Расчет выпарной установки непрерывного концентрирования водного раствора КОН

Устройство выпарных установок, их классификация. Выпарные аппараты с неорганизованной, направленной естественной и принудительной циркуляцией. Тепловой баланс выпарного аппарата, расчет поверхности его теплообмена. Выбор выпарного аппарата по каталогу.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 21.10.2017
Размер файла 146,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

33

Размещено на http://www.allbest.ru/

Министерство образования РФ

Санкт-Петербургский технологический институт

Кафедра процессов и аппаратов химической технологии

Курсовая работа

Тема: Расчет выпарной установки непрерывного концентрирования водного раствора КОН

С-Петербург 2002 г.

Оглавление

  • Введение
  • 1. Аналитический обзор
  • Устройство выпарных аппаратов
  • Вертикальные аппараты с направленной естественной циркуляцией
  • Аппараты с внутренней нагревательной камерой и центральной циркуляционной трубой
  • Аппараты с выносными циркуляционными трубами
  • Аппараты с выносной нагревательной камерой
  • Аппараты с вынесенной зоной кипения
  • Области применения выпарных аппаратов
  • 2. Технологическая часть
  • Описание технологической схемы
  • 3. Технологические расчеты
  • 3. 1 Расчёт выпарного аппарата
  • 3.1.1 Материальный баланс процесса выпаривания
  • 3.1.3 Тепловой баланс выпарного аппарата
  • 3.1.3.1 Расход теплоты на компенсацию потерь в окружающую среду
  • 3.1.3.2 Расход теплоты на испарение
  • 3.1.4 Расчёт поверхности теплообмена выпарного аппарата
  • 3.1.5 Выбор выпарного аппарата по каталогу
  • 3.2 Ориентировочный расчет теплообменного аппарата для подогрева исходного раствора перед подачей в выпарной аппарат
  • 3.2.1 Определение средних температур теплоносителей
  • 3.2.2 Тепловой баланс подогревателя
  • 3.2.3 Ориентировочный расчет подогревателя
  • 3.2.4 Параметры теплоносителей необходимые для уточнённого расчёта подогревателя
  • 3.2.5 Ориентировочный выбор подогревателя
  • 3.2.6 Параметры подогревателя необходимые для уточнённого расчёта
  • 3.2.7 Уточнённый расчет подогревателя на ЭВМ
  • 3.2.8 Расчёт гидравлического сопротивления кожухотрубчатых теплообменников
  • 3.2.9 Выбор аппарата по каталогу
  • 3.4 Расчёт барометрического конденсатора
  • 3.4.1 Расход охлаждающей воды
  • 3.4.2 Диаметр барометрического конденсатора
  • 3.4.3 Выбор барометрического конденсатора
  • 3.4.3 Высота барометрической трубы
  • 3.5 Расчет производительности вакуум-насоса
  • Выводы по курсовому проекту
  • Литература

Введение

Выпаривание - это процесс концентрирования растворов твердых нелетучих веществ путем частичного испарения растворителя при кипении жидкости.

Выпаривание применяют для концентрирования растворов нелетучих веществ, выделения из растворов чистого растворителя (дистилляция) и кристаллизации растворенных веществ, т.е. нелетучих веществ в твердом виде.

В качестве примера выпаривания с выделением чистого растворителя из раствора можно привести опреснение морской воды, когда образующийся водяной пар конденсируют и полученную воду используют для различных целей.

Для нагревания выпариваемых растворов до кипения используют топочные газы, электрообогрев и высокотемпературные теплоносители, но наибольшее применение находит водяной пар, характеризующийся высокой удельной теплотой конденсации и высоким коэффициентом теплоотдачи.

Процесс выпаривания проводится в выпарных аппаратах. По принципу работы выпарные аппараты разделяются на периодические и непрерывно действующие.

Периодическое выпаривание применяется при малой производительности установки или для получения высоких концентраций. При этом подаваемый в аппарат раствор выпаривается до необходимой концентрации, сливается и аппарат загружается новой порцией исходного раствора.

В установках непрерывного действия исходный раствор непрерывно подается в аппарат, а упаренный раствор непрерывно выводится из него.

В химической промышленности в основном применяют непрерывно действующие выпарные установки с высокой производительностью за счет большой поверхности нагрева (до 2500 м2 в единичном аппарате).

Наибольшее применение в химической технологии нашли выпарные аппараты поверхностного типа, особенно вертикальные трубчатые выпарные аппараты с паровым обогревом непрерывного действия.

В зависимости от режима движения кипящей жидкости в выпарных аппаратах их разделяют на аппараты со свободной, естественной и принудительной циркуляцией, пленочные выпарные аппараты, к которым относятся и аппараты роторного типа.

В данном проекте используется аппарат с естественной циркуляцией, с вынесенной греющей камерой и трубой вскипания. В этом аппарате циркуляция раствора осуществляется за счет различия плотностей в отдельных точках аппарата. Выпариваемый раствор, поднимаясь по трубам, нагревается и по мере подъема вскипает. Образовавшаяся парожидкостная смесь направляется в сепаратор, где происходит разделение жидкой и паровой фаз.

Высота парового пространства должна обеспечивать сепарацию из пара капелек жидкости, выбрасываемых из кипятильных труб.

Вторичный пар, проходя сепаратор и брызгоотделитель, освобождается от капель, а раствор возвращается по циркуляционной трубе в греющую камеру.

В таких аппаратах облегчается очистка поверхности от отложений, т.к. доступ к трубам легко осуществляется при открытой верхней крышке греющей камеры.

Поскольку циркуляционная труба не обогревается, создаются условия для интенсивной циркуляции раствора. При этом плотность раствора в выносной циркуляционной трубе больше, чем в циркуляционных трубах, размещенных в греющих камерах, что обеспечивает сравнительно высокую скорость циркуляции раствора и препятствует образованию отложений на поверхности нагрева.

1. Аналитический обзор

Устройство выпарных аппаратов

Разнообразные конструкции выпарных аппаратов применяемых в промышленности, можно классифицировать по типу поверхности нагрева (паровые рубашки, змеевики, трубчатки различных видов), по её расположению в пространстве (аппараты с горизонтальной, вертикальной, иногда с наклонной нагревательной камерой), по роду теплоносителя (водяной пар, высокотемпературные теплоносители, электрический ток и др.), а также в зависимости от того, движется ли теплоноситель снаружи или внутри труб нагревательной камеры. Однако более существенным признаком классификации выпарных аппаратов, характеризующим интенсивность их действия, следует считать вид и кратность циркуляции раствора.

Различают выпарные аппараты с неорганизованной или свободной, направленной естественной и принудительной циркуляцией.

Выпарные аппараты делят также на аппараты прямоточные, в которых выпаривание раствора происходит за один его проход через аппарат без циркуляции раствора и аппараты, работающие с многократной циркуляцией раствора.

В зависимости от организации процесса различают периодически и непрерывно действующие аппараты.

Ниже подробно рассмотрены лишь наиболее распространённые, главным образом типовые конструкции аппаратов.

Вертикальные аппараты с направленной естественной циркуляцией

В аппаратах данного типа выпаривание осуществляется при многократной естественной циркуляции раствора. Они обладают рядом преимуществ сравнительно с аппаратами других конструкций, благодаря чему получили широкое распространение в промышленности.

Основным достоинством таких аппаратов является улучшение теплоотдачи к раствору при его многократно организованной циркуляции в замкнутом контуре, уменьшающей скорость отложения накипи на поверхности труб. Кроме того большинство этих аппаратов компактны, занимают небольшую производственную площадь, удобны для осмотра и ремонта. Как будет показано ниже, развитие конструкции таких аппаратов происходит в направлении усиления естественной циркуляции. Последнее возможно путём увеличения разности весов столбов жидкости в опускной трубе и парожидкостной смеси в подъёмной части контура. Это достигается посредствам:

увеличения высоты кипятильных (подъёмных) труб и повышения интенсивности парообразования в них с целью уменьшения плотности парожидкостной смеси, образующейся из кипящего раствора;

улучшения естественного охлаждения циркуляционной трубы для того, чтобы опускающаяся в ней жидкость имела возможно большую плотность;

поддержания в опускной трубе определённого уровня жидкости, необходимого для уравновешения столба паро-жидкостной смеси в подъёмных трубах при заданной скорости её движения.

Аппараты с внутренней нагревательной камерой и центральной циркуляционной трубой

В нижней части вертикального корпуса / Приложение 1, рис. 1/находится нагревательная камера 2, состоящая из двух трубных решёток, в которых закреплены, чаще всего развальцованы, кипятильные трубы 3 (длиной 2-4 м) и циркуляционная труба 4 большого диаметра, установленная по оси камеры. В межтрубное пространство нагревательной камеры подаётся греющий пар.

Раствор поступает в аппарат над верхней трубной решеткой и опускается по циркуляционной трубе вниз, затем поднимается по кипятильным трубам и на некотором расстоянии от их нижнего края вскипает. Поэтому на большей части длины труб происходит движение вверх паро-жидкостной смеси, содержание пара в которой возрастает по мере её движения. Вторичный пар поступает в сепарационное (паровое) пространство 5, где с помощью брызгоуловителя 6, изменяющего направление движения парового потока, от пара под действием инерционных сил отделяется унесённая им влага, после этого вторичный пар удаляется через штуцер сверху аппарата.

Упаренный раствор удаляется через нижний штуцер конического днища аппарата в качестве промежуточного или конечного продукта.

Как отмечалось, циркуляция раствора в аппарате происходит вследствие разности плотностей раствора в циркуляционной трубе и паро-жидкостной смеси в кипятильных трубах. Возникновение достаточной разности плотностей обусловлено тем, что поверхность теплообмена каждой кипятильной трубы, приходящаяся на единицу объёма упаренного раствора, значительно больше, чем у циркуляционной трубы, так как поверхность трубы находится в линейной зависимости от её диаметра, а объём жидкости в трубе пропорционален квадрату её диаметра. Следовательно, парообразование в кипятильных трубах должно протекать значительно интенсивней, чем в циркуляционной трубе, а плотность раствора в них будет ниже, чем в этой трубе. В результате обеспечивается естественная циркуляция, улучшающая теплопередачу и препятствующая образованию накипи на поверхности теплообмена.

В аппаратах этой конструкции циркуляционная труба, как и кипятильные трубы, обогревается паром, что снижает разность плотностей раствора и парожидкостной смеси, это может приводить к нежелательному парообразованию в самой циркуляционной трубе. Их недостатком также является жесткое крепление труб, не допускающее значительной разности тепловых удлинений труб и корпуса аппарата.

Аппараты с выносными циркуляционными трубами

Как отмечалось, естественная циркуляция раствора может быть усилена, если раствор, на опускном участке циркуляционного контура будет охлаждаться. Этим увеличивается скорость естественной циркуляции в выпарных аппаратах с выносными циркуляционными трубами / Приложение 1, рис 2 /. При расположении циркуляционных труб вне корпуса аппарата диаметр нагревательной камеры 1 может быть уменьшен по сравнению с камерой аппарата / Приложение 1, рис. 1 /, а циркуляционные трубы 2 компактно размещены вокруг нагревательной камеры. На рис. 2, показан аппарат с одной циркуляционной трубой, причём центробежный брызгоуловитель 3 для осушки вторичного пара также вынесен за пределы сепарационного (парового) пространства 4 аппарата.

Конструкции таких аппаратов несколько более сложны, но в них достигается более интенсивная теплопередача и уменьшается расход металла на 1 м2 поверхности нагрева по сравнению с аппаратами с подвесной нагревательной камерой или центральной циркуляционной трубой.

Аппараты с выносной нагревательной камерой

При размещении нагревательной камеры вне корпуса аппарата имеется возможность повысить интенсивность выпаривания не только за счёт увеличения разности плотностей жидкости и паро-жидкостной смеси в циркуляционном контуре, но и за счет увеличения длины кипятильных труб.

Аппарат с выносной нагревательной камерой / Приложение 1, рис. 3 /, имеет кипятильные трубы, длина которых часто достигает 7 м. Он работает при более интенсивной естественной циркуляции, обусловленной тем, что циркуляционная труба не обогревается, а подъёмный и опускной участки циркуляционного контура имеют значительную высоту.

Выносная нагревательная камера 1 легко отделяется от корпуса аппарата, что облегчает и ускоряет её чистку и ремонт. Ревизию и ремонт нагревательной камеры можно производить без полной остановки аппарата (а лишь при снижении его производительности), если присоединить к его корпусу две нагревательные камеры.

Исходный раствор поступает под нижнюю трубную решетку нагревательной камеры и, поднимаясь по кипятильным трубам, выпаривается. Иногда подачу раствора производят так, как указано на рисунке, в циркуляционную трубу. Вторичный пар отделяется от жидкости в сепараторе 2. Жидкость опускается по не обогреваемой циркуляционной трубе 3, смешивается с исходным раствором, и цикл циркуляции повторяется снова. Вторичный пар, пройдя брызгоуловитель 4, удаляется сверху сепаратора. Упаренный раствор отбирается через боковой штуцер в коническом днище сепаратора.

Скорость циркуляции в аппаратах с выносной нагревательной камерой может достигать 1. 5 м/с, что позволяет выпаривать в них концентрированные и кристаллизующиеся растворы, не опасаясь слишком быстрого загрязнения поверхности теплообмена. Благодаря универсальности, удобству эксплуатации и хорошей теплопередачи аппараты такого типа получили широкое распространение.

В некоторых конструкциях аппаратов с выносной нагревательной камерой циркуляционная труба отсутствует. Такие аппараты аналогичны аппарату, приведенному на рис. 3, у которого удалена циркуляционная труба.

В этом случае выпаривание происходит за один проход раствора через нагревательную камеру, т.е. Аппарат работает как прямоточный. Выпарные аппараты прямоточного типа не пригодны для выпаривания кристаллизирующихся растворов.

Аппараты с вынесенной зоной кипения

При скоростях 0. 25-1. 5 м/с с которыми движется раствор в аппаратах с естественной циркуляцией, описанных ранее, не удаётся предотвратить отложения твердых осадков на поверхности теплообмена. Поэтому требуется периодическая остановка аппарата для очистки, что связано со снижением их производительности и увеличением стоимости эксплуатации.

Загрязнение поверхности теплообмена при выпаривании кристаллизирующихся растворов можно значительно уменьшить путём увеличения скорости циркуляции раствора и вынесением зоны его кипения за пределы нагревательной камеры.

В аппарате с вынесенной зоной кипения / Приложение 1, рис. 4 /, выпариваемый раствор поступает снизу в нагревательную камеру 1 и, поднимаясь по трубам (длиной 4-7 м) вверх, вследствие гидростатического давления не закипает в них. По выходе из кипятильных труб раствор поступает в расширяющуюся кверху трубу вскипания 2, установленную над нагревательной камерой в нижней части сепаратора 3. Вследствие понижения давления в этой трубе раствор вскипает и, таким образом, парообразование происходит за пределами нагрева.

Циркулирующий раствор опускается по наружной не обогреваемой трубе 4. Упаренный раствор отводится из кармана в нижней части сепаратора 3. Вторичный пар пройдя отбойник 5 и брызгоуловитель 6, удаляется сверху аппарата. Исходный раствор поступает либо в нижнюю часть аппарата (под трубную решетку нагревательной камеры), либо сверху в циркуляционную трубу 4.

Вследствие большой поверхности испарения, которая создаётся в объёме кипящего раствора и частичного самоиспарения капель, унесённых вторичным паром, значительно снижается брызгоунос. Кипящий раствор не соприкасается с поверхностью теплообмена, что уменьшает отложение накипи.

Ввиду значительного перепада температур (до 30°С) между греющим паром и раствором и малой потери напора в зоне кипения скорость циркуляции в этих аппаратах достигает 1. 8-2 м/с.

Увеличение скорости приводит к увеличению производительности и интенсификации теплообмена. Коэффициенты теплопередачи в таких аппаратах достигают 3000 вт/ (м2 К).

Аппараты с вынесенной зоной кипения могут эффективно применяться для выпаривания кристаллизующихся растворов умеренной вязкости.

Области применения выпарных аппаратов

Конструкция выпарного аппарата должна удовлетворять ряду общих требований, к числу которых относятся: высокая производительность и интенсивность теплопередачи при возможно меньших объёме аппарата и расходе металла на его изготовление, простота устройства, надёжность в эксплуатации, легкость очистки поверхности теплообмена, удобство осмотра, ремонта и замены отдельных частей.

Вместе с тем выбор конструкции и материала выпарного аппарата определяется в каждом конкретном случае физико-химическими свойствами выпариваемого раствора (вязкость, температурная депрессия, кристаллизуемость, термическая стойкость, химическая агрессивность и др.)

Как указывалось, высокие коэффициенты теплопередачи и большие производительности достигаются путём увеличения скорости циркуляции раствора. Однако одновременно возрастает расход энергии на выпаривание и уменьшается полезная разность температур, т.к. при постоянной температуре греющего пара с возрастанием гидравлического сопротивления увеличивается температура кипения раствора. Противоречивое влияние этих факторов должно учитываться при технико-экономическом сравнении аппаратов и выборе оптимальной конструкции.

выпарная установка аппарат теплообмен

Ниже приводятся области преимущественного использования выпарных аппаратов различных типов.

Для выпаривания растворов небольшой вязкости ~8 10-3 Па с, без образования кристаллов чаще всего используются вертикальные выпарные аппараты с многократной естественной циркуляцией. Из них наиболее эффективны аппараты с выносной нагревательной камерой и с выносными необогреваемыми циркуляционными трубами.

Выпаривание некристаллизующихся растворов большой вязкости, достигающей порядка ~0. 1 Па с, производят в аппаратах с принудительной циркуляцией, реже - в прямоточных аппаратах с падающей плёнкой или в роторных прямоточных аппаратах.

В роторных прямоточных аппаратах, как отмечалось, обеспечиваются благоприятные условия для выпаривания растворов, чувствительных к повышенным температурам.

Аппараты с принудительной циркуляцией широко применяются для выпаривания кристаллизующихся или вязких растворов. Подобные растворы могут эффективно выпариваться и в аппаратах с вынесенной зоной кипения, работающих при естественной циркуляции. Эти аппараты при выпаривании кристаллизирующихся растворов могут конкурировать с выпарными аппаратами с принудительной циркуляцией.

Для сильно пенящихся растворов рекомендуется применять аппараты с поднимающейся пленкой.

2. Технологическая часть

Описание технологической схемы

В однокорпусной выпарной установке подвергается выпариванию водный раствор карбоната калия под вакуумом.

Исходный раствор КОН из емкости Е1 подается центробежным насосом Н в теплообменник АТ, где подогревается до температуры, близкой к температуре кипения, затем поступает в греющую камеру выпарного аппарата АВ. В данном варианте схемы применен выпарной аппарат с вынесенной греющей камерой и кипением в трубах. Предварительный подогрев раствора повышает интенсивность кипения. Выпариваемый раствор, нагревается и кипит с образованием вторичного пара. Отделение пара от жидкости происходит в сепараторе выпарного аппарата. Освобожденный от брызг и капель вторичный пар удаляется из верхней части сепаратора.

Движение раствора и вторичного пара осуществляется вследствие перепада давлений, создаваемого барометрическим конденсатором КБ и вакуум-насосом НВ. В барометрическом конденсаторе КБ вода и пар движутся в противоположных направлениях (пар - снизу, вода - сверху). Для увеличения поверхности контакта фаз конденсатор снабжен переливными полками. Смесь охлаждающей воды и конденсата выводится из конденсатора самотеком по барометрической трубе с гидрозатвором. Конденсат греющих паров из выпарного аппарата АВ выводится с помощью конденсатоотводчиков КО.

Концентрированный раствор КОН после выпарного аппарата подается в одноходовые холодильники Х1-2, где охлаждается до определённой температуры. Затем концентрированный раствор отводится в вакуум сборники Е2-3, работающие попеременно. Вакуум сборники опорожняются периодически (по мере накопления). Далее раствор поступает в емкость упаренного раствора Е5.

3. Технологические расчеты

3. 1 Расчёт выпарного аппарата

3.1.1 Материальный баланс процесса выпаривания

Основные уравнения материального баланса:

(1)

(2)

где - массовые расходы начального и конечного раствора, кг/с;

хнач, хкон - массовые доли растворенного вещества в начальном и конечном растворе;

W - массовый расход выпариваемой воды, кг/с:

W=1. 67 (1 - 7/25) =1. 2 кг/с

G= 1. 67 - 1. 2=0. 047 кг/с

3.1.3 Тепловой баланс выпарного аппарата

Уравнение теплового баланса выпарного аппарата:

Q = Qнагр+ Qисп+ Qпот (8)

гдеQ - расход теплоты на выпаривание, Вт;

Qнагр - расход теплоты на нагрев раствора до температуры кипения, Вт;

Qисп - расход теплоты на упаривание раствора до конечной концентрации, Вт;

Qпот - расход теплоты на компенсацию потерь в окружающую среду, Вт;

3.1.3.1 Расход теплоты на компенсацию потерь в окружающую среду

Расход теплоты на компенсацию потерь в окружающую среду Qпот при расчёте выпарных аппаратов принимается 3-5% от суммы (Qнагр+ Qисп)

/ 2, с 247 /. Следовательно:

Q = 1. 05 (Qнагр+ Qисп)

Температуру исходного раствора tнач, поступающего в выпарной аппарат из теплообменника примем на 5С меньше tкон:

tнач= tкон-5

tнач=91-5=86°С

3. 1. 3. 2 Расход теплоты на нагрев:

Qнагр= Gнач снач (tкон-tнач) (10)

где Gнач - производительность по разбавленному раствору

снач - удельная теплоёмкость раствора при tнач и начальной концентрации Хнач, Дж/ (кг К) (Приложение 2, п. 3)

снач=3964 Дж/ (кг К)

Qнагр= 1. 67 3964 (102. 6-86) =425779 Вт

3.1.3.2 Расход теплоты на испарение

Qисп=Wr (11)

Где

iвт. п - удельная энтальпия вторичного пара на выходе из аппарата при температуре t1, из таблицы / 2, табл. LVI /, кДж/кг;

св - удельная теплоёмкость воды при tкон, (Приложение 2, п. 3) Дж/ (кг К)

Qисп=1. 2 · 2172000=2606400 Вт

Q=1. 09· (2606400+109890) =2960756. 1 Вт

Потери тепла 9?

Gгп=2960756/2172000=1. 36 кг/с

3.1.4 Расчёт поверхности теплообмена выпарного аппарата

Для расчёта поверхности теплообмена выпарного аппарата запишем уравнение теплопередачи:

Q=K F tполезн. (12)

где К - коэффициент теплопередачи Вт/ (м2 К)

F - площадь поверхности теплообмена, м2;

Коэффициент теплопередачи К найдем из выражения:

(13)

гдекип - коэффициент теплоотдачи кипящего раствора, Вт/ (м2 К)

конд - коэффициент теплоотдачи конденсирующегося пара, Вт/ (м2 К)

?rст - сумма термических сопротивлений всех слоёв, из которых состоит стенка, включая слои загрязнений, (м2 К) /Вт

Для расчётов коэффициент теплоотдачи конд, кип воспользуемся методом итераций.

Примем температуру наружной стенки трубы tст1 равной:

tст1=tконд. гр. п-3. 5

tст1=122. 768-3. 5=119. 268°С

При конденсации греющего пара на пучке вертикальных труб, выражение для коэффициента теплоотдачи имеет следующий вид / 2, формула 4. 52 (а) /:

(14)

Где Н - высота труб, м

t - разность температур конденсаций греющего пара tконд. гр. п. и температуры стенки t1, с;

Значение функции Аt найдём при температуре tконд. гр. п. / 2, табл. 4. 6 / At=7265.

t = tконд. гр. п. - tст1 (15)

t =122. 768-119. 268=2°С

Н=Нтр=5 м

аконд= 8412· v (216. 8) =6195 Вт/ мК

Количество теплоты q1, передаваемое от конденсирующегося пара к стеке, найдём по формуле:

q1=конд (tконд. гр. п. - tст1) (16)

q1=6195·6. 8=42126Вт

Так как процесс теплопередачи является установившемся, то количество теплоты q1 равно количеству теплоты qст, которое передаётся от наружной стенки трубы с температурой tст1 к внутренней, с температурой tст2.

(17)

Суммарное термическое сопротивление стенки найдём по формуле:

(18)

где - толщина стенки трубы, м;

ст - коэффициент теплопроводности трубы, Вт/ (м К)

rзагр1, rзагр2 - термическое сопротивление слоев загрязнения с наружной и внутренней сторон стенки соответственно, м2 К/Вт

Определим значения величин rзагр1, rзагр2/2, табл. ХХХI /

rзагр1=1/5800=1. 724 10-4 м2 К/Вт

rзагр2=1/2400=4. 167 10-4 м2 К/Вт

Коэффициент теплопроводности ст для нержавеющей стали равен:

ст=17. 5 Вт/ (м К)

Толщину стенки трубы примем:

=0. 002 м, м2 К/Вт

Температуру tст2 найдём из формулы (17)

tст2= tст1-q1 ?rст

tст2=119,268-2. 423 104 7. 034 10-4=102. 224°С

Коэффициент теплоотдачи кипящего раствора / 2, формула 4. 62 /

(19)

гдеb - безразмерная функция;

- кинематическая вязкость раствора, м2

- поверхностное натяжение раствора Н/м

Ткип - разность температур tст2 и температуры кипения раствора

tкип, К;

Значение безразмерной функции b / 2, формула 4. 62 а /:

(20)

Где п - плотность пара, кг/м3; Плотность раствора р рассчитываем при температуре кипения tкип и конечной концентрации хкон (Приложение 2, п. 1): р=1180 кг/м3

Плотность пара п найдём при температуре кипения tкип / 2, табл. LVI / п=0. 467 кг/м3

Кинематическая вязкость раствора :

=р/р (21)

гдер - динамическая вязкость раствора, Па с

Динамическая вязкость раствора при температуре tкип (Приложение 2, п. 2):

р=3. 635 10-4 Па с

=3. 635 10-4/1. 013 103 =3. 589 10-7 м2

Поверхностное натяжение при температуре tкип / 2, табл XXIV / =62. 25 10-3 Н/м

Коэффициент теплопроводности для раствора при tкип и хкон (Приложение 2, п. 4), Вт/ (м К):

=0. 673 Вт/ (м2. К)

Вт/м2 К

Количество теплоты q2, передаваемое от внутренней стенки к раствору:

q2=кип (tст2 - tкип) (22)

q2=5536 7. 4=40966 Вт

Определим значение выражения:

Е=|q1-q2|/min (q1,q2), если Е0. 05 то расчёт коэффициентов теплоотдачи выполнен верно.

Е= (42126 - 40966) / 40966=0. 03 Тогда:

Крас=1/ (1/6195+1/5536+0. 000287) =1590 Вт/ (м2 К)

(23)

Fрасч= 2960756/1590·26. 2=71м2

3.1.5 Выбор выпарного аппарата по каталогу

Произведём выбор аппарата по каталогу / 3, приложение 4. 2 /. Для этого найденную площадь поверхности теплообмена следует увеличить на 10-20 %, для обеспечения запаса производительности.

Fв. п. =1. 2 F

Fв. п. =1. 2 71=85. 5 м2

гдеFв. п. - площадь выпарного аппарата с учётом запаса производительности, м2;

Выберем выпарной аппарат с естественной циркуляцией, кипением в трубах и вынесенной греющей камерой Наиболее подходящим вариантом данного аппарата является аппарат с площадью теплопередачи 100 м2;

Таблица 1. Основные размеры выпарного аппарата (по ГОСТ 1198781)

F, м2

D, мм

не менее

D1, мм

не более

D2, мм

не более

Н, мм

Не более

М, кг

не более

l= 4000 мм

100

1000

1800

600

13000

8500

F - номинальная поверхность теплообмена;

D - диаметр греющей камеры;

D1 - диаметр сепаратора;

D2 - диаметр циркуляционной трубы;

Н - высота аппарата;

М - масса аппарата;

3.2 Ориентировочный расчет теплообменного аппарата для подогрева исходного раствора перед подачей в выпарной аппарат

3.2.1 Определение средних температур теплоносителей

Рис. 1 Температурная схема

Где t'нач - начальная температура исходного раствора (по заданию)

tб, tм - большая и меньшая разность температур соответственно,°С; tнач - температура исходного раствора после подогревателя,°С;

tб = tконд. гр. п - t'нач (24), tб = 133 - 86 = 47С

tм = tконд. гр. п - tнач (25), tм = 59 - 20= 39С

Значение средней движущей силы рассчитывается по формуле:

(26), °С

Средняя температура раствора:

tср. р = tконд. гр. п + tср (27), tср. р =53+43=96С

3.2.2 Тепловой баланс подогревателя

Расход теплоты на подогрев исходного раствора от температуры t'нач до температуры tнач найдем по формуле (10), приняв значение теплоёмкости раствора при температуре и концентрации Хнач (Приложение 2, п. 3)

Q=1. 67 3863 (86-20) =425779 Вт

Расход греющего пара Gгр. п. найдём по формуле:

(28)

гдеr - удельная теплота парообразования, Дж/кг;

- степень сухости пара;

=0. 95

Удельная теплота парообразования при температуре tконд. гр. п. / 2, табл. LVI /: r=21997020 Дж/кг

кг/с

3.2.3 Ориентировочный расчет подогревателя

Зададимся ориентировочным коэффициентом теплопередачи от конденсирующегося пара к жидкости / 2, табл. 4. 8 /: Кор=1000 Вт/ (м2 К)

Рассчитаем ориентировочную площадь теплообмена по формуле (23);

F= 425779/1000·43=15м2

Для обеспечения интенсивного теплообмена необходимо обеспечить турбулентный режим течения, он достигается при Re более 10000. Зададимся: Re=10000

Скорость течения раствора в аппарате с диаметром труб d=20 мм рассчитаем по формуле:

(29)

гдетр - скорость течения раствора в трубном пространстве м/с;

dэкв - эквивалентный диаметр, м;

Значения коэффициентов вязкости раствора р и плотности р возьмём при температуре tср. р. и концентрации Хнач (Приложение 2, п. 1, п. 2)

м/с

Проходное сечение трубного пространства Sтр, м2:

(30)

м2

3.2.4 Параметры теплоносителей необходимые для уточнённого расчёта подогревателя

Название теплоносителей

Гр. пар

Водный раствор

расход теплоносителей

Гр. пар G=1. 36 кг/с

водный раствор G=1. 67 кг/с

Вид теплового процесса

Конденсация гр. пар

Нагрев раствора

Расход теплоты Q=8425779 Вт

Параметры водного раствора

(при tcp)

Начальная температура°С

20

Конечная температура°С

86

Средняя температура°С

53

Плотность кг/м3

1038

ВязкостьПа с

6. 44 10-4

Теплоёмкость Дж/ (кг К)

3862

Коэффициент теплопроводности Вт/ (м К)

0. 6270

Коэф. Объёмного расширения, 1/К / 1, табл ХXXIII /

0. 65010-3

Производные по температуре:

Вязкость

-80 10-6

Теплопроводность

1. 2 10-3

Теплоёмкость

1. 00

Параметры конденсирующегося теплоносителя при tконд. гр. п.)

Тем-ра конденсации tконд. гр. п.,°С122. 768

Плотность конд. кг/м3961

Вязкость, Па с2. 96 10-4

Удельная теплота парообразования, Дж/кг 2199800

Теплопроводность Вт/ (м К) 0. 68

Производные по температуре:

Вязкость-1 10-6

Теплопроводность 0. 0005

Теплоёмкость0. 0001

3.2.5 Ориентировочный выбор подогревателя

Для обеспечения турбулентного режима номинальная площадь проходного сечения должна быть меньше рассчитанной.

Коэффициент теплоотдачи от конденсирующегося пара не зависит от режима течения в межтрубном пространстве, следовательно необязательно рассчитывать скорость движения пара и проходное сечение межтрубного пространства.

Выбор теплообменных аппаратов производится по проходному сечению трубного пространства / 3, табл. 2. 3 /.

3.2.6 Параметры подогревателя необходимые для уточнённого расчёта

Подача горячего теплоносителя - в межтрубное пространство

Направление потоков - противоток

Расположение аппарата - вертикальное

Расположение труб - шахматное

Наличие перегородок - есть

Внутренний диаметр кожуха - D, мм 159

Внутренний диаметр труб - d, мм 20

Толщина стенки труб - , мм2

Проходное сечение трубного пространства м2 0. 004

Проходное сечение межтрубного пространства - Sм 102 м20. 005

Термическое сопротивление загрязнённых труб 0. 000387

1/r1=2400 Вт/ (м2 К)

Теплопроводность материала труб - =17. 5 Вт/ (м К)

Число труб n19

Число ходов Z1

Число рядов труб nр5

3.2.7 Уточнённый расчет подогревателя на ЭВМ

По данным п. 3. 2. 4. - 3. 2. 6. Произведём уточнённый расчёт подогревателя результаты расчёта представлены в (приложении 3).

3.2.8 Расчёт гидравлического сопротивления кожухотрубчатых теплообменников

Скорость жидкости в трубах:

(31)

Скорость раствора для подогревателя тр1, м/с:

1. 67/0. 01·1038 = 0. 16 м/с

Коэффициент трения рассчитывается по формуле / 3, ф-ла. 2. 31 /:

(32)

гдее - относительная шероховатость труб;

е=/dэкв (33)

где

- высота выступов шероховатостей (в расчётах можно принять =0. 2 мм)

Тогда относительная шероховатость труб для первого и второго теплообменника соответственно:

е1=0. 2/ (20-4) =0. 0125

Коэффициент трения для теплообменника 1:

Диаметр штуцеров в распределительной камере dтр. ш=100 мм / 3, табл. 2. 6 /, скорость в штуцерах тр. ш, м/с:

м/с

Формула для определения гидравлического сопротивления в трубном пространстве ртр, Па / 3, ф-ла. 2. 35 /:

(34)

Гидравлического сопротивления в трубном пространстве для теплообменника ртр1:

= 1430 Па

Число рядов труб омываемых теплоносителем в межтрубном пространстве m приближенно принимается / 3, ф-ла. 2. 34 /:

(35)

Где n - количество труб

Для теплообменника m1:

Диаметр штуцеров к кожуху dмтр. ш / 3, табл. 2. 6 /:

dмтр. ш=100 мм

Скорость потока в штуцерах по ф-ле. (31):

Скорость жидкости в наиболее узком сечении межтрубного пространства для теплообменника Sм. тр=0. 015:

Значение Re межтрубного пространства:

(36)

Значение Re межтрубного пространства для теплообменника:

Re=0. 385·0. 025·987/0. 000519=18304

Для трубного пространства:

Re=0. 02·0. 33·987/0. 000644=10217. 87

Значение Pr для межтрубного пространства:

Pr=с·м/а, Pr=4220·0. 000296/0. 68=1. 81

Для трубного пространства:

Pr=3862·0. 000644/0. 627=4

Значение Prst для межтрубного пространства:

Prst =4206·0. 000349/0. 67=0. 6612

Для трубного пространства:

Prst =3880·0. 000569/0. 66=0. 6318

Значение Nu для межтрубного пространства:

Nu=0. 6·0. 4·Re·Pr·м/мст

Nu=0. 6·0. 4·18300·1. 8· (1. 8/2. 2) =90

Для трубного пространства:

Nu=0. 021·10217. 87·4·413. 05=89. 4

б1=Nu·л/q=90·0/68/0/02=3060 Вт/м·К

б2=89. 4·0. 627/0. 016=3503 Вт/м·К

?r=д/л + rзагр1 + rзагр=0. 002/46. 5 + 1/5800 + 1/5800=0. 000387 м·К/Вт

Красч=1/ (1/3503+1/3060+0. 000387) =1000 Вт/м·К

Fрасч=425779/1000·43=9. 8 м

Для данной поверхности теплообмена целесообразнее использовать несколько аппаратов длинной по 3 м.

Необходимое число аппаратов:

N=Fр/F=9. 8/2. 81=3. 5

Возьмём 4 таких аппарата, в результате чего запас поверхности составит:

(F·N - Fр) /Fр·100= (2. 81·4 - 9. 8) /9. 8·100=20. 3%

Гидравлическое сопротивление межтрубного пространства рмтр, Па / 3, ф-ла. 2. 36 /:

(37)

Гидравлическое сопротивление межтрубного пространства для теплообменника рмтр1, Па:

= 34. 21 Па

3.2.9 Выбор аппарата по каталогу

Проанализировав данные уточнённого расчёта, а также расчёт гидравлического сопротивления, мы видим, что кожухотрубчатый теплообменник подходит для заданных условий с учётом запаса необходимой для площади теплообмена.

Таблица 2. Параметры кожухотрубчатого теплообменника

D, мм

d, мм

Число ходов

n, шт.

Np

F, м2

Sтр., м2

l=9. 00 м

159

20

1

19

5

9. 816

0. 005

3.4 Расчёт барометрического конденсатора

3.4.1 Расход охлаждающей воды

Расход охлаждающей воды Gв определим из теплового баланса конденсатора:

(44)

гдеiб. к. - энтальпия паров в барометрическом конденсаторе, Дж/кг;

tн - начальная температура охлаждающей воды,°С;

tк - конечная температура смеси охлаждающей воды и конденсата,°С;

Разность температур между паром и жидкостью на выходе из конденсатора должна быть 3-5 градусов. Поэтому температуру воды tк на выходе из конденсатора примем на 4 градуса ниже температуры конденсации паров t0:

tk=t0-3, tk=91-3=88°С

Энтальпия паров в барометрическом конденсаторе iб. к, при температуре t0/ 2, табл LVI /: iб. к,=2729. 8 103 Дж/кг;

Среднюю температуру воды найдём по формуле (38):

tср. в. = (88+20) /2=54°С

Удельная теплоёмкость воды св при температуре tср. в. (Приложение 2, п. 3): св=4188 Дж. (кг К)

кг/с

3.4.2 Диаметр барометрического конденсатора

Диаметр барометрического конденсатора определим из уравнения расхода:

(45)

Где - плотность паров, кг/м3;

- скорость паров, м/с.

Плотность паров при температуре t0/2, табл. LVI /=1. 4 кг/м3

м

3.4.3 Выбор барометрического конденсатора

Выбираем конденсатор с диаметром, равным расчётному, или ближайшему большему / 3, приложение 4. 6 /.

Барометрический конденсатор: внутренний диаметр dб. к. =500 мм

Условный проход штуцера для барометрической трубыdб. т=125 мм

3.4.3 Высота барометрической трубы

Скорость воды в барометрической трубе равна:

(46)

Плотность воды в при температуре tк (Приложение 2, п. 1): в=985 кг/м3

Высота барометрической трубы / 3, формула 1 /:

(47)

где В - вакуум в барометрическом конденсаторе, Па;

- сумма коэффициентов местных сопротивлений;

тр - коэффициент трения в барометрической трубе;

0,5 - запас высоты на возможное изменение барометрического давления, м.

Вакуум в барометрическом конденсаторе В, Па;

В=Ратм0 (48), В=9. 81 104 - 72694=2540 Па

Сумма коэффициентов местных сопротивлений :

(49)

где вх, вых - коэффициенты местных сопротивлений на входе в трубу и на выходе из нее.

Коэффициент трения тр зависит от режима течения жидкости, определим режим течения воды в барометрической трубе:

(50)

Коэффициент динамической вязкости воды в при tk (Приложение 2, п. 2)

в=5 10-4 Па с

При таком значении Re, коэффициент трения тр равен / 2, рис 1. 5 /.

=0,0335

По формуле (47):

Окончательно имеем:

3.5 Расчет производительности вакуум-насоса

Производительность вакуум-насоса Gвозд, кг/с определяется количеством газа (воздуха), который необходимо удалять из барометрического конденсатора:

Gвозд = 0,000025 (W+ Gв) + 0,01W (51)

Где 0,000025 - количество газа, выделяющегося из 1 кг воды;

0,01 количество газа, подсасываемого в конденсатор через неплотности на 1 кг паров.

Gвозд = 0. 000025 (1. 2 + 9. 9) + 0,01 1. 2=0. 012 кг/с

Объемная производительность вакуум-насоса равна:

(52)

Где R - универсальная газовая постоянная, Дж/кмольК;

Мвозд - молекулярная масса воздуха, кг/моль;

Твозд - температура воздуха, К;

Рвозд - парциальное давление сухого насыщенного пара (Па) в барометрическом конденсаторе при tвозд.

Температуру воздуха рассчитывают по формуле / 3, с. 179 /:

tвозд = tн + 4 +0,1 (tк - tн) (53)

tвозд= 20 + 0,1 (88 - 20) + 4 = 31°С

Давление воздуха Рвозд. равно:

Рвозд0 - Рп (54)

Где Рп - давление сухого насыщенного пара при температуре tвозд / 2, табл LVI /Рп=4247 Па

Рвозд=72694 - 4247=68447 Па

Объемная производительность вакуум-насоса равна:

Vвоздм = м3/с = 0. 9 м3/мин

Зная объемную производительность Vвозд и остаточное давление Р0 по таблице / 3, приложение 4. 7/выбираем вакуум-насос:

Таблица 4. Характеристика вакуум-насоса типа ВВН

Типоразмер

Остаточное давление,

КПа

Производи-тельность, м3/мин

Мощность на валу,

КВт

ВВН-1. 5

110

1. 5

2. 1

Выводы по курсовому проекту

В данном курсовом проекте описан процесс выпаривания раствора КОН.

В результате проведенных расчетов были выбраны по каталогу следующие аппараты:

- выпарной аппарат: тип 1 исполнение 2 группа А - выпарной аппарат с вынесенной греющей камерой и кипением в трубах с площадью теплообмена равной 100м2.

- Подогреватель: одноходовой теплообменник с длиной труб l=9 м, диаметром кожуха 159мм, и поверхностью теплообмена 9. 716 м2 и числом труб 19.

- Барометрический конденсатор диаметром D=0,5м с высотой трубы 3. 1м.

- вакуум - насос типа BBH - 1. 5

Подробно был сделан расчет подогревателя на ЭВМ. На основании этих расчетов и выбранных по каталогу аппаратов, была составлена технологическая схема установки с описанием технологического процесса.

Литература

1. Касаткин А.Г. Процессы и аппараты химической технологии. 9-е изд., перераб. и доп. - М: Химия, 1973. - 754с.

2. Павлов К. Ф.,Романков П.Г., Носков А.А. Примеры и задачи по курсу процессы и аппараты химической технологии. 10-е изд., перераб. и доп. - Ленинград: Химия. 1987. - 576с.

3. Дытнерский Ю.И. Основные процессы и аппараты химической технологии. - Москва: 1991. - 496с.

Размещено на Allbest.ru


Подобные документы

  • Проект вакуум-установки для выпаривания раствора NaNO3. Тепловой расчет выпарного аппарата с естественной циркуляцией, вынесенной греющей камерой и кипением в трубах. Выбор подогревателя исходного раствора, холодильника, барометрического конденсатора.

    курсовая работа [375,9 K], добавлен 25.12.2013

  • Основные способы выпаривания. Назначение и классификация выпарных аппаратов. Технологическая схема выпарного аппарата. Расчет сепарационного пространства, толщины тепловой изоляции, барометрического конденсатора. Подбор опор аппарата, вакуум-насоса.

    курсовая работа [871,3 K], добавлен 14.06.2015

  • Признаки классификации выпарных аппаратов. Уравнения материального баланса простого выпаривания. Технологическая схема, преимущества и недостатки прямоточной и противоточной многокорпусных выпарных установок. Расчёт выпарного аппарата по корпусам.

    курсовая работа [712,8 K], добавлен 27.11.2013

  • Материальный баланс выпарного аппарата. Определение температуры кипения раствора, расход греющего пара, коэффициентов теплопередачи и теплоотдачи. Конструктивный расчет, объем парового пространства. Расчет вспомогательного оборудования, вакуум-насоса.

    курсовая работа [131,2 K], добавлен 03.01.2010

  • Теоретические основы процесса выпаривания, устройство выпарных аппаратов. Области применения и выбор выпарных аппаратов. Современное аппаратурно-технологическое оформление процесса выпаривания. Расчет выпарной установки с естественной циркуляцией.

    курсовая работа [849,1 K], добавлен 20.11.2009

  • Выбор конструкции кожухотрубного теплообменника выпарного аппарата и схемы движения в нем теплоносителя. Применение холодильных конденсаторов КТ для сжижения хладагента в аммиачных и углеводородных охлаждающих установках общепромышленного назначения.

    курсовая работа [486,6 K], добавлен 07.01.2015

  • Процесс выпаривания водных растворов. Многокорпусные выпарные установки. Расчет схемы трехкорпусной выпарной установки. Вспомогательные установки выпарного аппарата. Концентрации растворов, удельные показатели использования вторичных энергоресурсов.

    дипломная работа [1,2 M], добавлен 01.08.2011

  • Исследование процесса выпаривания дрожжевой суспензии. Расчет двухкорпусной прямоточной вакуум-выпарной установки с вынесенной зоной нагрева и испарения и принудительной циркуляцией раствора в выпарных аппаратах для концентрирования дрожжевой суспензии.

    курсовая работа [183,9 K], добавлен 19.06.2010

  • Приведение принципиальной схемы двухкорпусной выпарной установки. Расчет диаметров трубопроводов и штуцеров, толщины теплоизоляционных покрытий, теплообменника исходной смеси для конструирования выпарного аппарата. Выбор вспомогательного оборудования.

    курсовая работа [366,2 K], добавлен 09.05.2011

  • Проектирование трехкорпусной выпарной установки непрерывного действия для производства концентрированного раствора KOH. Расчет материальных потоков, затрат тепла и энергии, размеров аппарата. Выбор вспомогательного оборудования, технологической схемы.

    курсовая работа [1,5 M], добавлен 11.04.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.