Разработка газочувствительного элемента на основе пленок оксидов меди для датчика аммиака

Исследование проблемы создания газочувствительного элемента для анализа состава атмосферного воздуха. Выбор перспективного материала для создания высокочувствительных сенсоров. Использование сенсорных элементов в датчиках контроля воздуха рабочей зоны.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 29.05.2017
Размер файла 201,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Южный федеральный университет, г. Ростов-на-Дону

ФГБОУ ВПО «Воронежский государственный технический университет»

Разработка газочувствительного элемента на основе пленок оксидов меди для датчика аммиака

Т. А. Моисеева, Т.Н. Мясоедова, В.В. Петров, Н.Н. Кошелева

В последнее время большое число научных исследований проводится в области разработки материалов для датчиков контроля состава атмосферного воздуха [1]. Особый интерес уделяется сенсорам газов резистивного типа на основе неорганических пленок оксидов металлов, в том числе оксидов меди (СuO и Cu2O) [2-4]. Преимуществами оксидов меди перед другими оксидами является их низкая стоимость, химическая стойкость, простота изготовления пленок. Для использования пленок оксидов меди в качестве чувствительного слоя в сенсорах газов необходимо придание им следующих характеристик: быстроты реакции при воздействии газа, стабильности электрических характеристик во времени, широкого диапазона чувствительности, высокой селективности. Все выше перечисленное достигается путем применения соответствующего метода изготовления, а также подбором необходимых технологических режимов. Так, основными методами изготовления пленок оксидов меди являются электрохимическое осаждение, золь-гель метод, термическое окисление, вакуумное напыление [5, 6]. В данной работе образцы пленок состава CuOx для создания сенсора аммиака на их основе изготавливались цитратным золь-гель методом, преимущества которого описаны ранее в работе [7].

Для получения пленок состава CuOx был приготовлен золь на основе этиленгликоля с добавками спиртово-водного раствора СuCl2 и лимонной кислоты для закисления золя с целью образования вязкого раствора. Этиленгликоль добавляли в избытке, поскольку гидроксильные группы стабилизируют в растворе металл-цитратные комплексы и способствуют образованию низкомолекулярных олигомеров. Далее приготовленные растворы выдерживались в течение 24 часов для приобретения пленкообразующих свойств при pH=4. Готовый раствор наливали в чашку Петри, куда помещалась термически окисленная кремниевая пластина, предварительно обработанная в азотной кислоте. Пластина выдерживались в растворе в течение нескольких дней при комнатной температуре при периодическом перемешивании. В завершении образцы проходили двухступенчатую термическую обработку: сушка при 200 0С и отжиг при 500 0С. Указанная температура отжига позволяет стабилизировать структуру пленки и придать заданные электрофизические характеристики, например, ширину запрещенной зоны [7]. Разработанная технологическая схема формирования пленки состава CuOx представлена на рис.1

Рис.1. - Технологическая схема формирования пленок CuOx

Поверхность полученных материалов была исследована методом растровой электронной микроскопии (РЭМ) (рис.2).

Анализ РЭМ изображений медьсодержащих пленок показал, что поверхность не является однородной. Более детальное рассмотрение позволяет сделать вывод о том, что неоднородности являются областями кристаллизации оксидов меди, средний размер кристаллитов которых составляет порядка 5-10 нм.

Рис.2. - РЭМ - изображение поверхности пленок CuOx

Для исследования газочувствительных характеристик пленок был сформирован лабораторный образец сенсорного элемента. Сенсорный элемент состоит из кремниевой подложки, диэлектрического слоя SiO2 толщиной 1 мкм, газочувствительной пленки состава CuOx и металлизированных контактов (рис. 3)

Рис.3.- Лабораторный образец сенсорного элемента

В результате исследования газочувствительных свойств была обнаружена реакции на аммиак при температуре 180°С в диапазоне концентраций 25-150 ppm, отличающаяся стабильностью и воспроизводимостью. Типичная динамика отклика сенсорного элемента, представлена на рис. 4, а, по которой установлено, что время отклика и время восстановления составляют 4-6 сек и 80-120 сек, соответственно.

На основе полученных данных был определен коэффициент газовой чувствительности (S) по известной формуле:

газочувствительный сенсор датчик воздух

где Gг - проводимость сенсора при воздействии газа ( , G0 - проводимость в воздухе (.

Показано, что адсорбционная способность поверхности не превышает 100 ppm (рис.4б), что позволяет определять концентрацию аммиака в воздухе рабочей зоны на уровне ПДК равной (28 ppm).

а)динамика отклика на концентрацию NH3 100 ppm при

б) зависимость коэффициента газовой чувствительности от концентрации NH3 (

Рис.4.- Газочувствительные свойства сенсорного элемента на основе пленок CuOx при рабочей температуре 1800C

Таким образом, в работе показано, что посредством довольно простой технологии основанной на золь-гель методе, возможно сформировать пленки оксидов меди, которые обладают газочувствительностью к аммиаку. Сенсорные элементы, созданные на их основе, могут быть использованы в датчиках контроля воздуха рабочей зоны промышленных предприятий.

Исследование выполнено при поддержке Министерства образования и науки Российской Федерации, соглашение 14.А18.21.2097 «Разработка автоматизированной системы мониторинга для контроля и прогнозирования состояния окружающей среды».

Литература

1. Петров В.В., Назарова Т.Н., Копылова Н.Ф., Вороной А.А. Исследование процесса получения и свойств наноразмерного материала состава SIO2SnOXCuOY, для сенсора газа //Известия Южного федерального университета. Технические науки. 2011. - Т. 117. - № 4. - С. 123 - 128.

2. S.C. Ray, Preparation of copper oxide thin film by the sol - gel-like dip technique and study of their structural and optical properties, Solar Energy Materials & Solar Cells, - 2001. -p.307 - 312.

3. Назарова Т.Н., Петров В.В., Заблуда О.В., Яловега Г.Э., Смирнов В.А., Сербу Н.И., Шматко В.А. Исследование физико - химических и электрофизических свойств материалов состава SIO2CuOX// Известия Южного федерального университета. Технические науки. -2011. - Т. 114. - № 1. - С. 103 - 108.

4. Please cite this article as: V. Dhanasekaran, T. Mahalingam, R. Chandramohan, Jin-Koo Rhee, J.P. Chu, Electrochemical deposition and characterization of cupric oxide thin films,Thin Solid Films, - 2012.

5. I. G. Casella and M. Gatta, J. Electroanal. Chem.2000. - №12. - 494с.

6. Петров В.В., Королев А.Н. Наноразмерные оксидные материалы для сенсоров газов. - Таганрог: Изд-во ТТИ ЮФУ, 2008. - 153 c.

7. O. Akhavan, H. Tohidi, A.Z. Moshfegh. Synthesis and electrochromic study of sol-gel cuprous oxide nanoparticles accumulated on silica thin ?lm, Thin Solid Films. - 2009. - p. 700 -706.

Размещено на Allbest.ru


Подобные документы

  • Общая характеристика проблемы очистки воздуха от аммиака. Использование воды в качестве поглотителя. Описание схемы абсорбционной установки. Рассмотрение основных типов насосов для перемещения капельных жидкостей. Расчет теплообменного аппарата.

    курсовая работа [1,1 M], добавлен 27.12.2015

  • Расчетные параметры наружного и внутреннего воздуха. Определение углового коэффициента луча процесса в помещении. Выбор схем воздухораспределения. Определение допустимой, рабочей разности температур. Построение схемы процессов кондиционирования воздуха.

    курсовая работа [39,6 K], добавлен 06.05.2009

  • Общая характеристика цеха, технологический процесс нагрева проволоки в термотравильном агрегате. Описание функциональной схемы автоматизации, выбор ее типовых элементов. Автоматика разрабатываемой системы управления подачей воздуха в термотравителе.

    дипломная работа [242,5 K], добавлен 16.06.2015

  • Высокопрочные керамики на основе оксидов - перспективные материалы конструкционного и инструментального назначения. Свойства оксидов цинка и меди. Допированные керамики. Основы порошковой металлургии. Технология спекания. Характеристика оборудования.

    курсовая работа [923,2 K], добавлен 19.09.2012

  • Расчет жесткости упругого элемента, среднего диаметра пружины и числа рабочих витков, наружного диаметра пружины. Построение габаритных характеристик. Проверка пружин на устойчивость и выбор способа закрепления. Параметры электромеханического элемента.

    курсовая работа [2,2 M], добавлен 08.09.2014

  • Кондиционирование воздуха как создание и автоматическое поддержание в обслуживаемом помещении требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий. Анализ основных требований к кондиционированию воздуха.

    презентация [127,1 K], добавлен 07.04.2016

  • Методика и основные этапы проведения металлографического анализа сплава латуни Л91. Зарисовка микроструктуры данного сплава на основе меди. Подбор необходимой диаграммы состояния. Зависимость механических свойств с концентрацией меди в сплаве латуни Л91.

    лабораторная работа [466,3 K], добавлен 12.01.2010

  • Технология производства кремнийорганической смолы. Расчет количества загрязняющий веществ, поступающих в воздух от технологического оборудования. Оценка уровня загрязнения воздуха рабочей зоны при нормальных и аварийных режимах работы оборудования.

    дипломная работа [1,1 M], добавлен 16.11.2011

  • Методика проведения металлографического анализа сплава латуни ЛА77–2. Зарисовка микроструктуры данного сплава на основе меди. Приведение необходимой диаграммы состояния. Зависимость механических свойств с концентрацией меди в сплаве латуни ЛА77–2.

    лабораторная работа [824,5 K], добавлен 12.01.2010

  • Основные параметры воздуха, характеризующие его состояние: температура, давление, влажность, плотность, теплоёмкость и энтальпия. Графическое и аналитическое определение параметров влажного воздуха. Определение расхода и параметров приточного воздуха.

    дипломная работа [49,2 K], добавлен 26.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.