Расчет прямого бруса при растяжении, сжатии, кручении и сдвиге
Продольная сила, определенная методом сечений как равнодействующая внутренних усилий распределенных по поперечному сечению стержня. Порядок определения модуля продольной упругости для различных материалов. Методика построения эпюр крутящих моментов.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 26.02.2018 |
Размер файла | 284,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
1. Растяжение и сжатие
Внутренние усилия при растяжении-сжатии.
Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих - продольные силы N отрицательны (рис. 1).
Рис. 1
Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах. Расчёт статистически определимого бруса.
Напряжения при растяжении-сжатии.
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня. Исходя из определения напряжений, согласно выражению, можно записать для продольной силы:
где у -- нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу. Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Рис. 2
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений у по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения у = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
Деформации при растяжении-сжатии.
Рассмотрим деформации, возникающие при растяжении (сжатии) стержня. Под действием силы F брус удлиняется на некоторую величину Дl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l:
Отношение абсолютной продольной деформации бруса Дl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:
При растяжении продольная деформация положительна, а при сжатии - отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука, устанавливающий линейную зависимость между напряжениями и деформациями:
где модуль продольной упругости Е, называемый еще модулем упругости первого родаявляется коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).
Таблица 1. Модуль продольной упругости для различных материалов
Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:
Соответственно, относительную поперечную деформацию определяют по формуле:
При растяжении размеры поперечного сечения бруса уменьшаются, и е' имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации е' к продольной деформации е называется коэффициентом поперечной деформации, или коэффициентом Пуассона м:
Экспериментально установлено, что на упругой стадии нагружения любого материала значение м = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).
Таблица 2. Коэффициент Пуассона
Абсолютное удлинение стержня Дl прямо пропорционально продольной силе N:
Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Дl определяют интегрированием в пределах этого участка:
Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).
Механические свойства материалов.
Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.
Прочность - способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.
Пластичность - свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.
Хрупкость - свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).
Идеальная упругость - свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
Твердость - свойство материала сопротивляться проникновению в него других тел.
Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0статически растягивается с обоих торцов силой F.
Рис. 3
Диаграмма сжатия стержня имеет вид:
Рис. 4
где Дl = l - l0 абсолютное удлинение стержня; е = Дl / l0 - относительное продольное удлинение стержня; у = F / A0 - нормальное напряжение; E - модуль Юнга; уп - предел пропорциональности; ууп - предел упругости; ут - предел текучести; ув - предел прочности (временное сопротивление); еост - остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести у0,2 - напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки (зона местной текучести). При достижении напряжением предела текучести ут глянцевая поверхность стержня становится немного матовой - на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.
Рис. 5
Расчеты на прочность и жесткость при растяжении и сжатии.
Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:
где упред - предельное напряжение (упред = ут - для пластических материалов и упред = ув - для хрупких материалов); [n] - коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ч 12.
Расчеты на прочность при растяжении и сжатии.
Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.
Условие прочности стержня при его растяжении (сжатии):
При проектном расчете определяется площадь опасного сечения стержня:
При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:
Расчет на жесткость при растяжении и сжатии.
Работоспособность стержня определяется его предельной деформацией [l]. Абсолютное удлинение стержня должно удовлетворять условию:
Часто дополнительно делают расчет на жесткость отдельных участков стержня.
2. Кручение и сдвиг
Кручением называют деформацию, возникающую при действии на стержень пары сил, расположенной в плоскости, перпендикулярной к его оси.
Рис. 6
Стержни круглого или кольцевого сечения, работающие на кручение, называют валами. При расчете валов обычно бывает известна мощность, передаваемая на вал, а величины внешних скручивающих моментов, подлежат определению. Внешние скручивающие моменты, как правило, передаются на вал в местах посадки на него шкивов, зубчатых колес и т.п.
Пусть вал вращается с постоянной скоростью n об/мин. и передает мощность N Нм/с. Угловая скорость вращения вала равна (рад/сек), а передаваемая мощность .
Скручивающий момент равен .
Если мощность задана в киловаттах, то величина скручивающего момента определяется по формуле
Построение эпюр крутящих моментов.
Зная величины внешних скручивающих моментов и используя метод сечений, мы можем определить крутящие моменты, возникающие в поперечных сечениях вала. Крутящий момент Мк в сечении вала числено равен алгебраической сумме внешних скручивающих моментов, действующих по одну сторону от сечения, при этом могут рассматриваться как левая, так и правая отсеченные части вала.
Примем правило знаков для крутящего момента: его положительное направление соответствует повороту сечения по ходу часовой стрелки, если смотреть на сечение со стороны внешней нормали (рис. 7).
Рис. 7
крутящий сечение поперечный упругость
При наличии распределенной моментной нагрузки m крутящие моменты МК связаны дифференциальной зависимостью
из которой вытекает следующая формула:
где - крутящий момент в начале участка.
Согласно формуле на участках с равномерно распределенной нагрузкой m крутящий момент изменяется по линейному закону. При отсутствии погонной нагрузки (m = 0) крутящий момент сохраняет постоянное значение (МК = МКо = const). В сечениях, где к валу приложены сосредоточенные скручивающие моменты, на эпюре МК возникают скачки, направленные вверх, если моменты направлены против часовой стрелки, либо вниз - при обратном направлении моментов.
Рис. 8
Сдвигом называют деформацию, представляющую собой искажение первоначально прямого угла малого элемента бруса под действием касательных напряжений . Развитие этой деформации приводит к разрушению, называемому срезомили, применительно к древесине, скалыванием. Примером сдвига является резка полосы ножницами. На сдвиг работают жесткие соединения конструкций - сварные, заклепочные и так далее.
Рис. 9
Деформация сдвига оценивается взаимным смещением граней 1 - 1 и 2 - 2 малого элемента, называемым абсолютным сдвигом и более полно - относительным сдвигом (углом сдвига)
,
являющимся безразмерной величиной.
Рис. 10
В предположении равномерного распределения касательных напряжений по сечению площадью А, они определяются по формуле:
,
где Q - поперечная сила в данном сечении.
Условие прочности записывается по минимальной площади среза Smin, отражающей минимальное число соединяющих элементов (заклепок, болтов, штифтов и т.д.) или минимальную длину сварного шва.
Величина допускаемых напряжений зависит от свойств материала, характера нагрузки и может быть определена по 3-ей теории прочности: , а так как при чистом сдвиге , то:
,
При расчете болтовых или заклепочных соединений учитывается смятие контактирующих поверхностей, то есть пластическую деформацию, возникающую на поверхности контакта.
,
где Aсм - площадь проекции поверхности контакта на диаметральную плоскость. При выполнении проектного расчета, то есть при определении необходимого диаметра заклепки, болта или при определении их количества необходимо учитывать условие прочности на срез и на смятие, из двух значений следует взять большее число, округлив его до ближайшего целого в меньшую сторону. Примечания: 1. Так как болты и заклепки ослабляют соединяемые листы, последние проверяют на разрыв в ослабленных сечениях:
.
При расчетах сварных швов наплывы не учитывают, а считают, что в разрезе угловой шов имеет форму прямоугольного равнобедренного треугольника и разрушение шва происходит по его минимальному сечению, высота которого:
,
где - минимальная толщина соединяемых листов.
В пределах упругости касательное напряжение прямо пропорционально относительному сдвигу:
- это закон Гука при сдвиге; G - модуль сдвига, Н/м2, характеризующий жесткость материала при сдвиге.
Закон Гука при сдвиге через абсолютные деформации:
,
где а - расстояние между сдвигаемыми гранями; А - площадь грани.
Модуль сдвига G, модуль продольной упругости Е и коэффициент Пуассона материала связаны зависимостью:
Удельная потенциальная энергия деформации сдвига равна:
На практике чаще всего теория сдвига применяется к расчету болтов, заклепок, шпонок, сварных швов и других элементов соединений.
3. Закон Гука при растяжении и сжатии
Напряжения и деформации при растяжении и сжатии связаны между собой линейной зависимостью, которая называется законом Гука, по имени английского физика Р. Гука (1653-1703 г.г.), установившего этот закон.
Сформулировать закон Гука можно так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению.
Математически эта зависимость записывается так:
у = E е.
Здесь Е - коэффициент пропорциональности, который характеризует жесткость материала бруса, т. е. его способность сопротивляться деформации; его называют модулем продольной упругости, или модулем упругости первого рода.
Модуль упругости, как и напряжение, выражаются в паскалях (Па).
Значения Е для различных материалов устанавливаются экспериментально-опытным путем, и их величину можно найти в соответствующих справочниках.
Так, для стали Е = (1,96.…2,16) х 105 МПа, для меди Е = (1,00...1,30) х 105 МПа и т. д.
Следует оговориться, что закон Гука справедлив лишь в определенных пределах нагружения.
Если в формулу закона Гука подставить полученные ранее значения относительного удлинения и напряжения: е = Дl / l , у = N / А, то можно получить следующую зависимость:
Дl = N l / (E А).
Произведение модуля упругости на площадь сечения ЕЧА, стоящее в знаменателе, называют жесткостью сечения при растяжении и сжатии; оно характеризует одновременно и физико-механические свойства материала бруса и геометрические размеры поперечного сечения этого бруса.
Приведенную выше формулу можно читать так: абсолютное удлинение или укорочение бруса прямо пропорционально продольной силе и длине бруса, и обратно пропорционально жесткости сечения бруса.
Выражение Е А / l называют жесткостью бруса при растяжении и сжатии.
Приведенные выше формулы закона Гука справедливы лишь для брусьев и их участков, имеющих постоянное поперечное сечение, изготовленных из одного материала и при постоянной силе. Для бруса, имеющего несколько участков, отличающихся материалом, размерами сечения, продольной силой, изменение длины всего бруса определяется, как алгебраическая сумма удлинений или укорочений отдельных участков:
Дl = У (Дli)
Размещено на Allbest.ru
Подобные документы
Геометрические характеристики плоских сечений, зависимость между ними. Внутренние силовые факторы; расчеты на прочность и жесткость при растяжении-сжатии прямого стержня, при кручении прямого вала. Определение прочности перемещений балок при изгибе.
контрольная работа [1,9 M], добавлен 20.05.2012Расчет закрепленного вверху стального стержня, построение эпюры продольных усилий, перемещений поперечных сечений бруса. Выбор стальной балки двутаврового поперечного сечения. Построение эпюры крутящих, изгибающих моментов в двух плоскостях для вала.
контрольная работа [1,1 M], добавлен 06.08.2013Выбор материала, его характеристик и допускаемых напряжений. Расчет прочности и жесткости балок и рам, ступенчатого стержня и стержня постоянного сечения, статически неопределимой стержневой системы при растяжении-сжатии и при кручении. Построение эпюр.
курсовая работа [628,4 K], добавлен 06.12.2011Понятие прикладной механики. Эпюры внутренних усилий при растяжении-сжатии и кручении. Понятие о напряжениях и деформациях. Свойства тензора напряжений. Механические характеристики конструкционных материалов. Растяжение (сжатие) призматических стержней.
учебное пособие [1,5 M], добавлен 10.02.2010Схематизация свойств материала и геометрии объекта. Построение эпюр продольных сил и крутящих моментов. Центральное растяжение-сжатие. Напряжения и деформации. Неопределимые системы при растяжении сжатии. Основные сведения о расчете конструкций.
курс лекций [3,3 M], добавлен 30.10.2013Расчет стержня на кручение. Механизм деформирования стержня с круглым поперечным сечением. Гипотеза плоских сечений. Метод сопротивления материалов. Касательные напряжения, возникающие в поперечном сечении бруса. Жесткость стержня при кручении.
презентация [515,8 K], добавлен 11.10.2013Методика, содержание и порядок выполнения расчетно-графических работ. Расчеты на прочность при растяжении, кручении, изгибе. Расчет бруса на осевое растяжение. Определение размеров сечений балок. Расчет вала на совместное действие изгиба и кручения.
методичка [8,4 M], добавлен 24.11.2011Построение эпюр нормальных и поперечных сил, изгибающих и крутящих моментов. Напряжения при кручении. Расчет напряжений и определение размеров поперечных стержней. Выбор трубчатого профиля стержня, как наиболее экономичного с точки зрения металлоёмкости.
контрольная работа [116,5 K], добавлен 07.11.2012Виды нагрузок, типы опор и балок. Шарнирно-неподвижная опора: схематическое устройство и условное обозначение. Растяжение-сжатие прямого бруса. Плоские и пространственные статистические определяемые рамы. Построение эпюр изгибающих и крутящих моментов.
реферат [407,8 K], добавлен 11.10.2013Эпюры внутренних усилий. Составление уравнения равновесия и определение опорных реакций. Определение внутренних усилий и построение эпюр. Расчетная схема балки. Значения поперечных сил в сечениях. Определение значений моментов по характерным точкам.
контрольная работа [35,9 K], добавлен 21.11.2010