Эффективность применения гибких поверхностных нагревательных элементов

Предложено применять гибкие поверхностные нагревательные элементы ТЭмы в отраслях народного хозяйства. Установлены оптимальные и экономически целесообразные режимы применения ТЭмов. Показаны практические области применения нагревательных элементов.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 29.07.2017
Размер файла 201,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Эффективность применения гибких поверхностных нагревательных элементов

А.К. Сысоев

Академия строительства и архитектуры ДГТУ (г. Ростов-на-Дону)

Аннотация: В статье предложено применять гибкие поверхностные нагревательные элементы ТЭмы в различных отраслях народного хозяйства: при обогреве различных материалов и изделий, прогреве бетона в зимнее время, термообработке кровли при ее ремонте, а также обеззараживание грунта в теплицах и оранжереях. Установлены оптимальные и экономически целесообразные режимы применения ТЭмов. Показаны практические области применения нагревательных элементов.

Ключевые слова: Гибкие поверхностные нагревательные элементы, обогрев различных материалов, прогрев бетона, термообработка кровель, обеззараживание грунта.

Цель проводимой работы - определение наиболее экономически выходных областей и режимов применения гибких поверхностных нагревательных элементов конструкции РНИИ АКХ при их применении в различных отраслях народного хозяйства.

В Ростовском научно-исследовательском институте Академии коммунального хозяйства им. К.Д. Памфилова разработаны конструкции нагревательных элементов Тэмов[1-6], которые благодаря применению интересных и термостойких материалов можно применять как для прогрева бетона, термообработки кровли, так и прогреве растительного слоя грунта. При этом по своим показателям они более эффективны, чем ранее разработанные ТЭмы РНИИ АКХ им. К.Д. Памфилова [ТУ 67-879-87 Мат термоэлектрический. Технические условия, 7].

Гибкие нагревательные элементы могут быть классифицированы на три группы: по виду греющего элемента, по назначению, по виду применяемой оболочки вокруг нагревательного элемента (рис.1).

Рис. 1. - Классификация гибких нагревательных элементов

гибкий поверхностный нагревательный элемент

Объемы фактического применения гибких нагревательных элементов представлены на рис.2

Рис. 2. - Фактическое применение гибких нагревательных конструкций

Термоэлектрические маты (ТЭмы) успешно применяются при прогреве бетона, каменной кладки мерзлого грунта, укрытия и обогрева на открытых площадках материалов, механизмов, грузовых контейнеров и другого оборудования в зимних условиях.

Термоэлектрический мат (ТЭм) конструкции РНИИ АКХ[1,4,5,6] - гибкое обогревательное устройство в виде греющего одеяла, состоящее из внешней оболочки с теплоизоляционным слоем и изолированного нагревательного элемента. Внешняя оболочка ТЭМ выполняется их синтетических термостойких материалов. Нагревательный элемент изготавливается из углеродной ткани с наружной оболочкой, изготовленной из термостойкой пленки [1].

Тэмы можно применять для тепловой обработки бетона при изготовлении сборных бетонных и железобетонных конструкций и изделий. Подлежащие обогреву конструкции и изделия или оборудование укрывают ТЭМами и поддерживают заданный температурно-влажностный режим. Для нагрева и регулирования работы ТЭМов используются понижающие трасформаторы различной мощности.

Обогрев бетона может осуществляться по различным тепловым режимам (форсированным либо мягким). При этом следует отметить, что в случае использования прогрева по форсированному режиму зачастую приводит к появлению различных дефектов на поверхности бетона (в том числе появления шелушения, трещин и других дефектов).

При форсированном режиме нагреве температура воздушной прослойкой поднимается до 450С, выдерживается в течение 8-10 часов, после снижается со скоростью 5-80С/ час. Мягкий режим обогрева обеспечивает получение бетона наиболее высокого качества при минимальном расходе цемента. В зависимости от состава укладываемой бетонной смеси и температуры под матами, необходимая прочность бетона на сжатие получается до 20-25% проектной прочности через одни сутки, 40 - 50% через 2-3 суток и 70-75% - через 3-5 суток.

Под ТЭМами создаются нормальные температурно-влажностные условия для твердения бетона, благодаря чему, кроме снижения стоимости производства работ, достигается экономия цемента до 20%. При использовании гибких нагревательных элементов ГПЭН при производстве бетонировании в зимнее время [3] следует также учесть также работы, где рассмотрено влияние различных добавок на структурообразование бетонов [11-12, 21]. Нами было установлено, что наиболее эффективно с точки зрения экономии, так и снижения отрицательных эффектов при структурообразовании [14] при обработке Тэмами следует применять различные добавки (суперпластификаторы, противоморозные добавки и другие) в небольших количествах. Было проведено изучение влияние таких добавок на свойства прогреваемого термоматами бетона. Даже их небольшое количество позволяет снизить такие отрицательные свойства как шелушение и трещиностойкость и одновременно снизить пористость и водопоглощение бетона. При использовании суперпластификаторов имеется значительный рост прочности в начальные сроки тепловой обработки (см. табл.1). При этом при введение суперпластификаторов в небольших количествах имеем следующие положительные эффекты:

-сокращение ТВО на 2-4 часа;

- снижение температуры прогрева на 10-150С;

- снижение расхода цемента при ОК=5 см на 5-7%

Таблица №1

Влияние суперпластификаторов на свойства бетонов*

Бетон

Расходы материалы, кг/м3

В/Ц

ОК, см

Rсж, МПа

W

Ц

П

Щ

В

Без добавки

365

690

1140

197

0,54

5

33

W4

С -3(0,4%)

365

690

1140

170

0,48

5.5

37

W6

Хидетал-П-5 (0,4%)

365

690

1140

161

0,44

6

48

W6

Полипласт-Люкс (0,4%)

365

690

1140

164

0,45

6

43

W6

· Примечание - Цемент ПЦ 500 Д0 Новороссийского завода ГОСТ 10178-85; Песок Мкр=2,0 ГОСТ 8736-85; Щебень - гранитный, фр. 5-20 ГОСТ 8267-93; Вода ГОСТ 2372 -79.

При использовании гибких нагревательных элементов Жолобовым А.Л. [8-9] было установлено, что при термообработке при ремонте мягкой рулонной кровли наибольшую эффективность от их применения достигается при комбинированном их применении при ремонте - термообработке с дополнительным нанесением дополнительного слоя (битумной эмульсии или дополнительного слоя из рулонного материала). Это весьма и наиболее эффективно при износе кровельного покрытия более 50 - 70%. Для выбора и оптимизации выбора технологии ремонта им разработана специальная методика оптимизации выбора ремонта мягкой рулонной кровли [10]. С помощью гибких нагревательных элементов [1, 2] отремонтировано более 3000000 м2 мягкой рулонной кровли.

Отогрев промерзшего грунта также может производиться матами конструкции РНИИ АКХ, уложенными непосредственно на грунт с поддержанием температуры под нагревателем до 60-800С. Промерзший грунт оттаивается на глубину 30 см в течение 8 - 30 часов.

С помощью Тэмов можно также отогревать опалубку, арматуру, промерзший грунт и другие места перед укладкой строительных растворов и бетонов.

В постановлении Правительства РФ от 4 августа 2015 г. № 785 принято решение по импорт замещению и расширению производства продукции строительного назначения. Однако следует отметить, что ряд научных разработок в строительстве также может найти применение в других отраслях народного хозяйства.

В результате проведенных работ в Ростовском научно-исследовательском институте коммунального хозяйства им. К.Д. Памфилова было предложено применять для обеззараживания почвы гибкие переносные конструкции (ТЭмы), элемент которых, работая в заданном режиме, обеспечивает нагрев почвы до температуры 65- 900С на глубине до 30 см. Тэмы могут использоваться также для обеззараживания компостных смесей и почв на стеллажах.

В области растениеводства защищенного грунта вопрос стерилизации растительного слоя грунта является актуальным при выращивании в нем цветочных и овощных культур[14-15].

Распространённые методы и способы обеззараживания почвы в теплицах по основным определяющим параметрам [16-20] представлены в табл.2. Следует отметить, что при анализе применения тех или иных методов и способов обеззараживания имеются как определенные преимущества, так и недостатки.

Рассматривая только два основных направления в существующих способах - использование электрического тока промышленной частоты для обеззараживания культивационных сооружений - глубинный электродный и поверхностный элементный, отметим следующее.

Поверхностный способ заключается в том, что прогрев почвы осуществляется за счет теплового потока от электронагревательного элемента. При этом нагрев почвы идет за счет кондуктивной и радиационной теплопроводности, т.е. почти не зависит от ее влагосодержания.

Таблица № 2

Способы и методы обеззараживания почвы

Способ обеззараживания почвы

Способ уничтожения вредителей

Вид передачи тепла

Конструктивное

исполнения обеззараживателей

Химический

Энергетический

Биологический

Физико-химический

Электромагнитный

Электромагнитный

Термический

Механический

Комбинированный

Электрический

Водяной

Паровой

Газовый

Комбинированный

Электродный мобильный метод и стационарный;

Стационарный метод с использованием труб обогрева;

Мобильный метод и стационарный с подачей пара под почву;

Стационарный с подачей пара на поверхность почвы;

Переносной с нагревом поверхности почвы.

При этом, спустя 4-5 часов температура почвы на глубине растительного слоя до 25 см достигает в среднем 700С и держится на этом уровне в течение 2 -3 ч после отключения электропитания.

Анализ наиболее эффективного применения поверхностных нагревателей представлен в табл. 3.

Таблица № 3

Оптимальный режим применения нагревателей

№п/п

Область применения

Температурный режим применения

Срок эксплуатации нагревателя

Оптимальный режим применения

1

Термообработка кровельного покрытия по технологии [1,2]

Работав диапазоне + 180- 2200С

1000-3000 м2/нагреватель

При фактическом износе кровельного ковра >50% нанесение дополнительного защитного покрытия

2

Прогрев бетона при низких температурах [3]

При работе с температурой окружающей среды от -5 до - 400С

1- 5лет

При комбинированном применении (прогреве, а также использовании суперпластификаторов, противоморозных добавок при их минимальном расходе)

3

Обеззараживание грунта в теплицах и оранжереях [16]

Температурный режим воздействия на грунт от +60 до + 700С

1- 5лет

При комбинированном воздействии (прогреве и других средств обработки)

Выводы

1. Оптимальное и эффективное применение нагревателей при ремонте мягкой кровли при износе покрытия более 50% заключается в комбинированном использовании термообработки и нанесении дополнительного защитного слоя материала.

2. Наиболее эффективно применять гибкие нагревательные элементы при тепловой обработке в зимнее время при их использовании вместе с суперпластификаторами или иными добавками, изменяющие процессы структурообразования в необходимом направлении.

3. Оптимальный режим нагрева для стерилизации почвы в оранжереях и теплицах путем прогрева ее до температур 65 -750С на глубине 25-30 см в течение 5-6 часов.

4. Прогрев Тэмами полностью уничтожает патогенную микрофлору, вредителей и возбудителей заболеваний, цветочных об овощных растений, разлагает ядохимикаты до нетоксичных химикатов и угнетает рост сорняков.

5. Наиболее эффективно применять термоэлектрические маты совместно с дополнительными методами борьбы с возбудителями заболеваний, находящимися в грунте.

Литература

1. Пат. 2158810 Российская Федерация, Е04D15/06, Н05В3/36. Термоэлектрический мат для разогрева водоизоляционного ковра при ремонте и устройстве рулонных и мастичных кровель/ Жолобов А.Л. Заявлено 0.9.0.1.1998; Опубл.10.11.2000.

2. Пат. 2085675 Российская Федерация, E04D 5/02. Способ восстановления водонепроницаемости гидроизоляционного покрытия строительных конструкций/ Жолобов А.Л. Заявлено 11.02.1993; Опубл.27.07.1997.

3. Пат. 2250206 Российская Федерация, С04В 40/02. Способ электропрогрева бетона в зимних условиях/ Сысоев А.К., Гордеев-Гавриков В.К., Сысоева Н.А. Заявлено 25.08.2003; Опубл. 20.04.2005.

4. Пат.2304368 Российская федерация, Н04В3/36. Термоэлектрический мат/ Сысоев А.К., Сысоева Н.А., Какурин П.Л. Заявлено 12.05.2005; Опубл. 10.08.2007.

5. Пат.на полезную модель 51059 Российская Федерация, E04D 15/06, H05B 3/34. Термоэлектрический мат/ Сысоев А.К., Какурин П.Л. Заявлено 25.08. 2005; Опубл. 27.01.2006.

6. Пат. 2289891 Российская Федерация, H05B3/34, E04B15/05. Термоэлектрический мат/ Сысоев А.К., Сысоева Н.А., Сысоева Ю.А. Заявлено 19.05.2005; Опубл. 20.12.2006.

7. Аханов В.С. Электротермия в технологии бетона. - Махачкала: Дагестанское книжное издательство, 1971. 243с.

8. Жолобов А.Л. Совершенствование технологии ремонта кровель из битумных рулонных материалов: Диссертация на соискание ученой степени к.т.н.: 05.23.08. РГСУ. - г. Ростов- на-Дону, 1995. 146с.

9. Жолобов А.Л. Формирование конкурентоспособных многокритериально оптимизированных технологических решений по ремонту многослойных кровель зданий: Диссертация на соискание ученой степени д.т.н.: 05.23.08. РГСУ. -г. Ростов - на-Дону, 2007. 320с.

10. Жолобов А.Л., Жолобова Е.А. Комплексная оценка конкурентноспособности строительных технологий // Инженерный вестник Дона, 2013, №2 URL:ivdon.ru/ru/magazine/archive/n2y2013/1705/.

11. Yilmaz U.S., Turken H. The effect of variouscuringmaterialson the compressive strength characteristic chemical admixtures //Scientia Iranica 2012 Vol.№1 pp.77-85.

12. Kishar E.A., Ahmed D.A., Mohammed M.R. NouryR Effect of calcium chloride on the hydration characteristics of the ground clay bricks cement pastes// Beni -Suef University Iournal of Basic and Appled sciences. 2013 Vol. No. 2 pp. 20-252.

13. Сысоев А.К. Технология зимнего бетонирования с помощью гибких нагревательных элементов// Инженерный вестник Дона, 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/2161/.

14. Микаелян Г.А., Нурметов Р.Дж. Основы оптимального проектирование производственных процессов в овощеводстве. - М.: ФГНУ «Росиформагротех», 2005. -640с.

15. Каболоев Т.Х. Энергетические режимы и технические средства обеззараживания почвы в защищенном грунте: Диссертация на соискание ученой степени д.т.н.: 05.20.02, 05.20.01 Горский государственный аграрный университет. -Владикавказ, 2005. -389 с.

16. Авт. свид. 1664181 СССР, А01, G11/00.Способ обеззараживания почвы в теплицах / Усманов Х.Р., Бакиев А.Б., Насыров С.Х., Рахимов Э.С., Нарходжаев Р.К. Заявлено 31.03.88; Опубл. 23.07.91. Бюл. №27(71).

17. Авт. свид. 927193 СССР, A01G11/00, A 61 L 2/06, A 61 L2/20. Способ дезинфекции почвы/ Ефремов Е.Н., Лебедев Ю.В. Заявлено 10.07.80; Опубл.15.05.82 Бюл. №18

18. Авт. свид. 1519586 СССР, А01g11/00. Устройство для стерилизации почвы паром/ Королев А.Л., Липов Ю.Н., Доронин В.П., Балуев В.А., Бахмуров Р.М. Заявлено 04.01.88; Опубл 07.11.89. бюл.№41

19. Пат. 2122784 Российская Федерация, А01G31/00. Способ биологического обеззараживания почвы галловой нематодой в защищенном грунте/ Фарниев А.Т., Бекузарова С.А., Цаболов П.Х., Герасименко М.В., Цаболова ЭП., Гусова Е.П. Заявлено 22.10.1997; Опубл. 10.12.1998г.

20. Кочетков В.В., Чигалейчик А.Г., Петрикевич С.Б. Защита растений биопрепаратами в защищенном грунте// Химия в сельском хозяйстве. -1997.- №1, с.16-17.

21. Осипов А.М. Бетонирование при низких температурах// Инженерный вестник Дона, 2012, №4 URL: ivdon.ru. /ru/magazine/archive/n4p2y2012/1306/.

Размещено на Allbest.ru


Подобные документы

  • Общая характеристика нагревательных печей. Печи для нагрева слитков (нагревательные колодцы). Тепловой и температурный режимы. Режимы термической обработки. Определение размеров печей. Печи для термической обработки сортового проката. Конструкция печей.

    курсовая работа [44,3 K], добавлен 29.10.2008

  • Классификация гибких производственных систем (ГПС) согласно ГОСТу. Стадии развития ГПС в зависимости от уровня автоматизации. Основные технические возможности, структурные элементы и главные преимущества ГПС. Области рационального применения ГПС.

    реферат [344,9 K], добавлен 23.05.2010

  • Спуск в скважину под давлением сплошной колонны гибких НКТ. Преимущества применения гибких НКТ, расширение применения при капитальном ремонте скважин. Ограничения в применении работ гибких НКТ. Виды ремонтных работ, выполняемых при помощи гибких НКТ.

    реферат [670,1 K], добавлен 21.03.2012

  • Понятие и особенности применения защитных покрытий, порядок и правила их нанесения. Технологические режимы окраски поверхностей разными лакокрасочными материалами. Ингибиторы коррозии и специфика их применения в неорганической технологии, эффективность.

    контрольная работа [19,5 K], добавлен 28.04.2011

  • Изучение свойств алюминиевого деформируемого сплава, где основным легирующим элементом является марганец. Влияние легирующих элементов на свойства и структуру сплава и основных примесей. Условия эксплуатации и области применения алюминиевых сплавов.

    реферат [128,9 K], добавлен 23.12.2014

  • Основные представители нагревательных приборов, работающих на газообразном, твердом и жидком топливе. Производители газовых плит, их технические характеристики. Советы и рекомендации хозяйкам, как выбрать кухонную плиту. Отзывы покупателей плит.

    презентация [407,7 K], добавлен 28.03.2014

  • Устройство и основные элементы токарно-винторезного станка 1м63, принцип его работы и назначение, сферы применения на производстве. Анализ характеристик обрабатываемых деталей. Режимы резания и особенности их применения, возможные насадки и инструменты.

    курсовая работа [4,5 M], добавлен 05.02.2010

  • Описание рабочего процесса образования стежков на разных видах машин: с челноком, с вертикальной осью вращения и с колеблющимися петлителями. Мощность нагревательных элементов для утюга электрического в зависимости от теплового баланса подушки пресса.

    контрольная работа [1,8 M], добавлен 08.12.2011

  • Материалы для электропечестроения. Огнеупорные растворы, бетоны, набивные массы и обмазки. Пористые огнеупоры. Теплоизоляционные и жароупорные материалы. Дешевизна и недефицитность. Материалы для нагревательных элементов электрических печей сопротивления.

    реферат [66,1 K], добавлен 04.01.2009

  • Анализ энергоносителей при жарке. Способы передачи теплоты от нагревательных элементов к продукту. Техническая характеристика пекарных и жарочных шкафов. Описание конструкции шкафа, его электрической схемы. Расчет теплового баланса и определение мощности.

    курсовая работа [244,1 K], добавлен 22.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.