Зола и шлаки твердого топлива. Применение в хозяйстве

Преимущества комплексного использования природного сырья и отходов ТЭС. Применение золы в производстве строительных материалов, таких как вяжущие, керамический и силикатный кирпич, заполнители для бетонов. Технология конструкционных лёгких бетонов.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 06.09.2017
Размер файла 25,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат на тему

Зола и шлаки твердого топлива. Применение в хозяйстве

Оглавление

1.Введение

2. Виды отходов ТЭЦ и их применение в производстве строительных материалов

2.1 Строительные материалы с использованием зол ТЭЦ

2.2 Смесь золошлаковая тепловых электростанций

2.3 Бетоны и строительные растворы с использованием зол ТЭЦ

Заключение

Библиография

Введение

Отходы от сжигания высокозольных бурых углей, составляют многие миллионы тонн ежегодно. Зола уноса - улавливаемая в электрофильтрах пыль является одним из самых «популярных» объектов исследования в экологическом направлении, которому посвящены тысячи исследовательских работ в десятках организаций бывшего СССР и России.

Связано это с тем, что огромные массы отходов накапливаются непосредственно вблизи мегаполисов, отчуждая дорогую пригородную землю с тенденцией нелинейного роста и существенно снижая рыночную ценность близлежащей земли и строений. Из-за высокого содержания щелочи и водорастворимых сульфатов давление на окружающую среду очень велико

2. Виды отходов ТЭЦ и их применение в производстве строительных материалов

2.1 Строительные материалы с использованием зол ТЭЦ

Во время сжигания порошкообразного угля на современных электростанциях в высокотемпературных топках летучие вещества и уголь сгорают, в то время как большинство таких минеральных включений в угле, как глины, кварц и шпат, расплавляются. Расплавленное вещество быстро транспортируется в низкотемпературные зоны, где оно затвердевает в виде сферических частиц. Часть минерального вещества агломерируется с образованием шлака, но большинство его улетает с потоком отходящих газов и называется золой-уносом. Эта зола затем удаляется из газа циклонами и электрофильтрами. Таким образом, зола-унос представляет собой тонкодисперсный материал, образующийся на тепловых электростанциях в результате сжигания углей в топках котлоагрегатов, осаждаемый золоулавливающими устройствами из дымовых газов и предназначенный для приготовления сборных и монолитных бетонных и железобетонных конструкций зданий и сооружений, кроме конструкций, эксплуатируемых в средах со средней и сильной агрессивностью.

Допускается содержание в золе свободного оксида кальция или оксида магния в количествах, превышающих указанные в таблице, если обеспечивается равномерность изменения объёма образцов при испытании их в автоклаве.

Насыпная плотность зол в сухом состоянии не должна превышать 1000 кг/м3. При соответствующем обосновании допускается применение золы с насыпной плотностью, превышающей указанную на 10%.

Зерновой состав зол удовлетворяет следующим требованиям: для конструкционно-теплоизоляционного бетона содержание зёрен крупнее 5мм не должно превышать 5%, а зёрен размером 0,14мм - не более 90% по объёму; для конструкционного бетона соответственно 10 и 70%.

Содержание в каменноугольных золах остатков несгоревшего топлива, определяемое по потерям в массе при прокаливании, допускается в количестве не более 25%, а в буроугольных золах - не более 5%.Наличие водорастворимых сернистых и сернокислых соединений в пересчёте на SO3 в золах, применяемых для армированных керамзитобетонов, не превышает 1% по массе. Количество мелкого заполнителя - золы - определяется при подборе состава бетона.

Золы ТЭЦ делятся на основные, содержащие до 40% MgO+CaO, в том числе 5-20% свободного CaO, и кислые, содержащие более 45% SiO2.

Вяжущие, включающие в свой состав золы ТЭЦ

Золы ТЭЦ являются неорганическими искусственными материалами, обладающими гидравлическими свойствами, и поэтому относятся к числу активных минеральных добавок. При смешивании в тонкоизмельчённом виде с гидратной известью золы при затворении водой образуют тесто, способное после предварительного твердения на воздухе продолжать твердеть и под водой. Искусственные минеральные добавки широко применяют в качестве частичной замены глинистого компонента в составе сырьевой смеси, а также для производства шлакопортландцемента и портландцемента с минеральными добавками. При использовании золы в качестве замены глинистого компонента в сырьевой смеси позволяет увеличить производительность цементных печей и сократить расход топлива на 15-18%, так как снижается влажность сырьевой смеси и не приходится затрачивать теплоту на декарбонизацию известняка, содержащегося в золах и шлаках.

Рассмотрим подробнее некоторые виды вяжущих, производимых с помощью зол ТЭЦ.

Известково-зольным цементом называется гидравлическое вяжущее вещество, получаемое либо совместным помолом сухой топливной золы или шлака с известью (негашеной, гашеной или гидравлической), либо тщательным смешиванием в сухом виде тех же раздельно измельчённых материалов. Известково-зольный цемент выгоден тем, что не требует специального обжига и нуждается лишь в помоле. Удельный вес известково-зольного цемента колеблется в пределах 2400-2800 см2/г. Цвет этого цемента из-за наличия остатков несгоревшего угля тёмно-серый. Известково-зольный цемент применяют в тех же случаях, что и другие цементы, получаемые на основе извести и гидравлических добавок.

Более эффективное вяжущее, полученное на основе топливных зол и шлаков, содержащих не менее 15% CaO, например, сланцевая зола. Такая зола, измельчённая в порошок, обладает способностью самостоятельно затвердевать.

Вяжущие свойства могут приобрести и золы других видов топлив, если их смешивают с известняком, причём оба материала должны быть тонко измельчены. Сжигая уголь с добавкой известняка, можно таким образом получать на теплоэлектроцентралях вяжущее вещество, называемое ТЭЦ-цементом. Способ изготовления последнего был разработан Э.З. Юдовичем и П.Д. Кевешем. В состав этого вяжущего входят частицы золы, свободная CaO, силикаты, алюминаты и ферриты кальция, образовавшиеся при сжигании пылевидной смеси угля и известняка в результате взаимодействия между известью и составными частями золы. Этот цемент отличается неравномерностью изменения объёма при обычных условиях твердения из-за значительного содержания свободной окиси кальция.

Вяжущий материал, аналогичный известково-зольному цементу, можно получить, используя очажные остатки кирпичеобжигательных кольцевых печей, представляющие собой золу, полученную от сжигания топлива, с некоторым количеством боя кирпича. После измельчения очажных остатков совместно с известью получается известково-очажный цемент с более высокой прочностью, чем обычный известково-зольный цемент, особенно при тонком помоле.

Можно отметить, что при содержании золы в цементе в количестве 10-15% в соответствующем помоле может быть получен цемент марки 500. Зола является отличным пластификатором и может быть использована при производстве, не только цемента, но и при производстве бетонов, строительных растворов, заполнителей для бетонов, в производстве керамических и силикатных кирпичей и т.д.

Керамические стеновые материалы

В производстве керамического кирпича золу с удельной поверхностью 2000-3000 см2/г используют в качестве основного сырья и в качестве отощающей и выгорающей добавки. В связи с повышенной влажностью и наличием шлака золу перед подачей в производство необходимо подсушивать и измельчать шлаковые включения. Удельная теплота сгорания золы в зависимости от содержания несгоревших части топлива 4200-12500 КДж (1000-3000 ккал/кг). В глиняную массу вводят 15-45% золы ТЭС. Предпочтение следует отдавать золам с низким содержанием СaO+MgO и температурой размягчения до 1200*С. Золы бурых углей вследствие низкого содержания несгоревших частиц, а также высококальциевые золы не оказывают положительного влияния на свойства керамической массы и готовых изделий.

Силикатный кирпич.

Золы ТЭЦ являются самостоятельными вяжущими или их компонентами в производстве силикатного кирпича. При производстве силикатного кирпича оптимальная формовочная влажность выбирается в зависимости от количества дозируемой дозы и колеблется в пределах 7-13%. Сырьевые материалы высушивают до постоянной массы. Компоненты вначале смешиваются сухими, затем постепенно вводится вода в количестве 7-8%. Смесь выдерживается в закрытой ёмкости в течение 18-22 часов. После гашения извести добавляют воду для достижения формовочной влажности. При введении в состав силикатной смеси до 30% золы повышается пластичность и удобоформуемость смеси, увеличивается плотность кирпича, его структура приобретает слитность, поверхность получается ровной, с чёткими рёбрами. Добавление большего количества золы приводит к образованию в кирпиче слойной структуры, которая снижает его качество. При полной замене песка золой объёмная масса кирпича снижается с 1800 до 1350 кг/см3. Прочностные характеристики изделий при введении золы также снижаются, но незначительно: прочность при сжатии - с 1,34 до 1,2 МПа, а при изгибе - с 3,6 до 2,3 МПа. По прочностным свойствам кирпич с содержанием 10% золы соответствует марке 125, а с большим количеством золы - марке 100. Однако с увеличением количества золы в составе смеси повышается водопоглощение кирпича и снижаются его коэффициенты размягчения и морозостойкости. Кирпич с содержанием золы свыше 30% неморозостоек.

Заполнители для бетонов.

Золу ТЭЦ при производстве глинозольного керамзита используют в качестве добавки, вводимой в глину (в количестве 10-30%), и в качестве компонента сырьевой смеси (50% и более). В качестве добавки, снижающей насыпную плотность керамзита, используют в первую очередь золы с содержанием оксидов железа 12-20%, оксидов алюминия 20-35%, при этом удельная поверхность золы должна находиться в пределах 1000-3000 см2/г. Если же зола служит компонентом сырьевой смеси, то содержание отдельных оксидов может изменяться в более широких пределах.

Максимально допустимое содержание остатков топлива в золе, используемой в производстве глинозольного керамзита, не должно превышать 17%, при этом предпочтение отдают золам из отвалов гидроудаления, так как при применении сухой золы-уноса не удаётся достичь требуемой гомогенности глинозольной шихты даже при интенсивном и длительном перемешивании.

Технологическая схема производства глинозольного керамзита принципиально не отличается от схемы производства керамзита. Основная её особенность помимо усреднения золы - более тщательная подготовка сырьевой смеси. Сначала смесь перемешивают в глиномешалке с пароувлажнением, затем в другой глиномешалке без пароувлажнения, а затем в дырчатых вальцах. При этом глинистый компонент предварительно обрабатывают на вальцах тонкого помола. Исследования НИИ керамзита показали, что введение в глинистую шихту золы ТЭЦ позволяет снизить насыпную плотность керамзита на одну-две марки.

Производство глинозольного керамзита экономически выгодно, так как стоимость золы ниже стоимости природного сырья, а наличие в ней остаточного топлива обеспечивает снижение общего расхода теплоты на обжиг.

Зольный гравий - искусственный пористый заполнитель с зёрнами округлой формы, получаемый обжигом сырцовых гранул золы-уноса сухого или гидроудаления в коротких прямоточных вращающихся печах. В качестве добавок используют глину (для улучшения грануляции), пиритные огарки (для снижения температуры размягчения) и кварцевый песок (для повышения прочностных показателей готового продукта).

Зола должна содержать не более 10% несгоревших углистых частиц, не менее 7% оксидов железа и не более 8% оксидов кальция и магния. При более высоком содержании несгоревших остатков угля в золу добавляют глину.

Для изготовления зольного гравия золошлаковая смесь отбирается из отвала гидрозолоудаления ТЭЦ. Мокрой она поступает в ящичный подаватель, оттуда - в сушильный барабан, через который пропускают отходящие от вращающейся печи газы. Высушенная золошлаковая смесь транспортируется в шаровую мельницу, где измельчается до нужной дисперсности, после чего подаётся в тарельчатый гранулятор. В нём она непрерывно смачивается водой и закатывается в гранулы требуемого размера. Размеры шариков, в которые агрегатируются смоченные частицы во время перемещения во вращающейся тарелке, зависят от угла наклона гранулятора и скорости вращения. Для большего упрочнения зольные гранулы пропускают через сушильный барабан, откуда они поступают в прямоточную вращающуюся печь, где спекаются и вспучиваются при температуре 1150-1200*С. Затем полученная масса охлаждается, сортируется на фракции и поступает на склад готовой продукции.

Зольный гравий не должен содержать включений свободной извести. Потери в массе при прокаливании допускаются не выше 5%, а после 15 циклов попеременного замораживания и оттаивания потери в массе не должны превышать 10%. Максимальная отпускная влажность 5%. В сортовом зольном гравии не должно быть больше 5% дробленых кусков.

К искусственным неорганическим заполнителям для лёгких бетонов относят также аглопоритовый гравий, изготовляемый из золы ТЭЦ или золошлаковой смеси отвалов путём окомкования и последующей термической обработки сырцовых гранул со вспучиванием на агломерационных обжиговых машинах.

Аглопорит получают спеканием при обжиге в слое подготовленных гранул песчаноглинистых пород, а также отходов переработки и сжигания твёрдых видов топлива (отходы углеобогащения и золы ТЭЦ).

2.2 Смесь золошлаковая тепловых электростанций

ГОСТ 25592-83 распространяется на золошлаковую смесь, образующуюся на тепловых электростанциях при сжигании углей в топках котлоагрегатов.

В зависимости от области применения смесь подразделяют на классы (А - для тяжёлого бетона; Б - для лёгкого бетона) и виды (I - для железобетонных конструкций, II - для бетонных конструкций). Золошлаковую смесь характеризуют такие показатели качества, как: зерновой состав, насыпная плотность, химический состав и влажность. Кроме того, содержащийся в золошлаковой смеси шлак характеризуется устойчивостью структуры.

Примечание: золошлаковую смесь с содержанием шлака от 20 до 50 % можно применять для тяжёлого бетона в сочетании с природными заполнителями. По соглашению сторон допускается поставка смесей класса Б с большей удельной поверхностью.

Влажность золошлаковой смеси класса А должна быть не более 15%, класса Б - не более 35% по массе, а насыпная плотность класса А не менее 1300кг/м3, класса Б - не более 1300кг/м3.

Таким образом, из золошлаковых отходов теплоэлектростанций получают: аглопоритовый гравий, щебень, зольный гравий, глинозёмистый керамзит

отход зола строительный бетон

2.3 Бетоны и строительные растворы с использованием зол ТЭЦ

Отходы теплоэлектростанций широко используются для производства бетонов и строительных растворов различного назначения.

Зола-унос и зола гидроудаления ТЭС используется в качестве кремнеземистых компонентов бетонной смеси.

Материалами для производства лёгких бетонов являются

Вяжущие: - портландцемент, содержащий трёхкальциевый алюминат С3А не более 6% для изготовления крупноразмерных конструкций на цементном или смешанном вяжущем;

- известь негашеная кальциевая, имеющая скорость гашения 5-25 мин. и содержащая активные СаО+MgO более 70%;

- шлак доменный гранулированный;

- зола высокоосновная, содержащая не менее 40% СаО.

Кремнеземистые компоненты:

песок, содержащий не менее 90% SiO2 или 75% кварца;

зола-унос ТЭС, содержащая SiO2 не менее 45%, СаО - не более 10%, R2O - не более 3%, SO3 - не более 3%;

продукты обогащения руд, содержащиеSiO2 не менее 60%.

По назначению бетоны подразделяются на конструкционные, конструк- ционно-теплоизоляционные и теплоизоляционные.

Усадка при высыхании автоклавных бетонов марок D600 - D1200, изготовляемых на песке, не должна превышать 0,5 мм/м, а для бетонов на кремнеземистых компонентах - 0,7 мм/м.

Основная задача в технологии конструкционно-теплоизоляционных лёгких бетонов - получение их с минимальной плотностью и теплопроводностью при требуемой прочности, морозостойкости и плотной однородной структуры. Помимо воздухововлечения это достигается применением фракционированных крупных пористых заполнителей с возможно более низкой насыпной плотностью (для керамзита - до 400кг/м3) и эффективных мелких заполнителей. Для керамзитобетона наиболее эффективно применение в качестве мелкого заполнителя зол-уноса и золошлаковых смесей ТЭЦ с удельной поверхностью 1550-5000см2/г, обеспечивающих в сочетании с воздухововлечением повышенные теплозащитные свойства при наименьшей энергоёмкости и стоимости конструкций.

Основная задача в технологии конструкционных лёгких бетонов - достижение требуемой прочности и плотности при наименьшем расходе цемента. Этой цели служит применение заполнителей с наибольшей прочностью, использование эффективных пластификаторов и зол ТЭЦ. Составы лёгких бетонов устанавливают расчётно-экспериментальным способом.

Лёгкие бетоны классов В3,5-В7,5 находят широкое применение в современном строительстве. Из них изготовляют около 85% всех конструкций: наружные стеновые панели, крупные блоки, плиты тёплой кровли. Наряду с этим для производства несущих конструкций - плит перекрытий, покрытий, объёмных элементов, а также внутренних трёхслойных стеновых панелей - используют конструкционные лёгкие бетоны классов В10-В30 со средней плотностью 1200-2000кг/м3 (около 10% всех изготовляемых конструкций). Примерно 5-7% лёгкого бетона идёт на изготовление неармированных изделий - мелких стеновых блоков, теплоизоляционных плит.

Минимальный расход цемента должен быть не менее 200кг/м3 для бетонных изделий и 220кг/м3 для железобетонных. Снижение расхода цемента на 40-100кг/м3 может быть получено за счёт введения в состав бетона золы-уноса или отвальных зол в количестве 100-120кг/м3 с одновременной заменой части песка. При этом минимальный расход цемента может быть снижен соответственно до 150 и 180 кг/м3.

Таким образом, при производстве бетона заданного класса необходимо учитывать: роль пластификаторов, рациональный подбор заполнителей, режим пропаривания, эффективное уплотнение методами вибрирования и энергозатраты, необходимые для данного производства.

Строительные растворы применяют для каменных кладок, монтажа строительных конструкций, облицовочных и штукатурных работ. Растворы строительные подразделяют по виду вяжущих на простые с использованием одного вида вяжущего (цемент, известь, гипс и др.) и сложные с использованием смешанных вяжущих (цементно-известковые, известково-зольные, известково-гипсовые и др.).

Золу-унос ТЭС и компонент золы гидроудаления золошлаковой смеси применяют для лёгких строительных растворов в качестве заполнителя. Указаниями по приготовлению и применению строительных растворов СН-290-64 предусмотрена возможность использования зол ТЭЦ в составе строительных растворов до 20% с целью экономии цемента.

Заключение

Анализ накопленных данных научных исследований и практический опыт использования зол ТЭС в нашей стране и за рубежом показал технико-экономическую целесообразность более широкого использования отходов ТЭС при производстве цемента. В настоящее время более распространенной активной минеральной добавкой в России и Украине является доменный гранулированный шлак, с учетом использования которого спроектировано большинство цементных предприятий. В связи с общим экономическим положением в стране возникла необходимость замены гранулированных шлаков другими добавками технического или природного происхождения. Поэтому использование зол-уноса Севастопольской ГРЭС вместо доменного шлака или частичной его замены цементными предприятиями очень целесообразно и выгодно экономически.

Экономические преимущества комплексного использования природного сырья и отходов ТЭС проявляются в следующем:

достигается экономия капитальных вложений и снижение издержек в отраслях, производящих строительные материалы;

использование отходов повышает рентабельность производства;

переработка шлакозольных отходов позволяет стабилизировать экологическую обстановку в стране;

комплексное использование природного сырья и отходов приводит к повышению уровня обеспеченности народного хозяйства материалами и изделиями, рациональному размещению производительных сил, уменьшению различных статей затрат и, следовательно, обеспечивает повышение эффективности капитальных вложений в народное хозяйство.

На основании изученных материалов и опыта работы некоторых предприятий можно с уверенностью сказать, что накопленные за многие годы отходы ТЭЦ и ГРЭС являются ценнейшим материалом для производства современных строительных материалов, а их промышленная утилизация не только способствует улучшению экологической обстановки в стране, но и делает производство строительных материалов более рентабельным, а значит, способствует стабилизации общей экономической обстановки в стране.

Библиография

Баженов Ю.М. Технология бетона. - М.: «Высшая школа», 1978.

Батлук В.А. Основы экологии и охрана окружающей среды. Учебное пособие. - Львов: «Афиша», 2001.

Бетон и железобетонные изделия. Материалы для изготовления бетона. Ч.1. - М.: Издательство стандартов, 1985.

Бетоны ячеистые. Техничесике условия. ГОСТ 25485-89. - М.: Издательство стандартов, 1989.

Бутт Ю.М. Технология цементов и других вяжущих материалов. Учебник для техникумов. Изд. 4-е, перераб. и допол. - М.: «Стройиздат», 1976.

Воробьёв В.А., Комар А.Г. Строительные материалы: Учебник для вузов. - М.: «Стройиздат», 1976.

Глуховский В.Д. Вяжушие и композиционные материалы контактного твердения / В.Д. Глуховский, Р.Ф. Рунова, С.Е. Максунов. - К.: «Высшая школа», 1991.

Голованова Л.В. Общая технология цемента. Учебник для сред. ПТУ, М.: «Стройиздат», 1984.

Добавки в бетон: Справочное пособие / Под ред. В.С. Рамачандрана.- М.: «Стройиздат», 1988.

Добавки для цементов. Классификация. ГОСТ 24640-91. - М.: Издательство стандартов, 1991.

Зайцев В.А. Промышленная экология. - М.: «ДеЛи», 1999.

Зола унос тепловых электростанций для бетона. Технические условия. ГОСТ 25818-83. - М.: Издательство стандартов, 1988.

Кайсер Л.А., Чехова Р.С. Цементы и их использование при производстве сборных и железобетонных изделий. - М.: «Стройиздат», 1972.

Карпеев В.А. Производство высококачественных строительных песокв и утилизация золошлаковых отходов. - Журнал «Строительные материалы» № 10, 1998.

Нациевский Ю.Д. и др. Справочник по строительным материалам и изделиям. Цемент. Заполнители. Бетон. Силикаты. Гипс. / Ю.Д. Нациевский, В.П. Хоменко, В.В. Беглецов. - К.: Будивельник, 1989.

Растворы строительные. Общие технические условия. ГОСТ 28013-89. - М.: Издательство стандартов, 1989.

Цементы общестроительного назначения. Технические условия. ДСТУ Б.В. 2.7.46-96. - Киев: Госкомградостроительства Украины, 1996.

Яковис Л.М. Многокомпонентные смеси для строительства: Расчётные методы оптимизации состава. - Л.: «Стройиздат», 1988.

Размещено на Allbest.ru


Подобные документы

  • Добавка золы в состав для производства кирпичей. Увеличение трещиностойкости и прочности кирпича, уменьшение хрупкости и нежелательных объемных деформаций при твердении. Расход условного топлива и электроэнергии. Предел прочности керамических изделий.

    презентация [88,3 K], добавлен 07.03.2012

  • Классификационные признаки золы и шлаков для последующей технологии переработки. Опыт утилизации золы в европейских странах. Проблемы индустрии строительных материалов России по нерудным материалам и использованию золы-уноса, шлаков. Ведущие компании РФ.

    статья [966,8 K], добавлен 17.07.2013

  • Особенности и отличительные черты технологии изготовления кирпича с обжигом глины и без обжига. Процесс изготовления керамического кирпича, его технические характеристики. Силикатный кирпич, его основные преимущества перед "красным" керамическим кирпичом.

    реферат [22,9 K], добавлен 28.03.2014

  • Биоповреждения цементных композитов. Методы защиты от биоповреждений. Анализ себестоимости производства бетонов. Анализ потерь от биоповреждений цементных композитов под действием бактерий и плесневых грибов. Технология получения биоцидных бетонов.

    курсовая работа [185,7 K], добавлен 14.09.2015

  • Строение и свойства топливных шлаков. Агломерированные шлаки и золы. Способы механизированного получения шлаковой пемзы. Производство удобрений из шлаков. Способы получение комплексных удобрений. Основные недостатки смесей из пористых материалов.

    реферат [167,6 K], добавлен 14.10.2011

  • Материалы для производства жаростойких бетонов. Требования к материалам для изготовления жаростойких бетонов. Виды заполнителей для жаростойких бетонов, нормативные документы и рекомендуемая область применения. Расчет состава жаростойкого бетона.

    реферат [61,5 K], добавлен 13.10.2010

  • Классификация основных процессов в технологии строительных материалов. Техническая характеристика кирпича, описание сырья и полуфабрикатов для его получения. Структурная и технологическая схемы производства кирпича, материальный расчёт компонентов.

    курсовая работа [4,1 M], добавлен 08.02.2014

  • Применение металлов и сплавов в городском хозяйстве. Понятие о металлических и неметаллических материалах, способы их изготовления, области применения, технологии производства, способы обработки и использования. Стандартизация конструкционных материалов.

    методичка [831,2 K], добавлен 01.12.2009

  • Основные физико-механические свойства древесины. Процесс вулканизации синтетических каучуков. Технология получения бетонов – искусственных камневидных материалов. Материалы на основе пластмасс и их применение. Расшифровка марки стали 50А, чугуна ЧХ28.

    контрольная работа [31,9 K], добавлен 02.02.2015

  • Переработка отходов производства и потребления в процессе создания альтернативного твердого топлива. Подбор отходов для создания брикетного топлива. Разработка оптимального соотношения компонентов. Создание принципиальной схемы линии брикетирования.

    автореферат [248,9 K], добавлен 20.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.