Методы обработки молочных продуктов

Влияние условий внешней среды на развитие микроорганизмов (физические факторы). Два способа воздействия высоких температур: пастеризация и стерилизация. Концентрация растворенных веществ и осмотическое давление. Микробиология молока и молочных продуктов.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 17.10.2017
Размер файла 28,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Влияние факторов внешней среды на микроорганизмы (физические факторы)

2. Микробиология молока и молочных продуктов

1. Влияние факторов внешней среды на микроорганизмы (физические факторы)

микроорганизм пастеризация молочный стерилизация

Микроорганизмы находятся в непрерывном взаимодействии с внешней средой и подвергаются разнообразным ее влияниям. В одних случаях они могут способствовать лучшему развитию микробов, в других, подавлять их жизнедеятельность. Следует помнить, что изменчивость и быстрая смена поколений микробов позволяет им приспособляться к самым разнообразным условиям жизни, быстро закреплять приобретенные признаки и передавать их по наследству. Но микробы не только сами могут изменяться под воздействием внешней среды, но могут изменять и среду в соответствии со своими особенностями. Поглощая в процессе питания и дыхания различные вещества. Микроорганизмы выделяют в окружающую среду продукты обмена, которые изменяют ее химический состав, ее реакцию и соотношение в ней различных веществ.

Поэтому, изучая микробиологические процессы, мы должны учитывать два момента:

во-первых, какие изменения вызывают микроорганизмы в окружающей среде;

во-вторых, какое влияние оказывает внешняя среда на развитие микроорганизмов.

Зная факторы, способствующие развитию микробов и подавляющие их, мы можем регулировать деятельность микробов по нашему усмотрению (стимулировать развитие полезных и вести борьбу с вредными).

Все факторы внешней среды, оказывающие влияние на микроорганизмы, делят на три группы:

1. физические (температура, влажность, осмотическое давление, различные формы лучистой энергии, ультразвук, механическое воздействие, токи высокой частоты);

2. химические (химический состав питательной среды, реакция питательной среды, окислительно-восстановительный потенциал, влияние антисептических веществ);

3. биологические факторы (взаимоотношения микроорганизмов с другими организмами).

Физические факторы:

Температура. Температура внешней среды является мощным фактором воздействия на организмы, который определяет не только интенсивность их развития, но и вообще возможность развития. Принято различать три основные температурные точки, имеющие значение для развития микробов: температурный оптимум, минимум и максимум.

Температурный оптимум- температура, при которой данный вид, микробов наиболее хорошо развивается, т.е. температура, соответствующая физиологическим требованиям соответствующего микроорганизма. При температурном минимуме или максимуме развитие микробов еще возможно, но уже ограничено. При температуре выше максимума микробы обычно погибают. При температуре ниже минимума они переходят в состояние анабиоза, а при повышении температуры могут возвращаться к активной жизни.

По отношению к температурному фактору микроорганизмы делят на три группы:

1. психрофилы (холодолюбивые);

2. мезофилы (развивающиеся при средних температурах);

3. термофилы (теплолюбивые).

Такое деление производят на основе оптимальной температуры развития. Примерные границы температур для различных групп представлены в таблице 1.

Таблица 1 Температуры для различных групп микроорганизмов, ?С

Микроорганизмы

Минимальная

Оптимальная

Максимальная

Психрофилы

-8 -10

+10 +15

+15 +20

Мезофилы

+5 +10

+30 +37

+40 +45

Термофилы

+15 +20

+40 +55

+60 +70

Вышеуказанные температурные границы приведены для размножения микроорганизмов. Для других процессов жизнедеятельности (спорообразование, образование токсинов, пигментов и др.) значения температур для тех же групп микроорганизмов могут быть иными.

Психрофилами- называют микроорганизмы, область температур роста которых лежит в пределах от 0 (или ниже) до 20 ?С, хотя оптимум составляет 15 ?С. Психрофильные микроорганизмы являются обитателями холодных источников, глубоких озер и океанов, хорошо развиваются на продуктах при холодильном хранении. Наиболее сильной устойчивостью к низким температурам обладают плесневые грибы и гнилостные бактерии (-3 -9 ? С).

Мезофилы живут при средних температурах. Самая распространенная группа микроорганизмов (бактерии, плесневые грибы, дрожжи). Мезофилами являются все патогенные и условно-патогенные микроорганизмы и большинство сапрофитных.

Термофилы развиваются при высоких температурах. Они в большом количестве встречаются в почве, сточных водах и в навозе, в гейзерах, песках пустынь. Они участвуют в ряде биологических процессов: при самосогревании влажного сена и хлопка, силосовании кормов, вызывают порчу пастеризованных и стерилизованных продуктов. Значение отношения разных видов микробов к воздействию температур позволяет культивировать их в лабораториях на искусственных питательных средах. При этом учитывают значения оптимальных для каждого вида микробных клеток температурных режимов (в термостатах).

Отношения микроорганизмов к различным температурам стали использовать для сохранения различных пищевых продуктов. При этом используют как низкие, так и повышенные температуры. На основе этого применяют несколько технологических приемов обработки и хранения продуктов. Низкие температуры- хранение в охлажденном состоянии и замороженном. При хранении в охлажденном состоянии используют температуру 0 +4 ?С, что позволяет продлить срок хранения, но если субстрат (продукт) достать из холодильника и оставить при комнатной температуре - он быстро испортится за счет развития тех микроорганизмов, что находились в нем до охлаждения. При хранении продуктов в замороженном состоянии используют температуру -12 -30?С. Несмотря на то, что при таких температурах микроорганизмы не размножаются и активная деятельность их приостанавливается, многие из них неопределенно долгое время остаются жизнеспособными, переходя в анабиотическое состояние. При хранении продуктов в охлажденном и замороженном состоянии большое значение имеет относительная влажность воздуха, скорость охлаждения и замораживания, исходная степень обсеменения психрофильными микроорганизмами. Замораживание не оказывает стерилизующего действия и могут выжить многие виды сапрофитов и болезнетворные формы микроорганизмов. Поэтому размороженные продукты могут быстро подвергаться порче. Размораживать замороженные продукты следует непосредственно перед употреблением.

В пищевой промышленности применяют два способа воздействия высоких температур: пастеризация и стерилизация.

Пастеризация- это нагревание продукта чаще при температуре 63-80 ?С в течение 20-40мин. Иногда пастеризацию проводят кратковременно в течение нескольких секунд при температуре 90-100 °С. При пастеризации погибают не все микроорганизмы. Некоторые термоустойчивые бактерии и споры грибов остаются жизнеспособными. Поэтому пастеризованные продукты следует немедленно охлаждать до температуры не выше 10 °С и хранить на холоде (на льду и в холодильнике), чтобы задержать прорастание спор и развитие сохранившихся клеток. Пастеризуют молоко и молочные продукты, пиво, соки, рыбную икру, пресервы и некоторые другие продукты.

Стерилизация - это температура 112-120°С в течение 20-60 мин. в специальных приборах - автоклавах (перегретым паром под давлением) или при 160-180°С в течение 1-2 часа в сушильных шкафах (сухим жаром).

Влажность. Микроорганизмы могут развиваться только в субстратах, имеющих свободную воду и в количестве не менее определенного уровня. С понижением влажности субстрата интенсивность размножения микробов замедляется, а при удалении из субстратов ниже необходимого уровня вообще прекращается. Потребность во влаге у различных микроорганизмов колеблется в широких пределах. По величине минимальной потребности во влаге для роста различают следующие группы: гидрофиты (влаголюбивые), мезофиты (средневлаголюбивые), ксерофиты (сухолюбивые). Гидрофитами являются большинство бактерий, а мицелиальные грибы и дрожжи мезофиты, но имеются среди них и гидрофиты.

Для развития микроорганизмов имеет значение не абсолютная величина, а доступность содержащейся в субстрате воды, которую в настоящее время принято обозначать термином водная активность или аw. Водная активность показывает отношение давления водяных паров раствора (субстрата ) Р и чистого растворителя (воды) Ро при одной и той же температуре: а w = Р/Ро.

Водная активность выражается величинами от 0 до 1 и характеризует относительную влажность субстрата. Рост микроорганизмов наблюдается при значениях аw от 0,99 до 0,65-0,61. Оптимальное значение для многих от 0,99-0,98, примерно в этих пределах находится водная активность скоропортящихся пищевых продуктов (мяса, рыба, плоды, овощи).

Бактерии развиваются при водной активности субстрата 0,94-0,90. Дрожжи - 0,88-0,85, мицелиальные грибы - 0,8. Но некоторые виды бактерий, дрожжей, мицелиальных грибов могут расти при водной активности -0, 75-0,62 (хотя и медленно).

Таким образом, продукты, у которых водная активность менее 0,7 , могут длительно сохраняться без микробной порчи. Перспективно, с точки зрения увеличения срока хранения скоропортящихся продуктов, искусственное снижение в них водной активности. Возможно снижение аw при добавлении специфических веществ, способных связывать воду.

Давно применяется хранение различных пищевых продуктов в сухом виде. В высушенном состоянии многие микробы сохраняют жизнеспособность в течение длительного времени. Устойчивы к высушиванию многие дрожжи и особенно споры бактерий и мицелиальных грибов (сохраняют способность к прорастанию десятки лет). Патогенные микробы (стафилококки, микрококки, брюшно-тифозные бактерии) могут сохраняться в сухом субстрате неделями и месяцами.

Для сохранения сухих продуктов без порчи большое значение имеют относительная влажность и температура в складских помещениях. Продукты обладают гигроскопичностью (могут отдавать влагу или поглощать ее). Между влажностью воздуха и влажностью продукта устанавливается определенное подвижное равновесие. При одной и той же относительной влажности воздуха различные продукты могут иметь разную равновесную влажность. Большинство бактерий способно развиваться в субстратах при равновесной относительной влажности воздуха в пределах не ниже 95-90%. Для дрожжей минимум в субстрате соответствует 90-85% относительной влажности воздуха, для большинства мицелиальных грибов - 80%, а для некоторых ксерофитных видов пределом является относительная влажность воздуха- 75-65%.

Таким образом, возможность развития микроорганизмов в продуктах в связи с их влажностью можно учитывать как по величине водной активности продукта, так и по относительной влажности воздуха. Значение аw, умноженное на 100, соответствует относительной влажности воздуха, выраженной в процентах, когда система продукт - воздух находится в равновесии.

Относительная влажность воздуха изменяется от температуры: с понижением температуры воздуха уменьшается его влагоудерживающая способность и наоборот. Поэтому при снижении температуры в процессе хранения это приводит к увлажнению поверхности продукта, что способствует развитию находящихся на нем микробов. При хранении и перевозке высушенных продуктов необходимо принимать меры для предупреждения изменения их влажности.

При сублимационной сушке (высушивание под высоким вакуумом в замороженном состоянии) качество и пищевая ценность продуктов сохраняются значительно лучше, но микроорганизмы хорошо переносят такое высушивание и сохраняются жизнеспособными. Поэтому к таким продуктам следует предъявлять строгие санитарно-гигиенические требования.

Концентрация растворенных веществ и осмотическое давление. Внутриклеточное осмотическое давление обусловлено концентрацией растворенных веществ в цитоплазме клетки. У разных микроорганизмов оно колеблется в широких пределах и этим объясняется тот факт, что различные микроорганизмы могут обитать в пресной воде и соленых водах морей. Высокие концентрации осмотически активных веществ способствуют плазмолизу микробных клеток. В качестве осмотически деятельных веществ, применяемых для консервирования пищевых продуктов, используют поваренную соль и сахар.

Большинство бактерий мало чувствительно к концентрации NаСL в пределах 0,5-2%, но 3% - ное ее содержание в среде неблагоприятно для многих микроорганизмов. Размножение многих гнилостных бактерий подавляется при концентрации поваренной соли 3-4%, а при 7-10% оно прекращается. Палочковидные гнилостные бактерии менее стойки, чем кокки. Развитие некоторых возбудителей пищевых отравлений (ботулинуса, сальмонелл) приостанавливается при 6-10% соли, но некоторые из них могут долго сохранять жизнеспособность даже при 20%. Микроорганизмы, нормально развивающиеся при высоких концентрациях поваренной соли (20% и выше) называют галофилами (солелюбивыми).

Концентрация соли, влияющая на развитие микроорганизмов, зависит от других условий среды (рН, температура). Развитие дрожжей в соленых продуктах подавляется в кислой среде при содержании соли 14%, а в нейтральной только при 20%. При понижении температуры подавляющее действие соли усиливается. При температуре 0 °С и 8% соли угнетается рост мицелиальных грибов, а при 20°С необходимо 12% соли для такого же эффекта. Имеются сведения об усилении действия поваренной соли в присутствии нитратов и нитритов.

Подавляющее воздействие соли на рост микроорганизмов объясняется не только повышением осмотического давления. Поваренная соль оказывает токсическое действие на микроорганизмы: подавляются процессы дыхания, нарушаются функции клеточных мембран и др.

Поскольку многие микроорганизмы в плазмолизированном состоянии длительное время не погибают, приостанавливается лишь их активная деятельность, к перерабатываемому сырью необходимо предъявлять строгие санитарно-гигиенические требования. Порча соленых товаров (мясо, рыба и др.) часто возможна под влиянием галофильных и солеустойчивых микроорганизмов. Для задержки развития микроорганизмов соленые товары необходимо хранить при низких температурах.

Лучистая энергия. Различные формы лучистой энергии оказывают на микроорганизмы разнообразное физическое, химическое и биологическое действие. Биологическое действие излучения зависит от длины волны, чем она короче, тем в ней больше заключено энергии, тем сильнее воздействие на организм. В основе действия лежат физические и химические изменения, происходящие в клетках микроорганизмов и в окружающей среде. Изменения могут быть вызваны только поглощенными лучами. Следовательно, для эффективности действия излучения большое значение имеет проникающая способность лучей.

Солнечный свет обладает наибольшим потенциалом вредного воздействия на микроорганизмы. Способностью использовать энергию солнечного света обладают лишь пигментобразующие формы бактерий. Микроорганизмы, не имеющие пигмента, погибают под действием прямых солнечных лучей. Рассеянный солнечный свет подавляет их развитие постепенно. Однако, развитие многих мицелиальных грибов при постоянном отсутствии света протекает ненормально, хорошо развивается только мицелий, а спорообразование только тормозится. Под влиянием солнечных лучей происходят внутриклеточные химические реакции с образованием гидроксильных радикалов и других высокореактивных веществ, действующих губительно на микробную клетку.

Ультрафиолетовые лучи (УФ-лучи) обладают или бактерицидным или мутагенным действием. Это вызывается изменениями в структуре ДНК. Из всех микроорганизмов наиболее чувствительны к УФ-лучам вегетативные формы бактерий, а споры бацилл в 4-5 раз более устойчивы. Очень чувствительны к УФ-лучам патогенные микроорганизмы.

В настоящее время УФ-лучи довольно широко применяются для дизенфекции воздуха микробиологических боксов, холодильных камер и производственных помещений. Искусственным источником ультрафиолетового излучения служат аргонно-ртутные лампы низкого давления, называемые бактерицидными (БУФ-15, 30, 60). При обработке УФ-лучами в течение 6 часов уничтожаются до 80% бактерий и мицелиальных грибов, находящихся в воздухе. Такие лучами могут быть использованы для предотвращения инфекции извне, при розливе, фасовке и упаковке пищевых продуктов, лечебных препаратов, а так же для обеззараживания тары упаковочных материалов, оборудования, посуды(на предприятиях общественного питания).

Для некоторых продуктов, таких как сливочное масло, молоко, стерилизация УФ-лучами неприемлема. В результате такой обработки ухудшаются вкусовые и пищевые свойства таких продуктов.

Космические и рентгеновские лучи представлены ионизирующими излучениями с длиной волны от 0,006 до 10 нм. Они оказывают мутагенное или летальное действие. К действию таких лучей наиболее чувствительны ядерные структуры, хотя повреждаются и цитоплазматические структуры клеток.

Искусственное ионизирующее излучение (б- и в-частицы, q-лучи) возникает в результате атомных электростанций, испытаний ядерного оружия, применения радиоактивных изотопов в научных целях. Микроорганизмы более устойчивы к излучениям, чем высшие животные и растительные организмы. Дрожжи и плесени более устойчивы, чем бактерии.

Радиоволны. Короткие электромагнитные волны длиной от 10 до 50 м, ультракороткие длиной от 10м до мм обладают стерилизующим эффектом. При прохождении коротких и ультракоротких радиоволн через среду возникают переменные токи высокой частоты (ВЧ) и сверхвысокой частоты (СВЧ). В электромагнитном поле электрическая энергия преобразуется в тепловую.

Характер нагревания в СВЧ поле отличается от характера нагрева от обычных нагреваний и обладает рядом преимуществ. Объект нагревается быстро и равномерно по всей массе. Сверхвысокочастотную электромагнитную обработку пищевых продуктов все шире применяют в общественном питании (для варки, сушки, выпечки, при разогревании др.)

Давление и механическое сотрясение. Микроорганизмы не испытывают значительных изменений под влиянием даже очень больших давлений, но есть группы микроорганизмов, которые развиваются только при избыточных давлениях. Их называют барофильными (в глубинах морей и океанов). К механическим сотрясениям они чувствительны, если они сильные и длительные. Так, самоочищение бурных рек происходит в результате гибели микроорганизмов под воздействием сильных толчков воды.

Ультразвук. Ультразвуком называют механические колебания с частотами более 20000 колебаний в секунду (20кГЦ). Колебания такой частоты находятся за пределами слышимости человека. Ультразвуковые волны могут распространяться в твердых, жидких и газовых средах. Обладают большой механической энергией и вызывают ряд физических, химических и биологических явлений. Механизм бактерицидного действия ультразвука объясняется двумя теориями: кавитационно-механической и кавитационно-электрохимической.

Устойчивость микроорганизмов к действию ультразвука зависит от их биологических свойств. Вегетативные клетки более чувствительны, чем споры, кокковые формы погибают медленнее, чем палочковидные. Более крупные клетки микроорганизмов отмирают быстрее, чем мелкие. Ультразвук применяют для стерилизации пищевых продуктов (молоко, фруктовые соки, вина), изготовления вакцин, мойки и стерилизации стеклянной тары, а также при извлечении внутриклеточных ферментов, токсинов, витаминов, нуклеиновых кислот и других компонентов клетки.

2. Микробиология молока и молочных продуктов

Микробы попадают в молоко уже в момент выдаивания. Происхождение микрофлоры молока очень разнообразно. Некоторые микробы обитают в каналах сосков вымени и поэтому всегда находятся в выдоенном молоке. Кроме того, в молоко попадает множество микробов с поверхности вымени, шерсти животных, с рук доилыциков, с унавоженной подстилки, инвентаря и т. д., микробы могут заноситься в молоко мухами. За счет этих источников количество микробов в 1 мл после доения увеличивается с нескольких тысяч до десятков и сотен тысяч после обработки -- фильтрации, охлаждения и разлива. В результате формируется очень богатая по составу микрофлора. Быстрое охлаждение является обязательной операцией, в противном случае в неохлажденном молоке развитие микрофлоры происходит быстро. Этому способствует благоприятный химический состав молока. В неохлажденном молоке за 24 ч численность микрофлоры увеличивается в 2-3 раза. При охлаждении до 3-8°С наблюдается обратная картина - уменьшение количества микроорганизмов, происходящее под влиянием бактерицидных веществ, содержащихся в свежевыдоенном молоке. Период задержки развития микробов или их отмирания в молоке (бактерицидная фаза) тем продолжительнее, чем ниже температура хранящегося молока, чем меньше в нем микробов. Обычно эта фаза длится от 2 до 40 ч.

В дальнейшем наступает быстрое развитие всех микробов. Однако молочно-кислые бактерии, если они до этого находились даже в меньшинстве, постепенно становятся преобладающими. Это объясняется тем, что они используют молочный сахар, недоступный большинству прочих, микроорганизмов, а также тем, что молочная кислота и выделяемые некоторыми из них вещества - антибиотики (низин) угнетают развитие всех остальных микробов. Постепенно под влиянием накопившейся молочной кислоты прекращается размножение и молочно-кислых бактерий. В молоке, подвергшемся сквашиванию, создаются условия для развития плесневых грибов.

Активнее всего развиваются оидиум, пенициллиум и различные дрожжи. Потребляя кислоты, опресняя этим продукты, плесневые грибы создают возможность вторичного заселения объекта гнилостными бактериями. В конечном счете происходит полная гнилостная порча молока.

В пастеризованном молоке, кратковременно нагретом до 63-90°С, последовательность смены микрофлоры резко меняется. Почти все молочно-кислые бактерии погибают, и полностью разрушаются бактерицидные вещества молока. В то же время сохраняются термостойкие и споровые формы микроорганизмов. Поэтому через некоторое время в таком молоке может начаться бурное размножение сохранившейся разнообразной микрофлоры. Отсутствие бактерицидных веществ, малочисленность или полное отсутствие молочно-кислых бактерий делают молоко «беззащитным». В этих условиях скисание, молока может не произойти, но даже незначительное обсеменение гнилостными или болезнетворными бактериями приводит его к порче, делает опасным для употребления. В этой связи ясно, почему при торговле пастеризованным молоком необходимо особенно строго выполнять санитарно-гигиенические требования и соблюдать температурные режимы хранения.

В последние годы в реализацию поступает много стерилизованного молока. При стерилизации полностью уничтожается микрофлора и молоку придается высокая стойкость при хранении. Для приготовления стерилизованного молока используют малообсемененное, абсолютно свежее, предварительно гомогенизированное сырое молоко. Однократная стерилизация его проводится при 140°С в течение нескольких секунд. Поэтому в. молоке сохраняются все биологические свойства, мало разрушаются даже витамины - С, В1, В6, B12.

При использовании молока низкого качества могут сохраняться споры сенной и картофельной палочек, бациллы цереус и др. Они способны вызывать порчу стерилизованного молока, разлагая в нем белки.

Помимо рассмотренной выше нормальной микрофлоры молока, следует учитывать возможность формирования в нем микрофлоры необычной, т. е. анормальной. К ней относят возбудителей различных инфекций -- брюшного тифа, дизентерии, бруцеллеза и др., а также микробов, вызывающих появление в молоке горького, соленого, мылистого вкуса, синего или красноватого цвета и др.

Микробиология молочных продуктов. Сгущенное молоко представляет собой стойкий продукт. В процессе нагрева и стерилизации упакованного в банки молока в нем отмирает большинство микроорганизмов. Жизнеспособность сохраняют только некоторые споровые.

Микробиологическая порча чаще всего возникает при использовании непригодного, т. е. сильно обсемененного микробами, сырья. Развитие споровых бактерий и реже термофильных грибов приводит к забраживанию и гнилостным процессам в сгущенном молоке.

Менее жесткие требования по обсемененности микрофлорой и кислотности предъявляются к сырому молоку, используемому для выработки сгущенного молока с сахаром. Действие второго консервирующего фактора - высокого осмотического давления, создаваемого сахаром, препятствует прорастанию к развитию спор. Такое молоко микробиологической порче подвергается редко.

Сухое молоко имеет более обильную микрофлору, чем сгущенное. Это объясняется кратковременностью нагрева и невысокой температурой при сушке. В молочном порошке сохраняются все виды споровых микроорганизмов, термоустойчивые неспоровые виды микрококков, стрептококков, некоторые молочно-кислые бактерии, споры плесневых грибов. Эта нормальная микрофлора может вызывать порчу - прокисание, плесневение и т. д.- лишь при значительном увлажнении сухого молока.

Обнаружение в сухом молоке нетермостойких форм - кишечной палочки и патогенных стрептококков - может свидетельствовать об использовании низкокачественного сырья, несоблюдении термического режима обработки, нарушении санитарных норм при расфасовке и упаковке.

Микробиология кисло-молочных продуктов. Определяется она в первую очередь составом применяемых заводских заквасок, микрофлорой используемого молока и санитарно-гигиеническим состоянием производственного оборудования - вместимостей для молока, трубопроводов и др.

Для приготовления, кисло-молочных продуктов в пастеризованное охлажденное молоко вносят закваски чистой культуры того или иного вида или смеси чистых культур нескольких видов молочно-кислых бактерий. Для производства кефира и кумыса используют закваски, в составе которых имеются еще и дрожжи.

Применение чистых культур различных возбудителей молочно-кислого брожения обеспечивает получение готовых продуктов высокого качества с определенными стабильными свойствами. Примесь случайной микрофлоры ухудшает качество этих продуктов.

Микрофлора сыров представлена в основном микроорганизмами, принимавшими участие в сквашивании молока и в процессах созревания. Микрофлора, развившаяся из закваски, сохраняется лишь частично, так как значительная ее часть во время продолжительного второго подогрева сырного зерна (до 40-57 °С) гибнет. В 1 г сырного зерна сохраняется до 100 млн. клеток. В дальнейшем при прессовании число их в несколько раз увеличивается. Образование корки на сыре, просолка препятствуют развитию микрофлоры на поверхности. Дальнейшее развитие микробиологических процессов - молочно-кислого и пропионово-кислого брожений - идет при созревании сыров. Развиваются эти анаэробные процессы внутри и постепенно захватывают периферийные части сыра. В зависимости от температуры, влажности, солености, плотности головок, количества остаточного сахара и других факторов преимущественно идет тот или иной процесс, от чего и зависят специфические потребительские достоинства сыров. К концу созревания количество молочно-кислых бактерий снижается и увеличивается число пропионово-кислых. Вызываемый ими слабый протеолиз белков, накопление различных кислот, образование глазков за счет умеренного углекислого газа формируют вкус, аромат, консистенцию и рисунок сырного теста.

У мягких, слизистых сыров в отличие от твердых процесс созревания идет от поверхности внутрь. В созревании участвуют различные аэробные, и условно-анаэробные бактерии и плесневые грибы. Общее количество бактерий в 1 г сыра составляет миллиарды клеток.

В сырах могут оказываться и некоторые споровые микроорганизмы, например масляно-кислые. Обильно выделяя углекислый газ и водород, они могут вызывать образование неправильного рисунка, вспучивание, растрескивание головок сыров, придавать им несвойственный вкус. При хранении сыров в условиях повышенной влажности в местах повреждения корки они могут поражаться плесневыми грибами. Порча постепенно развивается вглубь и сопровождается размягчением сыров, образованием пушистого налета на поверхности, появлением неприятного запаха.

Основной микрофлорой кисломолочных продуктов является молочнокислые бактерии и дрожжи. В лабораториях микроорганизмы выделяют в чистом виде и специально выращивают (культивируют). Такие микроорганизмы, выращиваемые в специальных целях, называются «культурами» (культура молочнокислого стрептококка).

Молоко, сквашенное путем внесения в него определенных культур молочнокислых бактерий или дрожжей, называется закваской и предназначается для сквашивания молока при производстве кисломолочных продуктов. Для приготовления заквасок применяются следующие чистые молочнокислые культуры и дрожжи: молочный стрептококк (S. Lactis), болгарская палочка (L. Bulgaricus), ацидофильная палочка (L. acidophilus), ароматообразующие бактерии (S. diacetylactis, L. cremoris, S. acetoinicus, S. cremoris) и молочные дрожжи (Torula), сбраживающие лактозу, бифидобактерии и другие пробиотические культуры.

Молочнокислые стрептококки повышают кислотность молока до 120 °Т, молочнокислые палочки (болгарская и ацидофильная) -- до 200-300 °Т и являются наиболее сильными кислотообразователями.

Для приготовления производственных заквасок применяют закваски чистых культур молочнокислых бактерий, которые могут быть жидкими и сухими. На жидких или сухих заквасках сначала готовят первичную (лабораторную) закваску. Для этого в стерильное молоко вносят порцию жидкой или сухой закваски, перемешивают и выдерживают в термостатах при температуре, являющейся оптимальной для данного вида культур.

Из первичной (лабораторной) закваски готовят вторичную (пересадочную), для этого 5% первичной закваски вносят в охлажденное молоко и выдерживают при температуре сквашивания. Вторичную закваску можно использовать как основную для получения производственной закваски.

Кислотность производственной закваски на молочнокислых стрептококках должна быть 90-100 °Т, на молочнокислых палочках 100-110°Т.

Перед использованием закваски проверяют ее органолептические показатели. Доброкачественная закваска должна достаточно быстро сквашивать молоко, иметь чистый вкус и запах.

Сгусток должен быть однородным, достаточно плотным, без газообразования и выделившейся сыворотки.

Для приготовления лабораторной закваски при производстве кефира используются кефирные грибки (зерна), микрофлора которых представляет собой симбиоз молочнокислых стрептококков и палочек, ароматообразующих бактерий и молочных дрожжей, микодермы и уксуснокислых бактерий.

Активность и чистота заквасок во многом определяют качество готового продукта.

При снижении активности заквасок (продолжительности свертывания) молоко не сквашивается или образуется дряблый сгусток. При развитии термоустойчивых молочнокислых палочек появляется излишняя кислотность продукта. Дрожжи, участвующие в созревании кефира, кумыса, ацидофильно-дрожжевого молока, при излишнем размножении вызывают вспучивание этих продуктов. Попадание уксуснокислых бактерий в сметану, творог может вызвать пороки консистенции.

Размещено на Allbest.ru


Подобные документы

  • Понятие о молоке: физиологические свойства, основные компоненты; водорастворимые витамины. Значение молочных продуктов в жизни человека. Технология обработки молока: охлаждение, пастеризация, гомогенизация, стерилизация; производство кефира, простокваши.

    контрольная работа [28,7 K], добавлен 19.06.2013

  • Значение сепарирования молока в биотехнологии производства молочных продуктов. Методы сепарирования, их преимущества и недостатки. Характеристика оборудования и технологий. Учет продукции, оценка качественных показателей и составление жирового баланса.

    контрольная работа [394,7 K], добавлен 09.12.2014

  • Пищевая ценность сухих молочных продуктов. Технология приготовления, качество сырья, соблюдение условий хранения, использование надежной тары - главное условие производства. Методы оценки качества сухих молочных продуктов, отбор проб и проведение анализа.

    реферат [22,5 K], добавлен 05.04.2009

  • Пути повышения пищевой и биологической ценности кисломолочных продуктов. Роль молочнокислых бактерий в производстве кисломолочных продуктов. Добавки, повышающие пищевую и биологическую ценность молочных продуктов. Свойства облепихи и ее использование.

    дипломная работа [94,7 K], добавлен 04.06.2009

  • Показатели микробиологической безопасности молочных продуктов. Контроль качества молока и кисломолочных продуктов. Метод определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов, дрожжей, плесневых грибов, бифидобактерий.

    дипломная работа [143,4 K], добавлен 11.10.2015

  • Качество молока, поступающего для промышленной переработки на предприятия молочной промышленности. Органолептические показатели молока-сырья. Характеристика ассортимента и переработка молока. Продуктовый расчет молока цельного сгущенного с сахаром.

    курсовая работа [358,0 K], добавлен 15.04.2012

  • Разработка бизнес-плана как этап на пути привлечения кредитов или инвестиций. Определение основных потоков платежей при реализации бизнес-плана в ОАО "Яранский комбинат молочных продуктов", источников финансирования, его эффективности для производства.

    курсовая работа [103,3 K], добавлен 25.02.2009

  • Расчет устойчивости одноконтурной системы регулирования. Технологический процесс восстановления молока. Выбор средств его автоматического контроля и регулирования. Описание установки для растворения сухих молочных продуктов и емкости для хранения молока.

    курсовая работа [1,1 M], добавлен 14.01.2015

  • Понятие, структура и основные элементы, технологическое назначение насосов для молока. Работа насосов для молока и молочных продуктов, их разновидности, оценка преимуществ и недостатков каждого их них. Методика и этапы расчета насосной установки.

    курсовая работа [1,5 M], добавлен 20.05.2011

  • Оборудование для сгущения молока и молочных продуктов. Технология сушки обезжиренного молока. Расчет распылительной сушильной установки. Расход греющего пара в калорифере. Оборудование для проведения технологических операций, предшествующих сушке.

    курсовая работа [40,1 K], добавлен 22.08.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.