Разработка бесшатунного двигателя с кривошипно-кулисным механизмом
Разработка двигателя с траверсным механизмом. Использование кривошипно-кулисного механизма в двигателе внутреннего сгорания автомобиля. Схема бесшатунного двигателя, способы повышение его топливной экономичности. Изменение времени-сечения выпускного окна.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 11.10.2017 |
Размер файла | 173,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
В настоящее время повышение топливной экономичности бензиновых двигателей внутреннего сгорания (ДВС) по-прежнему является актуальной научно-технической задачей. Одним из направлений улучшения экономичности двигателей является регулирование степени сжатия на частичных нагрузках. В таких ДВС реализация переменной степени сжатия требует серьезного вмешательства в конструкцию как самого двигателя, так и силового механизма, что определенным образом сказывается на параметрах рабочего процесса.
В разработке силового механизма уже достигнуты определенные успехи. В последние годы в двигателях с регулируемой степенью сжатия применяются нетрадиционные силовые механизмы, которые характеризуются сложностью, ненадежностью и неэффективностью конструкции. Многие фирмы и исследовательские организации проводят исследования, цель которых - создание силового механизма, обеспечивающего наилучшие эффективные показатели двигателя при регулировании степени сжатия. С сегодняшней точки зрения в автомобильном ДВС перспективным является использование кривошипно-кулисного силового механизма.
В настоящей работе представлены первые результаты работ, направленных на разработку бесшатунного двигателя с кривошипно-кулисным механизмом, обеспечивающим изменение степени сжатия в широких пределах.
Обзор и анализ работ по двигателям с переменной степенью сжатия
Работы по разработке двигателей с переменной степенью сжатия (?х) ведутся в США, Японии, Германии, Австралии, Швейцарии, России и др. странах. К настоящему времени известно большое множество двигателей с различной конструкцией силового механизма, обеспечивающего ?х. Так, в двухтактном двигателе со встречно-движущимися поршнями степень сжатия изменяется с помощью дополнительных балансиров с эксцентриками, связанных с коленчатым валом через шатуны.
Работоспособные образцы аксиальных двигателей с ?х были созданы в США , России и других странах. В таких двигателях приводным механизмом является косая шайба с переменным углом наклона, который изменяет ход поршня (S) и соответственно степень сжатия. Недостатками этих двигателей являются повышенные потери на трение (до 20%) и низкая надежность, а также большие инерционные нагрузки на силовой вал.
Более интересные и надежные решения изменения степени сжатия посредством регулирования S найдены в конструкциях ДВС с плоским механизмом. В предложенном инженером Н. Pouliot и разработанном фирмами Sandia (США) и ERDA (Австралия) двигателе при изменении хода поршня в пределах S = 25,4 … 108 мм степень сжатия изменяется от 6,3 до 8. Топливная экономичность автомобиля с двигателем Н. Pouliot по ездовым циклам ЕРА для города и шоссейных дорог составляет 20%.
В последние годы концерн DaimlerChrysler совместно с ГНЦ НАМИ разработал двигатель с траверсным механизмом изменения S . Степень сжатия в этом двигателе изменяется от 7,5 до 14, экономия топлива превышает 15%.
Анализ двигателей с ?х за счет регулирования S показал следующие недостатки:
-- согласно потери на трение в двигателе с S = var на 40% больше, чем в классическом ДВС и это различие резко возрастает с увеличением частоты вращения коленчатого вала;
-- существенные потери индикаторной мощности двигателя на привод изменения S;
-- уменьшение S при неизменном диаметре поршня ведет к снижению турбулентности в цилиндре вследствие уменьшения скорости во впускных клапанах. В этом случае увеличивается продолжительность сгорания и теплоотдача в стенки, что приводит к росту индикаторного расхода топлива;
-- с уменьшением S резко возрастают выбросы СН вследствие увеличения поверхности камеры сгорания и падения температуры сгорания.
Анализ ДВС с известными силовыми механизмами свидетельствует, что максимальное значение степени сжатия на частичных режимах не превышает 14 из-за большого темпа роста потерь на трение по мере увеличения ?х. Это ограничивает возможность дальнейшего повышения эффективного КПД за счет увеличения степени сжатия свыше 14.
Среди других ДВС бесшатунный двигатель с кривошипно-кулисным силовым механизмом (ККМ)
6, 7 имеет наибольший потенциал по использованию переменной степени сжатия. Отличительной особенностью схемы двигателей с ККМ являются малые потери на трение во всем диапазоне нагрузок и частоты вращения, полная динамическая уравновешенность, компактность и малая удельная масса. Кроме того, в этом ДВС намного проще и эффективнее реализуется переменная степень сжатия, что в целом повышает показатели двигателя.
В АДИ ДонНТУ создан на базе двигателя экспериментальный одноцилиндровый бесшатунный ДВС с ?х. Двигатель (рис. 1) представляет собой двухвальный поршневой двигатель с кривошипнокулисным механизмом, в котором усилие от поршня передается на коленчатые валы через шток, механизм изменения степени сжатия и кулису с ползунами, установленными на кривошипных шейках. Коленчатые валы связаны между собой посредством двух одинаковых шестерен.
Рис. 1. Схема бесшатунного двигателя
(механизм изменения степени сжатия не показан):
1 - шток, 2 - кулиса
Результаты экспериментальных исследований показали:
- регулирование ?х на частичных нагрузках работающего двигателя в диапазоне от 7 до 19 повышает топливную экономичность более чем на 30 %;
- устройство изменения ?х имеет высокую чувствительность и способность быстро реагировать на по явление детонации. Начальная стадия развития детонации происходит в 1…3-х рабочих циклах двигателя, а затем детонация полностью исчезает;
- на привод механизма изменения ?х затрачивается незначительная энергия (приблизительно 0,1…0,2 % максимальной мощности двигателя);
- регулирование ?х во время работы двигателя не оказывает влияния на кинематику ККМ.
Влияние силового механизма на газораспределение в двигателе
На кафедре автомобилей и двигателей АДИ ДонНТУ были проведены расчетно-теоретические и экспериментальные исследования бесшатунного и классического ДВС с переменной степенью сжатия.
Одной из задач этих исследований было выявление влияния силового механизма на работу двигателя при регулировании степени сжатия.
Применение в бесшатунном двигателе кривошипно-кулисного механизма приводит к изменению кинематики поршня. В отличие от классического в
бесшатунном двигателе поршень перемещается по косинусоидальному закону. В результате скорость поршня вблизи в.м.т. (рис. 2) снижается, а около н.м.т. увеличивается. Это приводит к изменению фаз газораспределения в бесшатунном двигателе относительно классического ДВС.
Рис. 2. Зависимость скорости поршня от угла поворота коленчатого вала для двигателей с ККМ (?=0) и КШМ при n = 4500 мин-1
Изменение степени сжатия перемещением цилиндра относительно картера приводит в двухтактном двигателе к изменению высоты открытия впускного, выпускного и продувочных окон и соответствующих фаз газораспределения.
Как показывают расчеты, кинематика поршня оказывает существенное влияние на фазы газораспределения. Применение ККМ, уменьшая время-сечение
А выпускного окна в среднем на 11% (рис 3) относительно двигателя с КШМ, усиливает влияние регулирования степени сжатия на процессы газообмена.
Однако характер зависимости время-сечения от степени сжатия остается неизменным. Это позволяет при изменении степени сжатия от 7 до 17 уменьшить величину А'вып более чем на 30 % независимо от силового механизма.
Следует отметить, что снижение А'вып на частичных нагрузках и при малых частотах вращения коленчатого вала является положительным, так как позволяет сократить потери свежего заряда при продувке и улучшить экономичность двигателя.
Рис. 3. Изменение время-сечения выпускного окна от степени сжатия для двигателей с ККМ и КШМ
Влияние силового механизма на индикаторные и эффективные показатели двигателя
Изменение кинематики поршня в бесшатунном двигателе, оказывает существенное влияние на рабочий процесс . В этом двигателе уменьшение скорости поршня в районе в.м.т. приводит к снижению тепловых потерь в процессе сгорания и увеличению степени последующего расширения.
Результаты экспериментального исследования показали положительное влияние кинематики поршня бесшатунного двигателя на его индикаторные показатели. Так, например, при N e = 0,8 кВт, n = 3000 мин-1 и ?х = 7,7 удельный индикаторный расход топлива ниже более чем на 11 % по сравнению с исследуемым классическим двигателем. Очевидно, это связано со снижением прямых потерь смеси в процессе газообмена, а также лучшим протеканием процесса сгорания.
Анализ полученных данных показал, что увеличение степени сжатия в бесшатунном двигателе сопровождается более равномерным повышением индикаторных показателей. При высоких степенях сжатия влияние кинематики поршня на улучшение индикаторных показателей двигателя усиливается.
Повышение топливной экономичности бесшатунного двигателя связано не только с кинематикой поршня, но и с малыми механическими потерями. двигатель бесшатунный сгорание кулисный
Из результатов экспериментальных исследований механических потерь в бесшатунном и классическом двигателях видно, что в бесшатунном двигателе механические потери при одинаковых Ne и ?х во всех случаях ниже (рис. 4). Кроме того, с повышением степени сжатия разница в величине механических потерь существенно возрастает.
Рис. 4. Влияние ?х на механические потери в двигателях с ККМ и КШМ: N e = 0,4 кВт, n = 3000 мин-1
Так, при степени сжатия 7,7 механические потери в бесшатунном двигателе ниже, чем в классическом ДВС на 1,5…2 %, а при ?х = 17,1 -- на 26 %. Это связано с различным характером зависимости среднего давления механических потерь p м для различных ДВС при изменении степени сжатия. В бесшатунном двигателе зависимость p м = f(?x ) носит почти линейный характер, в то время как в двигателе с КШМ -степенной характер.
Выявленные преимущества бесшатунного двигателя по индикаторным показателям и механическим потерям существенно проявляются на его эффективных показателях.
Полученные опытным путем зависимости индикаторных и эффективных показателей (рис. 5) показывают целесообразность использования кривошипно-кулисного механизма в двигателях с регулированием степени сжатия.
В бесшатунном двигателе в отличие от классического удельный эффективный расход топлива снижается с повышением степени сжатия свыше 14 на всех скоростных и нагрузочных режимах. Это позволяет устанавливать ?х в бесшатунном двигателе на максимально возможном уровне -- по началу детонации (или самовоспламенению бензомасляной смеси в двухтактном двигателе).
Рис. 5. Зависимость показателей двигателей с КШМ и ККМ от нагрузки при регулировании степени сжатия: n = 3000 мин-1
В исследуемом двигателе с КШМ степень сжатия для различных режимов изменялась от 10 до 14 и ограничивалась увеличением величины g e из-за роста механических потерь. Таким образом, в двигателе с ККМ использование ?х может повысить топливную экономичность на малых нагрузках более чем на 15% по сравнению с двигателем с КШМ и изменяемой степенью сжатия, а по отношению к классическому двигателю с фиксированной степенью сжатия -- на 30…45 %.
Заключение
Представленные результаты показывают, что применение в бензиновом двигателе регулирования степени сжатия на частичных режимах может существенно улучшить его топливную экономичность.
Рассмотрены варианты принципиальных схем силового механизма, связанные с реализацией переменной степени сжатия применительно к автомобильному двигателю. В ДВС с известными силовыми механизмами максимальная переменная степень сжатия не превышает 14 вследствие значительного роста с повышением ?х потерь на трение, что ограничивает возможность дальнейшего улучшения эффективного КПД двигателя.
Более высокая топливная экономичность при регулировании степени сжатия достигается в бесшатунном двигателе с кривошипно-кулисным механизмом.
Используя ККМ в бензиновом двухтактном двигателе, удалось снизить механические потери на 26 %, повысить топливную экономичность на 30…45 %. Кроме того, анализ работ свидетельствует о значительном
превосходстве двигателей с ККМ по вибрации и шуму, уравновешенности, компактности и удельной мощности. В таких двигателях конструктивно проще и намного эффективнее реализуется переменная степень сжатия.
Дополнительно к первым результатам, изложенным в настоящей статье, необходимо выполнить большой объем исследовательских и опытно-конструкторских работ по разработке и созданию бесшатунного бензинового двигателя с переменной степенью сжатия.
Список литературы
1. Tumoney S.G. Variable compression ratio diesel engine // Intersoc Energy Convers. - Eng. Conf. - Boston. Mass. - 1971. - P. 356 - 363. 2. Welsh H.W., Riley C.T.
The Variable Displacement Engine: An Advanced Concept Power Plant // SAE Paper. - 1971. - № 710830. 3.
Кутенев В.Ф., Зленко М.А., Тер-Мкртичьян Г.Г. Управление движением поршней - неиспользованный резерв улучшения мощностных и экономических показателей дизеля // Автомобильная промышленность. -
1998. - № 11. - С. 25 - 29. 4. Pouliot H.N., Robinson C.W., Delameter W.R. A Variable - Displacement Spark - Ignition Engine. Final Report // Report No. SAND 77 - 8299, Sandia Laboratories. - California, 1978. 5. Еремкин В. Экспорт Технологий // Авто Ревю. - 2000. - № 5. - С. 32. 6. Мищенко Н.И. Нетрадиционные малоразмерные двигатели внутреннего сгорания. В 2 т. Т. 1. Теория, разработка и испытание нетрадиционных двигателей внутреннего сгорания. - Донецк: Лебедь, 1998. - 228 c. 7. Neuer Motor - Typ vor der Serienreife: Auberge wohnliche Laufrune. Ind // ANZ. - 1990. - Vol. 112, № 102. - S. 23.
Размещено на Allbest.ru
Подобные документы
Схема кривошипно-шатунного механизма двигателя внутреннего сгорания и действующих в нем усилий. Его устройство и схема равнодействующих моментов. Расчет сил инерции. Диаграмма износа шатунной шейки коленчатого вала. Способы уравновешивания его значений.
контрольная работа [108,6 K], добавлен 24.12.2013Описание прототипа двигателя ЯМЗ-236. Блок цилиндров, кривошипно-шатунный механизм, газораспределение. Исходные данные для теплового расчета. Параметры цилиндра и двигателя. Построение и скругление индикаторной диаграммы. Тепловой баланс двигателя.
курсовая работа [1,5 M], добавлен 25.05.2013Общие сведения о двигателе внутреннего сгорания, его устройство и особенности работы, преимущества и недостатки. Рабочий процесс двигателя, способы воспламенения топлива. Поиск направлений совершенствования конструкции двигателя внутреннего сгорания.
реферат [2,8 M], добавлен 21.06.2012Проектирование кривошипно-ползунного механизма двигателя внутреннего сгорания, определение линейных размеров звеньев. Синтез оптимальных чисел зубьев и кинематический анализ. Исследование качественных характеристик внешнего эвольвентного зацепления.
курсовая работа [2,2 M], добавлен 23.09.2010Техническая характеристика двигателя 8 ДКРН 60/195-10. Особенности его конструкции: остов, рамовые подшипники, станина, рубашка цилиндра, цилиндровая втулка и крышка. Кривошипно-шатунный и распределительный механизмы. Определение движущих сил в двигателе.
реферат [493,1 K], добавлен 16.03.2012Определение параметров рабочего цикла дизеля. Выбор отношения радиуса кривошипа к длине шатуна. Построение регуляторной характеристики автотракторного двигателя внутреннего сгорания. Динамический расчет кривошипно-шатунного механизма, параметров маховика.
курсовая работа [309,2 K], добавлен 29.11.2015Прочностное проектирование поршня двигателя внутреннего сгорания, его оптимизация по параметрам "коэффициент запаса - масса". Расчет шатуна двигателя внутреннего сгорания. Данные для формирования геометрической модели поршня и шатуна, задание материала.
курсовая работа [2,4 M], добавлен 13.06.2013Расчёт динамики кривошипно-шатунного механизма для дизеля 12Д49. Расчет сил и крутящих моментов в отсеке V-образного двигателя, передаваемых коренными шейками, нагрузок на шатунные шейки и подшипники. Анализ уравновешенности V-образного двигателя.
курсовая работа [318,4 K], добавлен 13.03.2012Преобразование возвратно-поступательного движения поршней во вращательное движение коленчатого вала в двигателях внутреннего сгорания. Назначение, характеристика и элементы кривошипно-шатунного механизма; принцип осуществления рабочего процесса двигателя.
презентация [308,4 K], добавлен 07.12.2012Расчет рабочего цикла двигателя внутреннего сгорания: динамический анализ сил, действующих на кривошипно-шатунный механизм, параметры процессов, расход топлива; проект гидрозапорной системы двигателя; выбор геометрических и экономических показателей.
дипломная работа [3,7 M], добавлен 12.10.2011