Газотермическое напыление

Понятие и классификация видов газотермического напыления. Плавление проволоки электрической дугой и распыление жидкого металла сжатым воздухом. Использование низкотемпературной плазмы для нанесения покрытий. Устройства и технология плазменного напыления.

Рубрика Производство и технологии
Вид лекция
Язык русский
Дата добавления 09.03.2018
Размер файла 96,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Газотермическое напыление

1. Классификация видов газотермического напыления

Газотермическим напылением называют процесс нанесения покрытий, основанный на нагреве материала до жидкого состояния и распыление его на изделие - подложку с помощью газовой струи.

Покрытия наносят без существенного повышения температуры подложки, что исключает появление деформации напыленных деталей.

Газотермическое напыление можно разделить на две группы (рис. 1.):

1) газопламенное;

2) газоэлектрическое.

Рис. 1. Классификация видов газотермического напыления.

1) Сущность газопламенного напыления заключается в расплавлении напыляемых материалов газовым пламенем и распылении их сжатым воздухом (рис. 2.)

В качестве напыляемого материала применяют порошок, проволоку сплошного сечения и порошковую проволоку или стрежни. В качестве горючего газа применяют ацетилен, пропан-бутан, природный газ и др. Недостатками газопламенного напыления являются низкое качество покрытий, обусловленное пониженной температурой пламени, малыми скоростями переноса частиц и большим содержанием окислов в покрытии.

Рис 2. Схема напыления газовым пламенем:

1 - горючая смесь; 2 - распыляемая проволока; 3 - сжатый воздух;

4 - напыляемый порошок; 5- металлизационный факел.

2) Сущность электрометаллизационного напыления заключается в плавлении проволоки электрической дугой и распылении жидкого металла сжатым воздухом. Распыления сжатым воздухом приводит к значительному выгоранию компонентов и их окислению.

Электрометаллизаторы значительно проще в управлении в сравнении с пламенными. При электродуговом напылении в качестве исходного материала используют проволоку.

Высокочастотные металлизаторы, как и электродуговые, относятся к аппаратам проволочного типа. Нагрев проволоки осуществляют индуцированием в ней токами высокой частоты. В качестве источника питания применяют ламповые генераторы ТВЧ (70-500кГц). Производительность высокочастотных металлизаторов в 1,5-2,5 раза выше производительности электрометаллизационных. Недостатками этого способа напыления являются низкий КПД установок (15-20%), относительно низкая прочность сцепления напыленного слоя с подложкой.

Рис. 3. Схема электрометаллизационного напыления:

а - электродугового, б - высокочастотного: 1,3 - напыляемая проволока; 2 - сжатый воздух; 4 - индуктор; 5 - металлизационный факел.

2. Сущность плазменного напыления

Одним из высокопроизводительных способов нанесения покрытий, при котором используется низкотемпературная плазма, является плазменное напыление.

Физическое понятие “плазма” было введено в 1923 г. Лангмером для обозначения газообразного состояния, при котором газы становятся токопроводящими за счет ионизации атомов. При плазменном напылении в факеле струи встречаются электроны, ионы и нейтральные частицы. Для ионизации плазмы используют электрическую дугу, причем с целью повышения температуры дугу сжимают, чем резко повышают ее температуру. Температура аргоновой плазмы достигает 20000-23000С. Плазменное напыление находит широкое применение в тех отраслях машиностроения, где необходимо нанесением различных стойких сплавов защитить детали машин от интенсивного износа, увеличить работоспособность изнашивающихся частей в несколько раз, защитить детали от коррозии, эрозии, кавитации, абразивного износа, тепловых ударов и др. Толщина напыленных слоев колеблется от 0,03 мм до нескольких миллиметров.

Напыленные покрытия обладают следующими преимуществами: высокой плотностью; прочным сцеплением с основным материалом; гладкой поверхностью напыления, не требующей последующей механической обработки (шлифовки); сравнительно малым расходом напыляемого материала по сравнению с другими методами.

Рис 4. Схемы плазменного напыления.

а - подача напыляемого материала в плазменную струю через сопло; б - то же за сопловым участком; в - плазменная металлизация проволокой зависимой дуги; 1 - ввод газа; 2 - ввод воды; 3 - электродная проволока; 4 - подача порошка; 5 - металлизационный факел.

Металлизацию проволокой производят независимой или зависимой дугой.

В качестве плазмообразующих газов применяют аргон, азот, аммиак, гелий и смеси аргона с водородом. Лучшим газом, защищающим вольфрамовый электрод, является инертный газ аргон.

Напыляемые материалы изготавливают в виде порошка или проволоки. Преимущества плазменного напыления порошкообразными материалами (в сравнении с проволочными материалами) следующие: более однородная (без последующей обработки) и мелкая структура покрытия; возможность получения комбинированных покрытий и так называемых псевдосплавов смешением порошков из различных материалов; низкая стоимость.

Для плазменного напыления наиболее пригодны порошки сферической формы грануляцией 5-100 мкм.

3. Оборудование для плазменного напыления

Установка предназначена для напыления покрытий с помощью плазменной струи. В комплект установки входят следующие узлы: источник постоянного тока (комплектуется выпрямителем или преобразователем), шкаф управления, плазматрон, питатель для дозирования и подачи порошка в зону напыления и соединительный кабель.

Установка обеспечивает механизированную подачу проволоки или порошка в плазматрон, маневренность и возможность нанесения покрытий в труднодоступных местах.

Напыление производится на постоянном токе от источника питания с подающей внешней характеристикой.

Установка обычно комплектуется плазматроном для ручного напыления порошком и плазматроном для металлизации проволокой.

Для напыления используется плазменная дуга косвенного действия между охлаждаемыми вольфрамовым катодом и медным соплом (анодом).

Основными деталями плазматрона являются электроды - катод и анод. При работе в инертных средах в качестве материала катода используют прутки торированного вольфрама марок ВТ 10 и ВТ 15 и марок ВТ 30, ВТ 50, ВРН лантанированного вольфрама марки ВЛ или кружки из чистого вольфрама. В случае применения кислородо- или азотосодержащих плазмообразующих сред рекомендуется в качестве материала неплавящегося электрода использовать композитные сплавы.

Плазматроны классифицируются:

1) по способу стабилизации дуги (газовая, водяная и магнитная);

2) по способу подачи газа (вдоль столба или перпендикулярно к нему) газовая стабилизация может быть аксиальной или вихревой. Наибольшее сжатие дуги достигается при вихревой стабилизации. Аксиальная система стабилизации обеспечивает ламинарный плазменный поток и удовлетворительное формирование столба плазменной дуги в канале электропроводного сопла.

3) по виду подаваемого в столб дуги материала (порошкообразный, проволочный и стрежневой материал). Наибольшее применение в практике напыления получили плазматроны, предназначенные для работы с порошкообразными материалами, что обеспечивает возможность изменения в широком диапазоне химического состава покрытия и его физико-механических свойств.

Напыляемый материал вводят в плазменный поток тремя способами (рис 4): до анодного пятна дуги, в области анодного пятна дуги, после анодного пятна (в плазменную струю). В каждом из вариантов подачу материала осуществляют радиально, тангенциально и в продольном направлении. Самым распространенным в настоящее время способом ввода порошка является его ввод после анодного пятна дуги (в плазменную струю).

4. Технология плазменного напыления

Технология плазменного напыления включает несколько последовательных операций: подготовку порошков и напыляемой поверхности, напыление покрытия, обработку покрытия и контроль качества.

1) Подготовка порошков. Для нанесения покрытий методом напыления применяют порошки грануляцией 5-100 мкм, а в отдельных случаях до 160 мкм. Мелкие порошки обладают высокой гигроскопичностью, комкуются. Для повышения их сыпучести перед напылением сушку порошков производят в сушильном шкафу при температуре 70-2000С (в зависимости от состава порошка) в течение 2 ч.

После сушки и охлаждения просеивают на механическом или вибрационном сите. Сушка порошка производится не более чем за 2-3 ч до напыления.

2) Подготовка деталей под напыление. Критерием удовлетворительной сцепляемости покрытия с подложкой является подготовка деталей перед напылением, осуществляемая одним из следующих способов: обезжириванием, травлением, пескоструйной обработкой (подогрев), механической обработкой.

Обезжиривание бензином деталей производят для удаления масла и грязи с поверхности металла.

Пескоструйная обработка очищает поверхность подложки и придает ей шероховатость в процессе обработки, что увеличивает контактную температуру под напыляемыми частицами на выступах микронеровностей.

Термическая обработка обеспечивает активацию поверхности подложки. При напылении на воздухе подогрев для большинства металлов ограничен 100-2000С.

Механическая обработка предназначена для получения шероховатой поверхности подложки методом резания или шлифования.

3) Нанесение покрытий. Напыление покрытий в зависимости от назначения и напыляемых материалов производят на режимах, включающих следующие параметры: силу тока (А), напряжение (В), расход рабочего газа (м3/с), размер частицы порошка (мкм), дистанцию напыления (мм).

Напыление производят за один проход плазматрона со скоростью, обеспечивающей получение толщины 15-100 мкм.

Для получения равномерной толщины покрытия на кромках деталей необходимо обеспечить выход струи за край детали на расстояние не менее половины шага напыления и каждый проход должен перекрывать предыдущий на одну четверть ширины.

В случае нанесения самофлюсующихся покрытий с целью повышения прочности сцепления покрытий с подложкой и снижения пористости производят оплавление покрытий. Оплавление напыленных покрытий может быть выполнено газовой горелкой, плазматроном, в печи, ТВЧ и в солевых расплавах.

4) Контроль качества наплавленных покрытий. Метод контроля выбирают в зависимости от свойств покрытия, вида и назначения детали:

а) метод карцевания применяют для мягких покрытий типа серебряных. Поверхность покрытия карцуют не менее 15-20 с. Для карцевания применяют латунные или стальные щетки с диаметром проволоки 0,15-0,25 мм. Скорость вращения щеток 1800-2500 об/мин. После карцевания на контролируемой поверхности не должно наблюдаться вздутия и отслаивания покрытий.

б) метод нанесения сетки царапин на напыленную поверхность острым ножом наносят несколько параллельных линий, глубиной до основного металла подложки на расстоянии 2-3 мм друг от друга и столько же параллельных линий, перпендикулярно к ним. На поверхности покрытия не должно наблюдаться вздутия и отслаивания покрытий.

в) метод нагрева. Нагревают напыленные детали в течение часа при температуре в зависимости от материала покрытия до 300С с последующим охлаждением на воздухе. Вследствие различия коэффициентов термического расширения при слабой прочности сцепления покрытие вспучивается и частично отслаивается.

напыление дуга металл плазменный

Контрольные вопросы:

1. Что такое газотермическое напыление?

2. Что применяют в качестве напыляемого материала?

3. Каковы недостатки газопламенного напыления?

4. Назовите преимущества плазменного напыления.

5. По каким признакам проводится классификация плазматронов?

6. Какие этапы включает технология плазменного напыления?

Литература

1. Хренов К.К. Сварка, резка и пайка металлов. М.: Машиностроение, 1973. 408 с.

2. Акулов А.И., Бельчук Г.А., Демянцевич В.Л. Технология и оборудование сварки плавлением. М.: Машиностроение, 1977. 366с.

3. Технология и оборудование контактной сварки. Под. ред. В.Д. Орлова, М.: Машиностроение, 1986. 325 с.

4. Справочник «Сварка в машиностроении». Том 2. Под ред. А.И. Акулова. Том 2. М.: Машиностроение, 1978. 462 с.

5. Ерохин. А.А. Основы сварки плавлением. М.: Машиностроение, 1973. 447 с.

6. Технология и оборудование сварки плавлением. Под ред. Г.Д. Никифорова, М.: Машиностроение, 1978. 327 с.

7. Гуляев А.И. Технология точечной и рельефной сварки сталей. М.: Машиностроение, 1978. 244с.

8. Лашко С.В., Лашко Н.Ф. Пайка металлов. М.: Машиностроение, 1988. 376 с.

Размещено на Allbest.ru


Подобные документы

  • История возникновения и развития технологии напыления, ее современные методы, преимущества, недостатки. Классификация процессов газотермического напыления покрытий. Основные виды установок напыления. Схема универсальной установки газопламенного напыления.

    курсовая работа [309,1 K], добавлен 17.10.2013

  • Явление коррозии медицинских инструментов, его физическое обоснование и предпосылки, факторы риска и методы профилактики. Технология плазменного напыления: сущность и требования, характеристика наносимых покрытий. Оборудование для плазменного напыления.

    курсовая работа [44,3 K], добавлен 05.11.2014

  • Изучение наиболее эффективных методов термического напыления: плазменного, газопламенного и детонационного, а также плазменной наплавки для восстановления изношенных деталей. Особенности формирования покрытий при сверхзвуковом газопламенном напылении.

    реферат [1,4 M], добавлен 13.12.2017

  • Сущность плазменного напыления. Особенность работы электродуговых плазменных установок. Технология нанесения покрытий. Напыление подслоя порошками нихрома, молибдена, никель-алюминиевых сплавов. Источники питания, оборудование, требования к покрытию.

    презентация [469,2 K], добавлен 29.08.2015

  • Общая характеристика и сущность вакуумного напыления. Реактивный метод нанесения покрытий конденсацией с ионной бомбардировкой (метод КИБ). Обзор гальванического метода нанесения покрытий. Изнашивание при трении по стали и по полированной стали.

    курсовая работа [993,4 K], добавлен 08.12.2012

  • Методы напыления и физические основы нанесения тонких пленок, основные требования и системы оборудования для нанесения тонких плёнок, элементы вакуумных систем и устройство вакуумных камер для получения тонких плёнок. Экономическое обоснование проекта.

    дипломная работа [4,2 M], добавлен 01.03.2008

  • Основные методы термического напыления: обычный резистивный нагрев испарителя, лазерный и электроннолучевой. Элементы системы вакуумного резистивного напыления. Решение проблемы нарушения стехиометрии тонкопленочного покрытия при резистивном испарении.

    статья [98,7 K], добавлен 31.08.2013

  • Технологии, связанные с нанесением тонкопленочных покрытий. Расчет распределения толщины покрытия по поверхности. Технологический цикл нанесения покрытий. Принципы работы установки для нанесения покрытий магнетронным методом с ионным ассистированием.

    курсовая работа [1,4 M], добавлен 04.05.2011

  • Характеристики полимерно-порошкового покрытия. Классификация способов нанесения покрытий. Центробежный метод распыления порошков. Технология порошковой окраски электростатическим напылением - технология зарядки коронным разрядом. Напыление в вакууме.

    курсовая работа [497,2 K], добавлен 04.12.2014

  • Характеристика основных закономерностей процесса газотермического нанесения покрытий. Устройство плазматрон. Преимущества технологии газотермического нанесения покрытий. Моделирование воздействия концентрированного потока энергии на поверхность.

    контрольная работа [3,2 M], добавлен 16.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.