Идентификация геометрических параметров роботов

Кинематическая модель манипулятора робота, автоматизация разгрузочных операций. Влияние положения и ориентации рабочего органа робота от значений обобщенных координат и геометрических параметров. Принципы переноса программ от одного робота к другому.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 06.05.2018
Размер файла 19,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Идентификация геометрических параметров роботов

Необходимость в сокращении времени внутрипроизводственной логистики, вредная для здоровья среда, тяжелый человеческий труд вызывает потребность в автоматизации процессов паллетирования. Скорость и точность работы роботов-паллетайзеров, несравнимы с человеческим трудом, а эффективность и универсальность значительно выше, чем у стандартной машины для паллетирования.

Предприятия легкой и пищевой промышленности заинтересованы в быстрой и качественной упаковке продукции с конвейера. Машины оснащены гибкой рукой-манипулятором, которая позволяет им с ловкостью и осторожностью упаковывать даже самые хрупкие предметы. Робот-упаковщик действует таким образом: просматривает движение конвейера, определив изделие, получает сигнал на электронный блок управления, а тот, в свою очередь, подает команду механической руке взять изделие. Все движения робота совершаются по программе. Это способствует качественному и быстрому процессу упаковки объектов. Целью данной разработки является определение оптимального по быстродействию управления движения схвата манипулятора.

Положение и ориентация рабочего органа робота зависит от значений обобщенных координат и геометрических параметров, которые задают расстояния и углы поворота между осями шарниров. Реальные значения этих параметров, как правило, отличаются от номинальных значений, что является результатом неточности изготовления или столкновений робота с предметами в процессе эксплуатации. Это приводит к невозможности переноса программ от одного робота к другому (такого же либо иного типа) без перепрограммирования положений, используемых в задании.

Рассмотрим кинематическую модель манипулятора робота, которая представляет собой разомкнутую кинематическую цепь, состоящую из n+ 1 не деформируемых звеньев. Звенья нумеруем так, что основание имеет номер О, а рабочий орган (схват) имеет номер n. С каждым i - ым звеном жестко связывается координатная система xi, yi, zi, при этом вектор zi-1 направлен вдоль оси i - го шарнира. В соответствии с методом Денавита-Хартенберга взаимное расположение координатных систем определяется значениями параметров (иi, ri, di, ai) (см. рисунок). Шарнирная переменная qi равна иi в случае вращательного сочленения или равна ri для призматического сочленения.

Пусть i-1Ti - матрица, определяющая координаты системы, связанно с i звеном, по отношению к координатной системе, связанной с i -1 звеном. Можно показать, что

манипулятор робот программа геометрический

i-1Ti=Rot (z, иi) Trans (z, ri) Trans (x, d) Rot (x, ai),

где Rot (u, ?) - матрица размером 4Ч4, угол ? вокруг вектора ы; Trans (u, l) - матрица размером 4Ч4, обозначающая перемещение на расстоянии l вдоль вектора ы.

Положение и ориентация рабочего органа робота по отношению к опорной координатной системе определяется выражением

W=fTo oTln-1Tn=fTn,

где преобразование fTo определяет координаты связанной с основанием системы координат по отношению к опорной системе, которое в свою очередь зависит от четырех констант иo, ro, do, ao

Положение начала системы координат, связанной с рабочим органом, может быть задано в виде

Для определения  ??B пользуются линеаризованной моделью, тогда используя достаточное число точек, составляют уравнения, Из этих уравнений методом наименьших квадратов можно определить искомые значения dB.

Вводятся уравнения и, таким образом, определив вектор ?d?B, можно повысить точность робота за счет использования более точных геометрических параметров при решении обратной кинематической задачи. Справедливо соотношение

Bi=Boi+dBi,

которое можно использовать для всех параметров, если обратная кинематическая задача решается с помощью изменяемой кинематической модели робота и имеется возможность подстраивать любой из параметров.

Если обратная кинематическая задача решается с использованием обратной геометрической модели на основе значений параметров Bo, то в модели уточняются только следующие параметры:

1) отклонения показаний датчиков;

2) параметры матриц для обратной геометрической модели.

Ошибки положения и ориентации могут быть компенсированы в соответствии с уравнением

где  ?B содержит только параметры, которые не могут быть изменены в модели.

Направлением исследовательской работы является автоматизация разгрузочных операций, разработка специализированного языка программирования, благодаря использованию которого компенсируются ошибки ориентации схвата и увеличивается быстродействие робота.

Литература

1. Поезжаева Е.В // Теория механизмов и механика систем машин. Промышленные роботы: учеб. пособие: в 3 ч. / Е.В. Поезжаева. - Пермь: Изд-во Перм. Гос. техн. ун-та, 2009.-Ч. 2-185.

2. Поезжаева Е.В // Теория механизмов и механика систем машин. Учеб. Пособия/Е.В. Поезжаева. - Пермь: Изд-во Пермского национального исследовательского политехнического университета. 2014. - 400

3. Поезжаева Е.В // Теория механизмов и механика систем машин. Промышленные роботы: учеб. пособие: в 3 ч. / Е.В. Поезжаева. - Пермь: Изд-во Перм. Гос. техн. ун-та, 2009.-Ч. 3-164.

Размещено на Allbest.ru


Подобные документы

  • Структурная схема механизма робота-манипулятора в пространстве. Определение степени подвижности механизма робота-манипулятора. Анализ движения механизма робота-манипулятора и определения время цикла его работы. Определение и построение зоны обслуживания.

    курсовая работа [287,4 K], добавлен 06.04.2012

  • Использование промышленных роботов в процессе производства с опасными условиями труда. Разработка манипулятора: структурная схема механизма: определение уравнений движения, скорости и ускорения; расчёты параметров робота, построение зоны обслуживания.

    курсовая работа [541,9 K], добавлен 06.04.2012

  • Структура исполнительного механизма промышленного робота. Обеспечение движения рабочего органа робота по заданной траектории на транспортере. Кинетостатический расчет механизма, а также выбор двигателя и оценка динамических ошибок схвата по скорости.

    контрольная работа [670,1 K], добавлен 27.12.2011

  • Автоматизация операции "установка-снятие" заготовок и деталей на станке ЧПУ М20П 40.01. Проект агрегатного модуля - стола промышленного робота. Выбор двигателя, расчет червячной и зубчатой передачи, подшипников, шпонок, болтов; конструирование механизма.

    курсовая работа [919,0 K], добавлен 24.11.2011

  • Классификация шагающих роботов и обзор существующих конструкций. Выбор профиля ноги робота. Расчет электродвигателя и посадки с натягом, выбор подшипников. Моделирование системы автоматического управления средствами Matlab. Выбор электронных компонентов.

    дипломная работа [4,4 M], добавлен 10.08.2014

  • Анализ существующих промышленных роботов-манипуляторов. Классификация промышленных роботов, особенности их конструкции. Элементы конструкции привода. Исходные данные и расчеты к разработке привода локтевого сустава руки робота. Анализ результатов расчета.

    дипломная работа [2,2 M], добавлен 13.05.2014

  • Классификация отклонений геометрических параметров, принципы построения систем допусков и посадок для типовых соединений деталей машин. Ряды допусков, диапазоны и интервалы размеров для квалитетов. Отклонения расположения поверхностей и шероховатости.

    курсовая работа [906,8 K], добавлен 20.08.2010

  • Краткое описание целей функционирования и принципов работы систем автоматического управления. Функциональная схема следящей системы промышленного робота. Математические модели отдельных звеньев системы. Определение параметров корректирующего звена.

    курсовая работа [337,3 K], добавлен 09.03.2009

  • Манипулятор - механизм для управления пространственным положением орудий и объектов труда, характеристика его оснащения. Расчёт параметров механической системы манипулятора типа ВПП. Процесс работы манипулятора, его кинематическая система и мощность.

    курсовая работа [48,4 K], добавлен 27.08.2012

  • Структурный, кинематический и динамический анализ манипулятора. Расчет параметров зоны обслуживания устройства, скоростей и ускорений. Определение геометрических характеристик поперечного сечения звеньев манипулятора с учетом характера и вида нагружения.

    курсовая работа [908,4 K], добавлен 19.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.