Проектирование и исследование кривошипно-ползунного механизма

Кинематический синтез кривошипно-ползунного механизма. Силовой расчет группы Ассура второго класса. Определение реакций в кинематических парах. Исчисление кинетической энергии звеньев, момента инерции маховика и закона движения звена приведения.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 10.11.2017
Размер файла 140,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНСТВО РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Механика»

Расчетно-пояснительная записка

к курсовому проекту по теории машин и механизмов
Самара

Содержание

Введение

1. Структурный анализ механизма

2.1 Кинематический синтез кривошипно-ползунного механизма

2.2 План положений

2.3 План скоростей и ускорений

2.3.1 План скоростей

2.3.2 План ускорений

2.4 Кинематические диаграммы

3. Силовой расчет

3.1 Обработка индикаторной диаграммы

3.2 Силовой расчёт группы Ассура второго класса

3.2.1 Определение сил инерции

3.2.2 Определение сил тяжести

3.2.3 Определение реакций в кинематических парах

3.3 Силовой расчёт механизма I класса

3.3.1 Определение силы тяжести

3.3.2 Определение реакций в кинематических парах

3.4 Рычаг Жуковского

4. Динамический расчет

4.1 Определение приведенных моментов сил

4.2 Определение кинетической энергии звеньев

4.3 Определение момента инерции маховика

4.4 Определение закона движения звена приведения

4.5 Определение основных параметров маховика

5. Синтез зубчатых механизмов

5.1 Расчет элементов зубчатых колес

5.2 Профилирование зубчатых колес

6. Проектирование кулачкового механизма

6.1 Построение диаграмм движения толкателя

6.2 Определение минимального радиуса кулачка

6.3 Профилирование кулачка

Результаты расчётов по программе ТММ1

Результаты расчетов по программе ТММ2

Список литературы

Введение

маховик кривошипный ползунный механизм

Целью данной курсовой работы является проектирование и исследование механизма ____________________.

1. Структурный анализ механизма

Кривошипно-ползунный механизм состоит из четырех звеньев:

0 - стойка,

1 - кривошип,

2 - шатун,

3 - ползун.

Также имеются четыре кинематические пары:

I - стойка 0-кривошип OA

II - кривошип OA-шатун AB

III - шатун AB-ползун B

IV - ползун B-стойка 0.

I, II и III являются вращательными парами

IV - поступательная пара.

Все кинематические пары являются низшими, т.е. pнп=_, pвп=_.

Степень подвижности механизма определяется по формуле Чебышева:

W3n2pнпpвп, (0)

где n - число подвижных звеньев, n =_

Pнп - число низших пар,

Pвп - число высших пар.

По классификации И.И. Артоболевского данный механизм состоит из механизма I класса стойка 0-кривошип OA и структурной группы II класса второго порядка шатун AB-ползун B. Из этого следует, что механизм является механизмом II класса. 2. Кинематический анализ

2.1 Кинематический синтез кривошипно-ползунного механизма

Первоочередной задачей проектирования кривошипно-ползунного механизма является его синтез, т. е. определение размеров звеньев по некоторым первоначально заданным параметрам.

Ход ползуна S=__ м.

Эксцентриситет e=0, т.е. опоры механизма находятся на одном уровне.

Максимальный угол давления между шатуном и кривошипом max=___

Угловая скорость карданного вала =__ с-1 =__ с-1

Передаточное отношение цепной передачи Un=_

Число зубьев колес Z1Z3=__; __

Отношение длины кривошипа к длине шатуна l1l2 находим из AOB

l1l2sin max, (0)

sin_____.

Длину кривошипа l1 определяем из рассмотрения двух крайних положений механизма, определяющих ход ползуна S

SOB1OB2l1l2l2l12l1, (0)

Откуда

l1S2, (0)

l1___2___ м.

Длина шатуна:

Рисунок

l2l1, (0)

l2______ м

Расстояние от точки А до центра масс S2 шатуна

l3___l2, (0)

l3_______ м

Угловая скорость кривошипа

1Z3Z1 Un, (0)

1_________ c-1

2.2 План положений

План положений это графическое изображение механизма в n последовательных положениях в пределах одного цикла.

План положений строим в двенадцати положениях, равностоящих по углу поворота кривошипа. Причем все положения нумеруем в направлении вращения кривошипа . Положения остальных звеньев находим путем засечек. За нулевое начальное положение принимаем крайнее положение, при котором ползун наиболее удален от кривошипного вала начало работы хода. Начальное положение кривошипа задается углом 0, отсчитанным от положительного направления горизонтальной оси кривошипного вала против часовой стрелки. Для данного механизма 0__ рад. Кривая, последовательно соединяющая центры S, S, S…S масс шатуна в различных его положениях, будет траекторией точки S2.

Выбираем масштабный коэффициент длин l:

l1OA, (0)

где l1действительная длина кривошипа, м

OAизображающий её отрезок на плане положений, мм

Отрезок AB, изображающий длину шатуна l2 на плане положений, будет:

ABl2l, (0)

AB___ мм.

Расстояние от точки А до центра масс S2 шатуна на плане положений:

AS2l3l, (0)

AS2___ мм.

Вычерчиваем индикаторную диаграмму с таким же масштабом перемещения s_ ммм, в каком представлен план положений механизма, для которой выбираем масштабный коэффициент давления

pPmaxLp, (0)

где Pmaxмаксимальное давление в поршне, МПа.

Lp изображающий его отрезок на индикаторной диаграмме, мм.

p___ МПамм.

Кинематическую схему механизма вычерчиваем на листе 1 в указанном масштабном коэффициенте l_ ммм.

2.3 План скоростей и ускорений

План скоростей - это графическое изображение в виде пучка лучей абсолютных скоростей и точек звеньев и отрезков, соединяющих концы лучей, представляющих собой отношение скорости точек в данном положении механизма.

Определение плана ускорений аналогично определению плана скоростей.

Планы скоростей и ускорений будем рассматривать для десятого положения.

2.3.1 План скоростей

Скорость точки А находим по формуле:

VA1l1, (0)

где 1 - угловая скорость кривошипа, с-1.

l1 - длина кривошипа, м.

VA___ мс

Выбираем масштабный коэффициент плана скоростей V:

VVAPa, (0)

где VA скорость точки A, мс

Pa изображающий ее отрезок на плане скоростей, мм.

V___.

Из полюса P в направлении вращения кривошипа перпендикулярно к OA откладываем отрезок Pa, изображающий вектор скорости точки A, длиной _ мм.

Определяем скорость точки В:

BABA, (0)

где BA- вектор скорости точки B в ее вращательном движении относительно точки A, перпендикулярно к оси звена AB.

Из точки а на плане скоростей перпендикулярно оси звена AB проводим прямую до пересечения с линией действия скорости точки B, в результате чего получаем отрезок Pb_ мм, изображающий вектор скорости точки B и отрезок ab_ мм, изображающий вектор скорости звена AB.

Тогда

VBPbV, (0)

VB___ мc

VBAabV, (0)

VBA___ мс.

Скорость точки S2 находим из условия подобия:

as2abAS2AB, (0)

Откуда

as2AS2ABab, (0)

as2____ мм.

Соединив точку S2 с полюсом P, найдем отрезок, изображающий вектор скорости точки S2, т.е. Ps2_ мм.

Тогда

VS2Ps2V, (0)

VS2___ мс.

Если из произвольной точки отложить вектор VS2 для всех двенадцати положений и соединить их конечные точки плавной кривой, то получим годограф скорости точки S2.

По результатам расчета программы ТММ1 строим годограф скорости точки S2.

Угловую скорость шатуна AB определяем по формуле:

2VBAl2, (0)

2___ c-1.

2.3.2 План ускорений

Находим нормальное ускорение точки A:

aAl1, (0)

aA_2__ мс2.

Выбираем масштабный коэффициент плана ускорений a:

aaAPa, (0)

где aA - нормальное ускорение точки A, мс2

Pa - изображающий ее отрезок на плане ускорений, мм.

a___ мс2мм.

Из полюса P откладываем отрезок Pa, изображающий вектор нормального ускорения точки A кривошипа, который направлен к центру вращения кривошипа.

Определяем ускорение точки B:

, (0)

где вектор ускорения точки B в ее вращательном движении относительно точки A.

Определяем ускорение a:

aVl2, (0)

a_2__ мc2.

Из точки a на плане ускорений проводим прямую, параллельную оси звена AB и откладываем на ней параллельно отрезку AB в направлении от точки B к точке A отрезок an, представляющий собой ускорение a в масштабе a.

anaa, (0)

an___ мc2мм.

Из точки n проводим прямую перпендикулярную оси звена AB до пересечения с линией действия ускорения точки B, в результате чего получаем отрезок nb_ мм, изображающий вектор касательного ускорения звена AB и отрезок Pb_ мм, изображающий вектор скорости точки B.

Тогда

anba, (0)

a___ мс2

aB Pba, (0)

aB___ мc2.

Соединив точки a и b, получим отрезок ab_ мм, изображающий вектор ускорения звена AB.

Тогда

aBAaba, (0)

aBA___ мс2.

Ускорение точки S2 находим из условия подобия:

as2abAS2AB, (0)

Откуда

as2AS2ABab, (0)

as2____ мм.

Соединив точку s2 с полюсом P, найдем отрезок, изображающий вектор скорости точки S2, т.е. Ps2_ мм.

Тогда

aS2Ps2a, (0)

aS2___ мс2.

Если из произвольной точки отложить вектор aS2 для всех двенадцати положений и соединить их конечные точки плавной кривой, то получим годограф ускорения точки S2.

По результатам расчета программы ТММ1 строим годограф ускорения точки S2.

Угловое ускорение шатуна AB определяем по формуле:

2 al2, (0)

2___ c-2.

2.4 Кинематические диаграммы

Строим диаграмму перемещений SBSB на основе двенадцати положений ползуна B0, B1, B2, …,B12 и соответствующих положений кривошипа A0, A1, A2, …, A12.

Находим масштабные коэффициенты:

_ длины: S=_·l S=_·_=_ ммм.

_ угла поворота кривошипа: 2L, =2·__=_ радмм.

_ времени: t21L, t=2·__·_=_ смм.

Строим диаграмму скорости VBVB методом графического дифференцирования диаграммы SBSB. Полюсное расстояние H1_ мм. Тогда масштабный коэффициент скорости определим по формуле:

VS1 H1, (0)

V____0_ мсмм.

Продифференцировав диаграмму VBVB, получим диаграмму aBaB . Полюсное расстояние H2_ мм. Масштабный коэффициент ускорения определим по формуле:

aV1 H2, (0)

a_____ мс2мм.

Относительная погрешность вычислений:

Таблица №

Метод расчета

Параметр

Значение в положении 10

Значение по результам расчета программы ТММ1

Относительная погрешность , %

Метод планов

VB, м/с

VS2, м/с

2, с-1

aB, м/с2

aS2, м/с2

2, с-2

Метод диаграмм

VB, м/с

aB, м/с2

3. Силовой расчет

Основной задачей силового расчета является определение реакций в кинематических парах механизма и внешней уравновешивающей силы уравновешивающего момента, являющейся реактивной нагрузкой со стороны отсоединенной части машинного агрегата.

В основу силового расчета положен принцип Даламбера, позволяющий при приложении к звеньям инерционной нагрузки записать уравнения движения в форме уравнений равновесия. При этом рассматриваются статически определимые кинематические цепи группы Ассура и механизм I класса, т.е. звено кривошипа.

3.1 Обработка индикаторной диаграммы

Индикаторная диаграмма самоходной тележки представляет собой зависимость движущих сил от перемещения ползуна PfS рис. 2.

Для определения значения движущих сил для всех рассматриваемых положений механизма, необходимо произвести графическую обработку индикаторной диаграммы. Давление Pi МПа на поршень в i-том положении определим путем измерения соответствующей ординаты y в мм на диаграмме с учетом масштабного коэффициента давлений p_ МПамм, подсчитанного в п. 2.2.

Таблица №

yi,мм

Pi,МПа

Fдi

0

1

2

3

4

5

6

7

8

9

10

11

12

Pipyi. (0)

Движущая сила, действующая на поршень Fдi, Н будет равна:

Fдi PiD24, (0)

где D - диаметр поршня, м.

Результаты расчета сведены в таблицу №2. Знак () показывает, что сила направлена вниз.

По результатам таблицы №2 строим диаграмму движущих сил Fд=Fд в масштабе F_ Нмм.

3.2 Силовой расчёт группы Ассура второго класса

Для выполнения силового расчёта необходимо знать значение сил, действу- ющих на звенья механизма: силы тяжести, движущие силы и силы инерции этих звеньев.

Силовой расчёт будем вести для десятого положения кривошипно-ползунного механизма.

От механизма, начиная с исполнительного звена ползуна, отсоединяется группа Ассура, а точки разрыва этой группы заменяются реакциями.

3.2.1 Определение сил инерции

Модули сил инерции звеньев определяем по формуле:

Фimiai, (0)

где mi-масса i-го звена, кг

ai-ускорение центра масс i-го звена, мс2.

Подставив числовые значения, получим:

Ф2_·_ Н

Ф3___ Н

Направления сил инерции противоположны направлениям соответствующих ускорений. Момент инерции шатуна определяется по формуле:

MФ2IS22 (0)

MФ2___ Нм

Систему сил инерции шатуна, т.е. главный вектор сил инерции Ф2, приложенный в центре масс, и момент сил инерции относительно центра масс, приводим к одной силе Ф2 приложенной в некоторой точке K. Расстояние между линиями действия силы инерции и приведенной силой вычисляется по формуле:

hMФ2Ф2 (0)

h___ м

Направление приведенной силы совпадает с направлением силы инерции, а направление момента приведенной силы относительно точки S2 совпадает с направлением момента MФ2 Рисунок 2.

3.2.2 Определение сил тяжести

Силы тяжести определяем по формуле:

Gimig, (0)

где miмасса i-го звена, gускорение силы тяжести.

Подставив числовые значения, получим:

G2_9,81_ Н

G3_9,81_ Н.

Размещено на http://www.allbest.ru/

3.2.3 Определение реакций в кинематических парах

Определение давлений в кинематических парах начинаем с рассмотрения равновесия группы Ассура 2-3 Рисунок 3: шатун AB - ползун B. На звенья этой группы действуют силы: движущая сила Fд, силы тяжести G3, G2, результирующие силы инерции Ф3, Ф2, реакция R03 заменяющая действие стойки 0 на ползун 3 и реакция R12 заменяющая действие кривошипа 1 на шатун 2.

Силы, приложенные в точке B, приводим к одной силе F3.Величину этой силы определяем по формуле:

F3Ф3G3Fд (0)

F3___ Н

Знак показывает, что сила F3 направлена вверх.

Условие равновесия группы 2-3 выражается следующим образом:

0 (0)

Давление R12 раскладываем на две составляющие, действующие вдоль оси звена AB - R и перпендикулярно к оси звена AB - R.

Составляющую R определяем из уравнения моментов всех сил, действующих на шатун AB, относительно точки B.

Применительно к рисунку 3 это уравнение можно записать так:

Rl2Ф2h1G2h20 (0)

Откуда

RФ2h1G2h2l2 (0)

R ______ Н.

План сил строим в масштабе: F=20 Нмм.

Из произвольной точки последовательно откладываем вектора R, F3G2, Ф2. Через конечную точку вектора Ф2 проводим линию действия реакции R03,а через начальную точку вектора R линию действия силы R. Получим точку пересечения. Соединив конечную точку вектора Ф2 с точкой пересечения, получим вектор R03. Соединив точку пересечения с конечной точкой вектора R, получим вектор R12. Умножив соответствующие длины на масштабный коэффициент, получим R03_ H R12_ H R_ Н

Если из произвольной точки отложить вектор R12 для всех двенадцати положений, то получим годограф реакции R12.

По результатам расчета программы ТММ1 строим годограф реакции R12 в масштабе R=_ Нмм.

Если в каждом из двенадцати положений ползуна отложить вектор R03 и соединить их конечные точки плавной кривой, то получим годограф реакции R03.

По результатам расчета программы ТММ1 строим годограф реакции R03R03SB в масштабе R_ Нмм, S_ ммм.

Давление R32 в паре шатун - ползун определяем из условия равновесия ползуна:

0 (0)

и равенства:

R32R23, (0)

или

(0)

Тогда

R23XR03_ H,

R23YF3_ H

R23 (0)

R23_ Н

R32_ Н

По результатам расчета программы ТММ1 строим диаграмму реакции R32R321 в масштабе: R=_ Нмм.

3.3 Силовой расчёт механизма I класса

К кривошипу приложена сила тяжести G1, известная реакция R21R12. Неизвестная по значению и направлению реакция R01 показана в виде R и R.

Чтобы кривошип мог совершать вращение по заданному закону, к нему со стороны отсоединённой части машинного агрегата должна быть приложена реактивная нагрузка в виде уравновешивающей силы Fy. Допустим, что неизвестная по модулю уравновешивающая сила приложена перпендикулярно кривошипу в точке А.

Силу инерции кривошипа не определяем, так как он уравновешен.

3.3.1 Определение силы тяжести

Силу тяжести кривошипа определяем по формуле:

G1m1g, (0)

где m1 - масса кривошипа

g - ускорение силы тяжести.

G1_9,81_ Н

3.3.2 Определение реакций в кинематических парах

Давление R01 в паре кривошип-стойка и уравновешивающий момент My определяем из условия равновесия кривошипа ОА:

0 (0)

Силу Fy находим из условия:

Fy l1 -R21h30 (0)

Откуда

FyR21h3l1 (0)

Fy____ Н

План сил строим в масштабе: F=_ Нмм.

В соответствии с уравнением из произвольной точки последовательно откладываем вектора Fy, R21, G1. Соединив конечную точку вектора G1 с начальной точкой вектора Fy получим вектор R01. Отложив параллельно OA из конца вектора G1 прямую до пресечения с линией действия вектора Fy, получим вектор R. Соединив конечную точку вектора R с начальной точкой вектора Fy, получим вектор R. Умножив соответствующие длины на масштабный коэффициент, получим: R01_ Н, R_ Н, R_ Н.

По результатам расчета программы ТММ1 строим диаграмму реакции R01R011 в масштабе R=_ Нмм.

Уравновешивающий момент My определяется по формуле:

MyFyl1 (0)

My__=_Нм

По результатам расчета программы ТММ1 строим диаграмму уравновешивающего момента MуMу1 в масштабе: M_ Нммм.

3.4 Рычаг Жуковского

С целью проверки правильности силового расчета механизма уравновешивающий момент My определяем с помощью рычага Жуковского.

На план скоростей предварительно повёрнутый на 90 градусов вокруг полюса в соответствующие точки переносим все заданные силы, включая силы инерции и уравновешиващую силу. Из условия равновесия плана скоростей, как рычага, определяем уравновешивающую силу Fy последнюю прикладываем в точке a, считая ее как бы приложенной в точке A кривошипа, и направляем ее перпендикулярно линии кривошипа ОА.

Таким образом:

FyPaФ2h4G2h5F3Pb0 (0)

Откуда:

FyФ2h4G2h5FPbPa (0)

F_ __ __ __ Н

Определяем величину уравновешивающего момента:

MFl, (0)

M___ Нм

Относительная погрешность вычислений:

Таблица №

Метод расчета

Параметр

Значение в положении №__

Значение по результам расчета программы ТММ1

Относительная погрешность , %

Метод планов

R12, Н

R03, Н

R32, Н

R01, Н

My, Нм

Рычага Жуковского

My, Нм

4. Динамический расчет

4.1 Определение приведенных моментов сил

Приведенный момент движущих сил М, приложенный к звену приведения, определяется из условия равенства мгновенных мощностей, т. е. Мощность, развиваемая М, равна сумме мощностей, развиваемых силами и моментами сил, действующими на звенья машинного агрегата. Так, для кривошипно-ползунного механизма с вертикальным движением ползуна, если в качестве звена приведения принимается вал кривошипа, приведенный момент движущих сил и сил тяжести Нм равен:

МFVcosF^VBGVcosG^V

GVcosG^V (0)

Силы берутся по модулю, знак перед угловой скоростью учитывает, что вращения кривошипа направлено против часовой стрелки

После подстановки числовых данных получим:

М________ Нм

Приведенный момент сил сопротивления M в дальнейшем предполагается постоянным по величине, т. е. Mconst, и находится из условия равенства работ движущих сил и сил сопротивления за цикл установившегося движения.

По распечатке ТММ1 строим диаграмму MM приведенных моментов движущих сил и сил тяжести в функции угла поворота звена приведения. Принимаем масштаб моментов равным M=_ Нммм, а масштаб углов поворота звена приведения: =_ радмм

Интегрируем графически диаграмму M=M, принимая полюсное расстояние H_ мм, в результате чего получаем диаграмму Aд=Aд работ движущих сил и сил тяжести.

Находим масштабный коэффициент работ

H, (0)

A____ Джмм

Тогда

Aд10=yAA (0)

где yA - отрезок в десятом положении на диаграмме работ движущих сил, мм.

Aд10=__=_ Дж.

Полагая, что приведенный момент М сил сопротивления имеет постоянную величину во всех положениях звена приведения, строим диаграмму Aс=Aс, соединив начальную и конечную точки диаграммы Aд=Aд.

Тогда

Ac(10)= yAA (0)

где yA - отрезок в десятом положении на диаграмме работ сопротивления, мм.

Ac(10)=__=_ Дж.

Продифференцировав диаграмму Aс=Aс по , получим прямую, параллельную оси абсцисс, которая является диаграммой моментов сил сопротивления MM.

Тогда

MyMM (0)

где yM - отрезок в десятом положении на диаграмме приведенного момента сопротивления, мм.

M__=_ Нм.

4.2 Определение кинетической энергии звеньев

Вычитая из ординат диаграммы Aд=Aд соответствующие ординаты диаграммы Aс=Aс и откладывая разность на соответствующих ординатах, получаем график: TT масштаб диаграммы T=_ Джмм.

Определяем приращения кинетической энергии всей машины вместе с маховиком

T10Aд10Ac10 (0)

T10__ Дж

Кинетическую энергию звеньев механизма с переменным приведенным моментом инерции определяем по формуле:

Tm2V2m3V2IS22 (0)

T_22__22__22_ Дж

Приведенный момент инерции определяем по формуле:

I2T (0)

I2__2_ кгм2

Изменение кинетической энергии звеньев машинного агрегата с постоянным приведенным моментом инерции, Дж,

TT10 T (0)

T___ Дж

По результатам расчёта программы ТММ1 строим диаграммы TT, T2= T2, T1T1 в масштабе T=_ Джмм.

Далее определяются минимальные T и максимальное T значение из массива T, а затем максимальное изменение кинетической энергии звеньев с постоянным приведенным моментом инерции, Дж,

TTT (0)

T_ _ Дж

4.3 Определение момента инерции маховика

Приведенный постоянный момент инерции звеньев машинного агрегата, необходимый для обеспечения требуемой неравномерности движения:

IT 12ср (0)

где - коэффициент неравномерности вращения кривошипа

I_·_ кгм2

Дополнительное значение постоянной составляющей приведенного момента инерции, т. е. момент инерции маховика определяется из выражения:

I I I (0)

где I- приведенный к кривошипу момент инерции всех вращающихся масс, кгм2

I___ кгм2

4.4 Определение закона движения звена приведения

Для определения истинного значения угловой скорости звена приведения вычисляются средние значения изменения кинетической энергии:

TTT2, (0)

T_2_ Дж

и среднее значение кинетической энергии звеньев с постоянным приведенным моментом инерции

T I2, (0)

T__2_ Дж

Определяем кинетическую энергию

T TT T, (0)

T___ _ Дж

Определяем угловую скорость звена приведения:

110, (0)

110_ с1.

Угловое ускорение звена приведения берем из результатов расчета программы ТММ1: 1(10)=_ с-2.

По результатам расчета программы ТММ1 строим диаграммы 11и 11 для которых масштабные коэффициенты равны: _с-1/мм, _ с-2/мм.

4.5 Определение основных параметров маховика

Если маховик выполняется в виде колеса со спицами, то момент инерции обода составляет примерно 90% от момента инерции всего маховика, т. е. Iоб=0,9I. Полагая, что масса обода mоб равномерно распределена по окружности среднего диаметра D, можно использовать формулу для момента инерции тонкого кольца:

IобmобD24. (0)

Выразим массу обода в кг через его объем и плотность материала :

MобbhD, (0)

где b - ширина сечения обода, м

h - высота сечения обода, м.

Тогда, задаваясь соотношением bD=kb hD=kh можно найти средний диаметр обода маховика. Обычно kb и kh выбираются в пределах 0,1... 0,3, причем kkh,

примем kb=_, kh=_; плотность материала принимается: для стали =7800 кгм3.

Тогда:

(0)

_ м.

bkbD (0)

b___ м

hkhD (0)

h___ м.

Относительная погрешность вычислений:

Таблица №

Метод расчета

Параметр

Значение в положении № __

Значение по результам расчета программы ТММ1

Относительная погрешность , %

Метод диаграмм

М, Нм

М, Нм

Aд, Дж

Aс, Дж

T, Дж

T(2), Дж

T(1), Дж

I, кгм2

1, с-1

5. Синтез зубчатых механизмов

5.1 Расчет элементов зубчатых колес

Параметры зуборезной рейки:

_ - модуль рейки m=_ мм,

_ - угол профиля рейки

Параметры нулевого зацепления.

Радиус делительной окружности:

r1mz12 (0)

r1__2_ мм,

r2mz22 (0)

r2__2_ мм.

Радиус основной окружности:

rb1r1cos20 (0)

rb1_0,9397_ мм,

rb2r2cos20 (0)

rb2_0,9397_ мм.

Радиус начальной окружности:

rw1 r1_ мм,

rw2 r2_ мм.

Радиус окружности впадин:

rf1r1mhac (0)

rf1_____ мм,

rf2r2mhac (0)

rf2_____ мм.

Высота зуба:

hm2 ha c (0)

h_2_)_ мм.

Радиус окружности вершин:

ra1 rf1h (0)

ra1___ мм,

ra2 rf2h (0)

ra2___ мм.

Межосевое расстояние:

amz1z22 (0)

a__+_2_ мм.

Шаг зацепления:

Pm (0)

P3,142__ мм.

Толщина зуба по делительной окружности:

s1s20,5P (0)

s1s20,5__ мм.

Параметры корригированного зацепления рассчитываем по программе ТММ2. Исходные данные: число зубьев шестерни Z1=_, число зубьев колеса Z2=_, модуль m=_ мм.

5.2 Профилирование зубчатых колес

Выбираем масштаб построения таким образом, чтобы высота зуба h на чертеже была не менее 4050 мм. При этом масштабный коэффициент: l=_ ммм

Выбираем положение центров О1 и О2 осей зубчатых колёс Z1 и Z2, расстояние между которыми равно a. Из центров О1 и О2 проводим окружности, радиусы которых соответствуют:

_ - начальным окружностям: rw1=_ мм rw2=_ мм

_ - делительным окружностям: r1=_ мм r2=_ мм

_ - окружностям вершин: ra1=_ мм ra2=_ мм

_ - окружностям впадин rf1=_ мм rf2=_мм

_ - основным окружностям: rb1=_ мм rb2=_ мм.

Проводим линию зацепления MN. Она должна проходить через полюс зацепления P под углом 200 к линии, перпендикулярной межосевой линии О1О2, и при этом быть касательной к основным окружностям rb1 и rb2.

Находим активный участок линии зацепления ab. Точки a и b являются точками пересечения линии зацепления MN с окружностями вершин ra1 и ra2.

Последовательность построения зуба:

_ - проводим ось симметрии зуба

_ - проводим ряд радиусов ri в пределах от радиуса окружности выступов ra до радиуса основной окружности rb

_ - откладываем на каждом из радиусов ri по обе стороны оси симметрии половину толщины зуба Si2

_ - соединяем плавной линией полученные точки

_ - проводим окружность впадин rf и соединяем построенные участки с окружностью впадин переходной кривой r 0,25m0,25__ мм.

Построенный профиль зуба устанавливаем на чертеже таким образом, чтобы он разместился между окружностями вершин ra и впадин rf, а полюс P касался его боковой поверхности. Аналогично строится профиль зуба колеса z2.

Проводим ось симметрии двух других зубьев шестерни и колеса.

Строим рабочие участки профилей зубов, то есть те участки, которые участвуют в зацеплении. Чтобы найти эти участки, нужно на профиле шестерни найти точку, сопрягаемую с крайней точкой головки зуба колеса и наоборот. Для этого через точку a из центра O2 проводится дуга радиусом O2a до пересечения с профилем зуба колеса. Для того, чтобы выделить рабочие участки профилей зуба на расстоянии 1,52 мм проводим линии, параллельные боковым поверхностям зубьев и заштриховываем полученные области.

Построение графиков качественных показателей:

Проводим линии, перпендикулярные MN.

По результатам расчета программы ТММ2 строим диаграмму коэффициента скольжения fx, для которой выбираем масштаб: =_ _мм.

На оси x откладываем расстояния x1, x2,…, а на оси значения i. Полученные точки соединяем плавной линией.

Аналогично строим корригированное зацепление. Корригированное зацепление представляет собой зацепление с более благоприятными качественными характеристиками по сравнению с нулевым зацеплением, в частности устранён подрез зубьев.

6. Проектирование кулачкового механизма

6.1 Построение диаграмм движения толкателя

Начертим согласно заданию диаграмму аналога ускорения движения толкателя S=S, выбрав масштабный коэффициент

180pL (0)

где pпдсо угол рабочего хода, град.

L отрезок, изображающий угол рабочего хода на чертеже.

p=пдсо, (0)

где п угол подъема,

дс угол дальнего стояния,

о угол опускания.

p____

3,14180___ радмм.

Откладываем по оси абсцисс отрезки в масштабе , эквивалентные углам п, дс, о. Делим отрезки, соответствующие п и о на десять равных частей. Строим диаграмму аналога ускорения толкателя s''=s'' в пределах углов у и в.

Чтобы обеспечить одинаковый масштаб на всех участках диаграммы S''=S'' необходимо выполнить условие:

hпhо, (0)

где hп, hо - максимальные ординаты диаграммы S=S на участках о, п соответственно.

Проинтегрировав графически диаграмму аналога ускорения толкателя S=S, получим диаграммы аналога скорости толкателя S?=S?.

Проинтегрировав графически диаграмму аналога скорости S?=S?, получим диаграмму перемещения толкателя S=S.

Для того, чтобы масштабы диаграмм были равны необходимо выполнить условие:

H1 (0)

H1__ мм.

Находим масштабный коэффициент перемещения толкателя, который будет равен масштабным коэффициентам скорости и ускорения толкателя

SS? ShSmax (0)

где h - ход толкателя, м

Smax - отрезок, изображающий ход толкателя на чертеже, мм.

S___ ммм.

SS? S_ ммм.

6.2 Определение минимального радиуса кулачка.

Минимальный радиус кулачка определяются из условия выпуклости профиля кулачка, т.е. радиус кривизны его в любой точке должен быть больше нуля 0.

Известно, что кулачок имеет выпуклый профиль, если радиус его в любом положении удовлетворяет условию:

rо SS (0)

Т.е. радиус основной шайбы кулачка должен быть больше наибольшей отрицательной ординаты суммарного графика SSf. Построение этого графика производится с помощью построенных ранее диаграмм SS и SS. Для этого в каждой точке 0, 1, … по оси абсцисс следует сложить указанные диаграммы с учётом знака. Обозначим наибольшее абсолютное значение отрицательной ординаты полученного графика через a и умножив это значение на масштабный коэффициент, получим a_.

Тогда, с учётом гарантированного запаса =_ м принимаем:

romina, (0)

romin___ м.

6.3 Профилирование кулачка

Проводим окружность romin с центром в точке 0 в масштабе: l=_.

Линию движения толкателя проводим через центр вращения кулачка в соответствии с заданной структурной схемой кулачкового механизма. На пересечении этой линии с окружностью получаем точку В0.

От луча ОВ0 откладываем в сторону, противоположную вращению кулачка, фазовые углы п, дс, о.

Делим углы п и о на равные части согласно графику SS. Через полученные точки деления 1, 2, 3,… проводим лучи 01, 02, 03,….

В направлении относительного движения толкателя от начальной окружности радиуса r0 откладываем отрезки 11', 22', 33',…, соответствующие в масштабе l перемещениям толкателя S1, S2, S3,….

Через полученные точки B0, 1', 2',…, проводим перпендикуляры к соответствующим лучам, которые представляют собой положения плоскости тарелки толкателя в обращённом движении.

Проводим огибающую семейства перпендикуляров положений тарелки толкателя, которая является действительным профилем кулачка.

Кулачковый механизм проектируем на 5 листе.

Результаты расчётов по программе ТММ1.

Исполнитель: Иванов И.И. Группа: _-__-_ Вариант:__

Исходные данные:

Тип машинного агрегата TM=_

Номер схемы кривошипно-ползунного механизма N=_

Направление вращения кривошипа K=_

Средняя угловая скорость кривошипа Omega_1=_ 1/c

Смещение направляющей ползуна (эксцентриситет) e=0.00000 м

Длина кривошипа L1=_ м

Длина шатуна L2=_ м

Расстояние АS2 L3=_ м

Начальное положение кривошипа Phi0=_ градусов

Масса кривошипа m1=_ кг

Масса шатуна m2=_ кг

Масса ползуна m3=_ кг

Момент инерции шатуна Is2=_ кг*м^2

Сум. прив. мом-т всех вр. масс маш. агрегата I_П_0=_ кг*м^2

Коэффициент неравномерности вращения delta=_

Значения Pпс (Pд) {H}:

Результаты расчетов по программе ТММ2.

ИСПОЛНИТЕЛЬ: Иванов И.И. ГРУППА: _-_-_ ВАРИАНТ:_

ИСХОДНЫЕ ДАННЫЕ

ЧИСЛО ЗУБЬЕВ ШЕСТЕРНИ Z1=_

ЧИСЛО ЗУБЬЕВ КОЛЕСА Z2=_

МОДУЛЬ ЗУБЧАТОГО ЗАЦЕПЛЕНИЯ M=_

ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ:

Список литературы

Теория механизмов и машин. Учебник для втузов / Под редакцией К.В. Фролова. М.: Высшая школа,1987.

Курсовое проектирование по теории механизмов и машин / Под ред. А.С. Кореняко 5-е издание. Киев: Вища школа, 1970.

Кинематическое и динамическое исследование кривошипно-ползунных механизмов с применением ЭВМ в диалоговом режиме: Методические указания к курсовому проекту по теории механизмов машин /Самарский Политехнический Институт; Сост. А.С. Неймарк, А.К. Федосеев, Самара, 1991.

Проектирование зубчатых механизмов с применением ЭВМ в диалоговом режиме: Методические указания к курсовому проекту по теории механизмов машин / Самарский Государственный Технический Университет; Сост. А. С. Неймарк, И. Н. Булавинцев, Самара, 1993.

Синтез кулачковых механизмов с применением ЭВМ в диалоговом режиме: Методические указания к курсовому проекту по теории механизмов и машин/ Самарский Государственный Технический Университет; Составители: А.С. Неймарк, Э.Э. Рыжов, И.Н. Булавинцев. Самара 1993.

Размещено на Allbest.ru


Подобные документы

  • Структурный анализ кривошипно-ползунного механизма. Построение планов положения, скоростей, ускорений и кинематических диаграмм. Определение результирующих сил инерции и уравновешивающей силы. Расчет момента инерции маховика. Синтез кулачкового механизма.

    курсовая работа [522,4 K], добавлен 23.01.2013

  • Кинематический анализ мальтийского механизма. Определение угловой скорости и ускорения креста. Кинематический анализ планетарной передачи, кривошипно-ползунного механизма. Приведение моментов инерции звеньев и определение момента инерции маховика.

    контрольная работа [368,7 K], добавлен 10.10.2011

  • Цикл движения шестизвенного кривошипно-ползунного механизма. Разбивка передаточного отношения редуктора по ступеням. Подбор чисел зубьев. Расчет делительных диаметров и построение схемы. Кинематическое исследование кривошипно-ползунного механизма.

    курсовая работа [1,5 M], добавлен 18.02.2012

  • Структурное и кинематическое изучение рычажного механизма. Определение сил, действующих на его звенья, и реакций в кинематических парах группы Ассура. Силовой расчет ведущего звена. Проектирование прямозубой эвольвентой передачи и планетарного механизма.

    курсовая работа [193,5 K], добавлен 15.08.2011

  • Структурный и кинематический анализ кривошипно-ползунного механизма. Определение линейных и угловых скоростей и ускорений. Расчет наибольшего тормозного усилия в тормозном устройстве; кинематических параметров привода редуктора, зубчатой передачи и валов.

    контрольная работа [631,3 K], добавлен 22.03.2015

  • Определение наименьшего числа зубьев. Исследование шарнирно-рычажного механизма. Расчет скоростей и угловых ускорений звеньев механизма. Определение усилий в кинематических парах. Исследование кривошипно-ползунного механизма. Построение схем и графиков.

    курсовая работа [126,8 K], добавлен 25.07.2013

  • Сущность механизма пресса, предназначенного для реализации возвратно-поступательного движения ползуна. Кинематический, силовой, динамический анализ механизма. Определение реакций в кинематических парах группы Ассура и уравновешивающей силы по Жуковскому.

    курсовая работа [89,3 K], добавлен 15.08.2011

  • Построение плана положений механизма. Расчет скоростей кривошипно-ползунного механизма. Определение ускорений рычажных устройств. Поиск сил, действующих на звенья и реакции в кинематических парах. Расчет мгновенной мощности и мгновенного КПД механизма.

    курсовая работа [231,4 K], добавлен 24.12.2014

  • Кинематическое и кинетостатическое исследование механизма рабочей машины. Расчет скоростей методом планов. Силовой расчет структурной группы и ведущего звена методом планов. Определение уравновешивающей силы методом "жесткого рычага" Н.Е. Жуковского.

    курсовая работа [1,3 M], добавлен 04.05.2016

  • Краткое описание работы кривошипно-ползунного двигателя мотоцикла. Синтез эвольвентного зубчатого зацепления, алгоритм его расчета и построение. Проектирование многосателлитного планетарного редуктора. Динамическое исследование основного механизма.

    курсовая работа [1,9 M], добавлен 19.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.