно на всем участке контакта металла с агрессивной средой.

Электрохимическая коррозия (коррозионное разрушение) возникает под действием коррозионно-активной среды, разнообразна по характеру, вызывает большинство коррозионных разрушений трубопроводов и оборудования. Электрохимическая коррозия протекает с наличием двух процессов - катодного и анодного.

В некоторых случаях возможны сложные процессы коррозии при одновременном воздействии двух или более факторов. К ним относятся коррозия под напряжением, щелевая, коррозионная эрозия, коррозионная кавитация.

Причины и механизм коррозии трубопроводов

Основной причиной коррозии металла трубопроводов и резервуаров является термодинамическая неустойчивость металлов. Именно поэтому подавляющее большинство металлов в земной коре находится в связанном состоянии в виде окислов, солей и других соединений. Согласно второму закону термодинамики, любая система стремится перейти из состояния с большей энергией в состояние с меньшей энергией.

Энергия, которой обладают вещества, называется химической энергией

Способы защиты трубопроводов от коррозии

Способы защиты трубопроводов от наружной коррозии подразделяются на пассивные и активные.

Продлить срок службы трубопроводов можно, применяя следующие способы защиты:

* изоляцию поверхности Meизделий от агрессивной среды (пассивная защита), т.е. нанесение на поверхность Meслоя химически инертного, относительно Meи агрессивной среды, вещества с высокими диэлектрическими свойствами;

* воздействие на Me с целью повышения его коррозионной устойчивости, т.е. обработка его окислителями, вследствие чего на его поверхности образуется плёнка из продуктов коррозии, например, травление стали персульфатом аммония (NH4 SO8) при этом на поверхности стали образуется продукт коррозии - магнетит, что увеличивает сопротивление высокопрочных сталей коррозионному растрескиванию (в щелочных средах);

* нанесение на металл конструкции из малостойкого металлического тонкого слоя другого металла, которые обладают меньшей скоростью коррозии в данной среде, например, горячее алюминирование, оцинкование, хромирование;

* воздействие на ОС с целью снижения её агрессивности, т.е. введение в среду ингибитора (замедлителей) коррозии. К этому способу мояно отнести очистку воздуха от примесей и осушку его, обрабоцсу почвы ядохимикатами, снижают интенсивность жизнедеятельносги микроорганизмов, что уменьшает опасность биокоррозии и т.д.

Пассивные способы защиты предусматривают изоляцию наружной поверхности трубы от контакта с грунтовыми водами и от блуждающих электрических токов, которая осуществляется с помощью противокоррозионных диэлектрических покрытий, обладающих водонепроницаемостью, прочным сцеплением с металлом, механической прочностью. Для изоляции трубопроводов применяют покрытие на битумной основе, на основе полимеров и лаков.

Для защиты от электрохимической коррозии применяются активные способы электрохимической защиты.

Активные способы защиты трубопроводов от наружной коррозии предусматривают создание такого электрического тока, в котором весь металл трубопровода, несмотря на неоднородность его включений, становится катодом, а анодом является дополнительно размещенный в грунте металл. Существуют два вида активной защиты трубопроводов от наружной коррозии - протекторная и катодная.

Защитные покрытия для трубопроводов

Изоляционные покрытия, применяемые на трубопроводах, должны удовлетворять следующим основным требованиям:

* обладать высокими диэлектрическими свойствами;

* быть сплошными;

* обладать хорошей адгезией (прилипаемостью) к металлу трубопровода;

* быть водонепроницаемыми;

* обладать высокой механической прочностью и эластичностью; высокой биостойкостью;

* быть термостойкими (не размягчаться под воздействием высоких температур и не становиться хрупкими при низких);

* конструкция покрытий должна быть сравнительно простой, а технология их нанесения - допускать возможность механизации.

Материалы, входящие в состав покрытия, должны быть недефицитными, а само покрытие - недорогим, долговечным.

Противокоррозионную защиту подземных трубопроводов осуществляют:

* покрытиями на основе полимерных материалов (полиэтилена, термоуса-живающихся и термореактивных полимеров, эпоксидных красок и др.), наносимыми в заводских или базовых условиях;

* покрытиями на основе термоусаживающихся материалов, полимерных липких лент, битумных и асфальтосмолистых мастик, наносимыми в базовых и трассовых условиях.

В зависимости от используемых материалов различают мастичные, полимерные и комбинированные покрытия.

Мастичные покрытия

К мастичным относятся покрытия на основе битумных и асфальтосмолистых мастик.

Конструкция битумных покрытий сложилась в результате их длительного применения. Сначала идет слой грунтовки, получаемый при нанесении на трубу раствора битума в бензине или дизтопливе. Он заполняет все микронеровности на поверхности металла. Грунтовка служит для обеспечения более полного контакта, а следовательно, лучшей адгезии, между поверхностью металла и основным изоляционным слоем - битумной мастикой.

Покрытие «Асмол» создано на основе асфальтосмолистых материалов. Оно обладает более высокими физико-механическими свойствами (пластичность, вязкость, адгезия и др.), а также имеет более низкую стоимость по сравнению с битумной мастикой.

Для защиты слоя битумной мастики она покрывается сверху защитной оберткой (стеклохолстом, бризолом, бикарулом, оберткой ПДБ и ПРДБ).

Изоляционные покрытия на основе битумных мастик применяются при температуре транспортируемого продукта не более 40°С и на трубопроводах диаметром не более 820 мм.

Полимерные покрытия

Для защиты трубопроводов применяют полимерные покрытия из следующих материалов:

* экструдированного полиолефина;

* полиуретановых смол;

* термоусаживающихся материалов;

* эпоксидных красок;

* полимерных или битумно-полимерных лент.

Полиолефины (полиэтилен, полипропилен и их сополимеры) - это высокомолекулярные углеводороды алифатического ряда, получаемые полимеризацией соответствующих олефинов.

Полиуретаны - это полимеры, получаемые полимеризацией диизоцианатов или полиизоцианатов с соединениями, содержащими активные атомы водорода. Полиуретаны могут быть вязкими жидкостями или твердыми продуктами. Они устойчивы к действию кислот, масел, бензина, обладают высокими адгезией к стали, прочностью при ударе, удельным электросопротивлением и сопротивлением катодному отслаиванию, а также низким водопоглощением. Однако полиуретановые мастики практически непригодны для нанесения в полевых условиях при отрицательных температурах, т.к. имеют длительный период полимеризации, которая протекает только при положительной температуре (до 8 ч при температуре 20°С). Кроме того, некоторые марки полиуретановых мастик токсичны.

Основу термоусаживающихся материалов составляет радиационно-вулканизированный полиэтилен трехмерной структуры, который при тепловом воздействии на него обеспечивает усадку изделия на защищаемой поверхности. Термоусаживающиеся материалы применяются в виде оберточных лент, манжет и муфт для изоляции сварных соединений труб с заводской изоляцией. Эпоксидные смолы после отверждения образуют покрытия, характеризующиеся высокой адгезией к металлам, механической прочностью, тепло-, водо- и химической стойкостью, хорошими диэлектрическими показателями.

Полимерные ленты в сравнении с мастиками более технологичны при нанесении и позволяют в значительной степени механизировать этот процесс. Кроме того, они обладают высокими диэлектрическими свойствами.

Комбинированные покрытия

На протяжении многих лет в нашей стране наряду с мастичными широко применялись покрытия на основе липких полимерных лент. Опыт их использования показал, что они очень технологичны (простота нанесения, удобство механизации работ), однако легко уязвимы - острые выступы на поверхности металла, острые камешки легко прокалывают такую изоляцию, нарушая ее сплошность. С этой точки зрения хороши покрытия на основе битумных мастик, проколоть которые достаточно сложно. Однако с течением времени битумные мастики «стареют»: теряют эластичность, становятся хрупкими, отслаиваются от трубопроводов.

ВНИИСПТнефть (ныне ИПТЭР) разработал конструкцию комбинированного изоляционного покрытия «Пластобит», лишенную указанных недостатков. Покрытие представляет собой комбинацию битумного и пленочного покрытий: на слой грунтовки наносится битумная мастика толщиной 3….4 мм, которая сразу же обматывается поливинилхлоридной пленкой без подклеивающего слоя. Величина нахлеста регулируется в пределах 3…6 см. В момент намотки полимерного слоя часть мастики выдавливается под нахлест, что обеспечивает герметизацию мест нахлеста.

Полимерный слой в конструкции покрытия «Пластобит» играет роль своеобразной «арматуры», которая обеспечивает независимо от срока службы сохранение целостности основного изоляционного слоя - битумного. В свою очередь, прокол полимерной пленки не приводит к нарушению целостности покрытия, так как слой битумной мастики имеет достаточно большую толщину. Более того, опыт эксплуатации покрытия «Пластобит» показывает, что в местах мелких сквозных повреждений полимерной части имеет место «самозалечивание», выражающееся в вытекании части мастики через это отверстие и застывание ее в виде грибка над местом повреждения.

Покрытие «Пластобит» является технологичным с точки зрения нанесения, не требует значительной перестройки применяемой до настоящего времени технологии капитального ремонта, обладает высокими защитными качествами, которые, по утверждению разработчика, не ухудшаются со временем.

Однако относительно высокая текучесть, малая ударная вязкость и слабая несущая способность материала не позволяют использовать покрытие «Пластобит» для труб диаметром более 820 мм.

Новым типом комбинированного изоляционного покрытия является «Армопластобит», отличающееся от «Пластобита» тем, что в нем в качестве армирующего материала вместо стеклохолста используется нитепрошивная стеклосетка. «Армопластобит» допускается использовать на трубопроводах диаметром до 1220 мм включительно.

В последние годы разработаны битумно-полимерные изоляционные ленты для газонефтепроводов, также являющиеся комбинированными. Так, лента ЛИБ (лента изоляционная битумная) представляет собой рулонный материал, состоящий из основы (полимерной пленки), на которую нанесен слой битумной мастики и слой антиадгезива. Покрытие на основе ленты ЛИБ аналогично покрытию типа «Пластобит», но в отличие от последнего наносится холодным способом.

В последние годы разработаны и другие типы комбинированных изоляционных покрытий, сведения о которых приведены в табл. 11.3.

Таблица 1 - Сведения о комбинированных покрытиях

3.2 Способы электрохимической защиты

Практика показывает, что даже тщательно выполненное изоляционное покрытие в процессе эксплуатации стареет: теряет свои диэлектрические свойства, водоустойчивость, адгезию. Встречаются повреждения изоляции при засыпке трубопроводов в траншее, при их температурных перемещениях, при воздействии корней растений. Кроме того, в покрытиях остается некоторое количество незамеченных при проверке дефектов. Следовательно, изоляционные покрытия не гарантируют необходимой защиты подземных трубопроводов от коррозии. Исходя из этого защита трубопроводов от подземной коррозии независимо от коррозионной активности грунта и района их прокладки должна осуществляться комплексно: защитными покрытиями и средствами электрохимической защиты (ЭХЗ).

Катодная защита

Катодная защита заключается в наведении на трубопровод специальными установками внешнего электрического поля, создающего катодный потенциал на поверхности трубы. При такой защите коррозионному разрушению подвергается электрически подключенный к защищаемому трубопроводу 1 анод 3, изготовленный из электропроводных материалов.

Защита магистральных трубопроводов от почвенной коррозии осуществляется катодной поляризацией поверхности трубы установками катодной защиты (автоматическими и неавтоматическими).

Для расчета установок катодной защиты необходимо при проведении электрометрических работ получить данные об удельном электрическом сопротивлении грунта в поле токов катодной защиты, а также в месте установки анодного заземления, иметь данные по характеристике трубопровода, ввиду изоляционного покрытия и наличию источников электроснабжения.

Основными параметрами установки катодной защиты являются сила тока и длина защитной зоны, в зависимости от которых принимаются мощность установки, тип и число анодных заземлителей, длина дренажных линий.

Принципиальная схема катодной защиты изображена на рис. 2

.

Рисунок 2 - Принципиальная схема катодной защиты трубопровода: 1 - источник постоянного тока; 2 - изолированный электропровод; 3 - трубопровод с поврежденной изоляцией; 4 - анод (заглубленное железо); 5 - дренаж (соединение тела трубы с электропроводом)

Протекторная защита

Протекторная защита относится к электрохимическому виду защиты трубопровода от коррозии и основана на принципе работы гальванического элемента. Она автономна, благодаря чему может использоваться в районах, где отсутствуют источники электроэнергии.

Принципиальная схема протекторной защиты изображена на рис. 3. Наиболее распространенными протекторами являются магниевые, потенциал которых Епр до подключения их к трубопроводу составляет - 1,6 В. Минимальный расчетный защитный потенциал Eminp составляет, так же, как и для катодной защиты - 0,85 В, естественный потенциал трубопровода по отношению к медносульфатному электроду сравнения Еест = - 0,55 В. Для повышения эффективности работы протектора его погружают в специальную смесь солей, называемую активатором.

При протекторной защите к защищаемому трубопроводу присоединяют металлический протектор 5 (анодный электрод), и имеющий более вязкий электрический потенциал, чем потенциал металла трубопровода. С применением протекторной защиты трубопровод принимает полярность катода, а протектор - анода.

Принцип действия протекторной защиты аналогичен работе гальванического элемента.

Два электрода (трубопровод и протектор, изготовленный из более электроотрицательного металла, чем сталь) опущены в почвенный электролит и соединены проводником. Так как материал протектора является более электроотрицательным, то под действием разности потенциалов происходит направленное движение электронов от протектора к трубопроводу по проводнику. Одновременно ион-атомы материала протектора переходят в раствор, что приводит к его разрушению. Сила тока при этом контролируется с помощью контрольно-измерительной колонки.

Таким образом, разрушение металла все равно имеет место, но не трубопровода, а протектора.

Электродренажная защита

Значительную опасность для магистральных трубопроводов представляют блуждающие токи электрифицированных железных дорог, которые в случае отсутствия защиты трубопровода вызывают интенсивное коррозионное разрушение в анодных зонах. Наиболее эффективным способом защиты от блуждающих токов является электродренажная защита, основной принцип которой состоит в устранении анодных зон путем отвода (дренажа) блуждающих токов от них в рельсовую часть цепи электротяги, имеющей отрицательный или знакопеременный потенциал.

Применяют прямой, поляризованный и усиленный дренажи.

Прямой электрический дренаж - это дренажное устройство двусторонней проводимости. Схема прямого электрического дренажа включает в себя: реостат, рубильник, плавкий предохранитель и сигнальное реле. Сила тока в цепи «трубопровод-рельс» регулируется реостатом. Если величина тока превысит допустимую величину, то плавкий предохранитель сгорит, ток потечет по обмотке реле, при включении которого срабатывает звуковой или световой сигнал.

Прямой электрический дренаж применяется в тех случаях, когда потенциал трубопровода постоянно выше потенциала рельсовой сети, куда отводятся блуждающие токи. В противном случае дренаж превратится в канал для натекания блуждающих токов на трубопровод.

Поляризованный электрический дренаж - это дренажное устройство, обладающее односторонней проводимостью. От прямого дренажа поляризованный отличается наличием элемента односторонней проводимости (вентильный элемент) ВЭ. При поляризованном дренаже ток протекает только от трубопровода к рельсу, что исключает натекание блуждающих токов на трубопровод по дренажному проводу.

Усиленный дренаж применяется в тех случаях, когда нужно не только отводить блуждающие токи с трубопровода, но и обеспечить на нем необходимую величину защитного потенциала. Усиленный дренаж представляет собой обычную катодную станцию, подключенную отрицательным полюсом к защищаемому сооружению, а положительным - не к анодному заземлению, а к рельсам электрифицированного транспорта.

Следует отметить, что контуры защитных заземлений технологического оборудования, расположенного на КС, ГРС, НПС и других аналогичных площадках, не должны оказывать экранирующего влияния на систему электрохимической защиты подземных коммуникаций.

Сооружение устройств электрохимической защиты отличается широким фронтом работ, растянутым на многокилометровой трассе магистрального трубопровода, наличием труднопроходимых для колесного транспорта участков, а также многочисленностью строительно-монтажных операций.

Эффективная работа электрохимической защиты возможна только при высоком качестве монтажа всех конструктивных элементов. Для этого требуются научно обоснованная организация работ, максимальная механизация и высокая квалификация строительно-монтажных рабочих. Так как для защиты трубопроводов применяется ограниченное число типов установок, а элементы электрохимической защиты являются в основном типовыми, следует производить предварительную заготовку основных монтажных узлов и блоков в заводских условиях.

Для сооружения электрохимической защиты магистральных трубопроводов от коррозии применяются средства и установки катодной, электродренажной, протекторной защиты, электрические перемычки, контрольно-измерительные пункты и конструктивные узлы типовых проектов.

Работы по сооружению электрохимической защиты необходимо осуществлять в две стадии. На первой стадии необходимо выполнять следующие работы:

* разметку трасс участка производства работ, ЛЭП и кабелей, подготовку строительной площадки;

* выбор и обустройство места для хранения оборудования, монтажных узлов, деталей, метизов, инструментов и материалов;

* доставку техники, машин и механизмов;

* подготовку участка для производства работ;

* доставку оборудования установки катодной защиты, монтажных узлов, деталей, метизов, инструмента, приспособлений и материалов;

* разработку грунта в траншеях и котлованах. Обратную засыпку с трамбовкой после установки оборудования и кабелей до уровня, указанного в рабочей документации;

* сооружение анодных и защитных заземлений, монтаж и укладку протекторов;

* прокладку подземных коммуникаций;

* монтаж катодных и контрольных электрических выводов от трубопроводов, а также контактных соединений анодных, защитных заземлений и протекторных выводов;

* установку и закладку в сооружаемые фундаменты несущих опорных конструкций для монтажа оборудования.

Работы первой стадии следует вести одновременно с основными строительными работами по технологической части трубопровода.

Во второй стадии необходимо осуществлять работы по установке оборудования, подключение к нему электрических кабелей, проводов и индивидуальное опробование электрических коммуникаций и установленного оборудования.

Работы второй стадии должны быть выполнены, как правило, после окончания основных видов строительных работ и одновременно с работами специализированных организаций, осуществляющих пуск, опробование и наладку средств и установок электрохимической защиты по совмещенному графику.

Пуск, опробование и наладку средств и установок электрохимической защиты проводят с целью проверки работоспособности как отдельных средств и установок ЭХЗ, так и системы электрохимической защиты, ввода ее в действие и установления режима, предусмотренного проектом для обеспечения электрохимической защиты участка подземного трубопровода от внешней коррозии в соответствии с действующей нормативно-технической документацией.

Обслуживание установок электрохимической защиты в процессе эксплуатации должно осуществляться в соответствии с графиком технических осмотров и планово-предупредительных ремонтов. График должен включать в себя определение видов и объемов технических осмотров и ремонтных работ, сроки их проведения, указания по организации учета и отчетности о выполненных работах.

Основное назначение работ по профилактическим осмотрам и планово-предупредительным ремонтам - содержание электрохимической защиты в состоянии полной работоспособности, предупреждение преждевременного износа и отказов в работе.

Заключение

коррозия трубопровод электрохимический

Трубопроводы и оборудование в процессе эксплуатации подвергаются процессу коррозии

Под коррозией (от позднелат. corrosio - разъединение) металла понимают процесс самопроизвольного окисления, приводящий к разрушению металла под воздействием окружающей среды. Коррозия в зависимости от механизма реакций, протекающих на поверхности металла, подразделяются на химическую и электрохимическую.

Химическая коррозия представляет собой процесс разрушения металла при взаимодействии с сухими газами или жидкими неэлектролитами.

При длительной эксплуатации трубопроводов, защищенных только изоляционным покрытием, возникают сквозные коррозионные повреждения уже через 5-8 лет после укладки трубопроводов в грунт вследствие почвенной коррозии, так как изоляция со временем теряет прочностные свойства и в ее трещинах начинаются интенсивные процессы наружной электрохимической коррозии.

Электрохимическая коррозия (коррозионное разрушение) возникает под действием коррозионно-активной среды, разнообразна по характеру, вызывает большинство коррозионных разрушений трубопроводов и оборудования. Электрохимическая коррозия протекает с наличием двух процессов - катодного и анодного.

Основной причиной коррозии металла трубопроводов и резервуаров является термодинамическая неустойчивость металлов. На возникновение коррозии оказывают влияние неоднородность состава металла, условий на поверхности металла, состав среды и пр.

Коррозия трубопроводов - процесс неизбежный. Однако человек, вооруженный знанием механизма коррозии, может затормозить его таким образом, чтобы обеспечить сохранение работоспособности трубопроводов в течение достаточно длительного времени.

Защита трубопроводов от коррозии может быть активной и пассивной. К активным средствам защиты трубопроводов от наружной коррозии относятся электрические методы, катодная и протекторная защита. При пассивной защите на наружную поверхность трубопроводов наносят покрытия и изоляцию, при активной - устраняют причины, вызывающие коррозию.

Продлить срок службы трубопроводов можно, применяя следующие способы защиты:

* изоляцию поверхности Meизделий от агрессивной среды (пассивная защита), т.е. нанесение на поверхность Meслоя химически инертного, относительно Meи агрессивной среды, вещества с высокими диэлектрическими свойствами;

* воздействие на Me с целью повышения его коррозионной устойчивости, т.е. обработка его окислителями, вследствие чего на его поверхности образуется плёнка из продуктов коррозии;

* нанесение на металл конструкции из малостойкого металлического тонкого слоя другого металла, которые обладают меньшей скоростью коррозии в данной среде, например, горячее алюминирование, хромирование;

* воздействие на ОС с целью снижения её агрессивности, т.е. введение в среду ингибитора (замедлителей) коррозии. * активная защита, которая включает следующие методы: катодную поляризацию металлической конструкции (катодная защита трубопроводов) за счёт сообщения отрицательного потенциала от источника постоянного тока; катодную поляризацию, вызванную контактом изделия с металлом, обладающим более отрицательным электродным потенциалом (протекторная защита трубопроводов и резервуаров). Катодная поляризация является методом защиты от блуждающих токов.

Размещено на Allbest.ru


Подобные документы

  • Рассмотрение механизма протекторной защиты от коррозии, ее преимуществ и недостатков. Построение схемы протекторной защиты. Определение параметров катодной защиты трубопровода, покрытого асфальтобитумной изоляцией с армированием из стекловолокна.

    контрольная работа [235,4 K], добавлен 11.02.2016

  • Анализ причин коррозии трубопроводов, происходящей как снаружи под воздействием почвенного электролита, так и внутри, вследствие примесей влаги, сероводорода и солей, содержащихся в транспортируемом углеводородном сырье. Способы электрохимической защиты.

    курсовая работа [4,7 M], добавлен 21.06.2010

  • Физическая, химическая, электрохимическая и биологическая коррозии. Коррозия выщелачивания, магнезиальная, углекислотная, сульфатная, сероводородная. Эксплуатационно-профилактическая, конструктивная, строительно-технологическая защита бетона от коррозии.

    реферат [16,2 K], добавлен 26.10.2009

  • Конструктивная защита от коррозии деревянных конструкций. Этапы нанесения поверхностной защиты, применяемые материалы. Средства, защищающие древесину от биологического воздействия, гниения, поражений насекомыми и возгорания. Выбор антисептика для защиты.

    реферат [50,7 K], добавлен 19.12.2012

  • Сущность и основные причины появления коррозии металла, физическое обоснование и этапы протекания. Ее разновидности и отличительные свойства: химическая, электрохимическая. Способы защиты от коррозии, используемые технологии и материалы, ингибиторы.

    презентация [734,6 K], добавлен 09.04.2015

  • Защита от коррозии нефтегазового оборудования и сооружений методами газотермического напыления. Характеристики изолирующего и защитного покрытия. Технико-экономические достоинства конструкционных материалов. Коррозия технологического оборудования.

    реферат [28,2 K], добавлен 28.02.2013

  • Характеристика газифицируемого объекта. Устройство и прокладка газопроводов, классификация арматуры и требования, предъявляемые к ней. Устройство и принцип работы газоиспользующего оборудования, защита от коррозии. Характеристика газового топлива.

    дипломная работа [613,0 K], добавлен 15.07.2015

  • Почвенная коррозия - разрушение металла под воздействием агрессивной почвенной среды, ее механизм. Защита газопроводов от коррозии: пассивная и активная. Определение состояния изоляции подземных трубопроводов. Расчет количества сквозных повреждений.

    реферат [1,5 M], добавлен 04.04.2015

  • Факторы, оказывающие негативное воздействие на состояние погружных металлических конструкций. Электрохимический метод предотвращения коррозии глубинно-насосного оборудования. Защита от коррозии с помощью ингибирования. Применение станций катодной защиты.

    курсовая работа [969,5 K], добавлен 11.09.2014

  • Понятие, классификация и механизм атмосферной коррозии металлов. Описание основ процесса конденсации влаги на поверхности металла. Особенности и факторы влажной атмосферной коррозии металлов. Изучение основных методов защиты от влажной коррозии.

    контрольная работа [422,9 K], добавлен 21.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.