О движении виброожиженного сепарируемого слоя зерна по плоскому решету конечной ширины
Аналитическое определение средней скорости семян кукурузы на плоском вибрационном решете конечной ширины с учетом разделения смеси фракции. Математическое моделирование движения сепарируемой зерновой смеси по решету. Применение метода Бубнова-Галеркина.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 26.05.2017 |
Размер файла | 317,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
5
Размещено на http://www.allbest.ru/
О движении виброожиженного сепарируемого слоя зерна по плоскому решету конечной ширины
Самурганов Евгений Ерманекосович
магистр, старший преподаватель кафедры тракторов, автомобилей и технической механики
Кубанский государственный аграрный университет имени И.Т. Трубилина, Краснодар, Россия
Цель исследования - аналитическое определение средней скорости семян кукурузы на плоском вибрационном решете конечной ширины. Объект исследования - процесс сортирования семян кукурузы на плоском вибрационном решете. Математическое моделирование движения сепарируемой зерновой смеси по решету обусловлено необходимостью интенсификации разделения зерновых материалов на плоском решете. Несмотря на существенный прогресс в разработке математических моделей движения смеси по вибрационному решету, их дальнейшее уточнение остается актуальной задачей. В частности, в расчетной практике используют теории, в которых ширина плоского решета считается бесконечной, т.е. не учитывается влияние на процесс движения рамки решетного стана. В связи с отсутствием оценок погрешности, вносимой этим допущением, возникла необходимость разработать теорию движения смеси по решету конечной ширины. Для анализа были приняты следующие допущения: первое - семена кукурузы рассматривались как шары различного диаметра, второе - слой зерна на решете рассматривали как неоднородную вязкую жидкость. На основании проведенного исследования установлено, что наиболее рациональным для достижения поставленной цели является применение метода Бубнова-Галеркина.
В результате проведенного исследования получены аналитические зависимости для расчета скорости потока зерновой смеси по вибрационному решету конечной ширины с учетом разделения смеси фракции
Ключевые слова: ПЛОСКОЕ РЕШЕТО, ЗЕРНО, ВИБРООЖИЖЕННЫЙ СЛОЙ, ФРАКЦИЯ, ДВИЖЕНИЕ СМЕСИ, СКОРОСТЬ
Введение. Математическое моделирование движения сепарируемой зерновой смеси по решету обусловлено необходимостью интенсификации разделения зерновых материалов на плоском решете.
Несмотря на существенный прогресс в разработке математических моделей движения смеси по вибрационному решету, их дальнейшее уточнение остается актуальной задачей. В частности, в расчетной практике используют теории, в которых ширина плоского решета считается бесконечной, т.е. не учитывается влияние на процесс движения рамки решетного стана. В связи с отсутствием оценок погрешности, вносимой этим допущением, возникла необходимость разработать теорию движения смеси по решету конечной ширины.
Современные кукурузокалибровочные машины, как правило, калибруют семена кукурузы по одному признаку - диаметру зерновки. Для дальнейшего анализа примем следующие допущения: первое - семена кукурузы будем рассматривать как шары различного диаметра, второе - слой зерна на решете мы рассматриваем как неоднородную вязкую жидкость.
Постановка задачи. Цель исследования - аналитическое определение средней скорости семян кукурузы на плоском вибрационном решете конечной ширины. Объект исследования - процесс сортирования семян кукурузы на плоском вибрационном решете.
Результаты исследований. Движение виброожиженной среды по направляющей плоскости конечной ширины рассматривалось в работе Л.Н. Тищенко [1]. Задача решалась без учета просеивания части зерна через перфорированную поверхность решета. Распределение скорости потока в установившемся режиме движения представлено одинарным тригонометрическим рядом. Решение аналогичной задачи получено в виде двойного тригонометрического ряда и использовано для определения интегральных характеристик потока: производительности решета и средней скорости движения смеси. В практических инженерных расчетах удобнее использовать приближенные замкнутые решения, к которым приводит метод Бубнова-Галеркина [2,3]. Приближенный метод с высокой точностью описывает краевой эффект у рамки решетного стана.
В отличие от указанных выше публикаций в данной работе решается более общая краевая задача с учетом просеивания части смеси через перфорированную рабочую плоскость наклонного решета.
Целью является получение аналитических зависимостей для расчета скорости потока зерновой смеси по вибрационному решету конечной ширины с учетом разделения смеси на сходовую и проходовую фракции.
Постановка краевой задачи и построение ее точного аналитического решения. Для уточнения известных моделей движения используем показанную на рисунке 1 декартову систему координат, в которой оси Оx и Оz лежат в плоскости, совпадающей со свободной поверхностью движущегося слоя смеси, а ось oy перпендикулярна плоскости решета, наклоненного под углом к горизонту.
1 - вибрационное решето с движущимся зерном; 2 - поперечное сечение слоя;
Рисунок 1 - Расчетная схема
Рассматривая установившийся режим движения, проекцию скорости w на ось Oz полагаем равной нулю. Проекцию скорости на ось Oy считаем постоянной и определяем по формуле
сепарируемый зерно вибрационный решето
, (1)
где - скорость движения зерна по решету, м/с;
- коэффициент «живого сечения» решета;
- проекция на ось Oy скорости просеивания проходовой фракции через отверстия в решете, м/с.
Проекцию скорости потока смеси u=u(y,z) на ось Ox в установившемся режиме движения считаем независимой от x и находим из решения краевой задачи
. (3)
где v - кинематический коэффициент вибровязкости смеси;
g - ускорение свободного падения, м/с2;
h, H - соответственно толщина и ширина движущегося слоя зерна, м.
Уравнение (2) получено из системы Навье-Стокса, с учетом того, что w=0; =const; u=u (y, z) и эти проекции не зависят от времени t.
Кинематический коэффициент вибровязкости смеси определяем по формуле
где
- эквивалентная масса условно сферических частиц, образующих смесь плотности , кг;
- эквивалентный радиус условно сферических частиц, образующих смесь плотности , м;
f - коэффициент внутреннего трения в смеси;
A - амплитуда продольных вибраций решета, м;
- круговая частота продольных вибраций решета, рад/с.
Таким образом, кинематическая вязкость виброожиженной смеси зависит от ее механико-технологических характеристик и параметров вибраций решета.
Заметим, что вследствие просеивания проходовой фракции толщина слоя h будет зависеть от координаты х. Но в рассматриваемой теории этой зависимостью пренебрегаем, усредняя h по длине решета, что допустимо, когда объем отделяющейся части мал по сравнению с общим объемом смеси на решете.
Учитывая граничные условия (3), решение уравнения (2) ищем в виде ряда
где - неизвестные функции.
Подставив (5) в (2), с учетом ортогональности на промежутке , получаем уравнения для определения
Общим решением уравнения (6) является
где - произвольные постоянные, которые находим с помощью выражения (3).
Определение постоянных проводим по формулам
Подставляя (7) в (5), с учетом (8), получаем
Для убыстрения сходимости полученного решения воспользуемся известной суммой ряда
После убыстрения сходимости имеем
Решение (11) при переходит в ряд, представляющий максимальное значение проекции скорости
Интегрируя (11) можно получить формулы для расчета производительности решета по сходовой фракции, а также других интегральных характеристик. Однако, определять их проще с помощью приближенного решения краевой задачи, которое построим ниже.
Построение приближенного решения краевой задачи методом Бубнова-Галеркина. Решение уравнения (2), при граничных условиях (3), ищем в виде
(13)
где f (z) - неизвестная функция.
Для её определения указанным методом получаем уравнение
Общее решение уравнения имеет вид
c3 и c4 - произвольные постоянные.
Граничные условия (3) удовлетворяются, когда
Учитывая (14), (15) и (16) получаем приближенное замкнутое решение задачи
Из него следует компактная формула для вычисления максимального значения проекции скорости
Интегрируя решение (17), находим производительность решета по сходовой фракции
Производительность решета по проходовой фракции зависит от длины решета L и определяется выражением
(20)
Вычислив , далее несложно найти среднюю скорость потока смеси и удельную загрузку решета
Анализ численных результатов. Расчеты проведены для зерна смеси кукурузы, у которой [4]: f = 0,47; 750 кг/м3; r0 = 0,008 м; M =0,0004 кг; h = 0,007 м. Параметры решета задавали следующие: = 80; =0,4; L = 0,79 м; Н = 0,5 м; А =0,0075 м; =41,86 с-1.
Вычисленные двумя способами значения u(y, H /2) при различных у указаны в таблице 3. В числители записаны результаты расчетов по формуле (11), где ряд по п суммировали до n = 30. В знаменателе записаны значения проекции скорости, полученные по приближенной формуле (17). Сравнение результатов расчета подтверждает удовлетворительную точность приближенного решения.
Таблица 1 - Значения u (y, H/2) в м/с
y / h |
0 |
0,2 |
0,4 |
0,6 |
0,8 |
|
u (y, H/2) при = 0 |
||||||
u (y, H/2) при = 10-2 м/с |
||||||
u (y, H/2) при = м/с |
В числителях в таблице 2 записаны значения max u, вычисленные по формуле (12) суммированием ряда до n = 30. В знаменателях указаны результаты, полученные по приближенной формуле (18).
Таблица 4 - Значения max u для разных
, м/с |
0 |
0,005 |
0,01 |
0,015 |
0,02 |
|
max u, м/с |
С увеличением возрастает погрешность приближенного решения, которое приводит к несколько завышенным результатам.
Заключение
1. Полученное приближенное замкнутое решение (17) краевой задачи позволяет определить среднюю скорость семян кукурузы на плоском вибрационном решете конечной ширины
2. Производительность решета по сходовой и проходовой фракциям находится соответственно по выражения (19) и (20).
Литература
1. Тищенко, Л. Н. Интенсификация сепарирования зерна / Л. Н. Тищенко // - Харьков: Основа, 2004. - 224 с.
2. Тищенко, Л. Н. О гидродинамической модели движения зерновой смеси по наклонному плоскому решету / Л.Н. Тищенко, В.П. Ольшанский, С.В. Ольшанский // - Полтава: Пол. НТУ, 2009. - Вып. 3(25), т. 1. - С. 205-213.
3. Тищенко, Л. Н. О колебаниях скорости неоднородного слоя зерновой смеси на плоском виброрешете / Л. Н. Тищенко, В. П. Ольшанский, С. В. Ольшанский // - Мелитополь: ТДАТУ, 2010. Вып. 10. т. 7. - С. 32-42.
4. Курасов, В. С. Механизация работ в селекции, сортоиспытании и первичном семеноводстве кукурузы: монография / В. С. Курасов, В. В. Куцеев, Е. Е. Самурганов; КубГАУ. - Краснодар, 2013. - 151 с. ISBN 978-5-94672-723-5
Размещено на Allbest.ru
Подобные документы
Подбор параметров сита для разделения смеси на фракции с содержанием в очищенном продукте 8-10% примеси. Определение конструктивных параметров измельчающего органа и рабочие режимы работы дробилки. Дозирование продукта в дробилку шнековым транспортером.
курсовая работа [1,3 M], добавлен 28.12.2021Технологическая схема колонны ректификационной установки, определение рабочего флегмового числа, скорости пара и размеров колпачков. Вычисление патрубков, штуцеров и гидравлического сопротивления устройства для разделения смеси ацетон-метиловый спирт.
курсовая работа [303,2 K], добавлен 23.04.2011Технологическая схема ректификационной установки для разделения смеси вода – уксусная кислота. Физико-химические характеристики продукта. Определение скорости пара и диаметра колонны. Технологический расчет аппарата. Физические свойства уксусной кислоты.
курсовая работа [3,2 M], добавлен 17.02.2015Формирование помольной смеси как метод стабилизации технологических свойств зерна. Требования, предъявляемые к составлению помольных смесей зерна. Расчет состава компонентов помольной смеси, характеристика каждой партии зерна пшеницы для ее составления.
контрольная работа [45,2 K], добавлен 07.05.2012Периодическая ректификация бинарных смесей. Непрерывно действующие ректификационные установки для разделения бинарных смесей. Расчет холодильника кубового остатка, высоты газожидкостного слоя жидкости. Определение скорости пара и диаметра колонны.
курсовая работа [8,3 M], добавлен 20.08.2011Расчет насадочной и тарельчатой ректификационных колонн для разделения смеси "вода – бензол": геометрические размеры - диаметр и высота. Принципиальная схема ректификационной установки. Определение нагрузок по пару и жидкости рабочим флегмовым числом.
курсовая работа [420,3 K], добавлен 28.01.2012Анализ средств автоматизации управления процессом сортового помола зерна в соответствии с технологией производства муки. Методы составления зерновой смеси одновременно по трем показателям качества: стекловидности, выходу сырой клейковины и зольности.
курсовая работа [148,5 K], добавлен 21.10.2014Проектирование ректификационной установки для непрерывного разделения смеси бензол-толуол под атмосферным давлением. Подробный расчет ректификационной колонны и парового подогревателя исходной смеси. Куб-испаритель, дефлегматор и холодильники остатка.
курсовая работа [223,7 K], добавлен 15.10.2011Особенности проектирования установки для непрерывной ректификации бинарной смеси метиловый спирт–вода с производительностью 12 т/ч по исходной смеси. Описание технологической схемы процесса, составление материального баланса, тепловой расчет дефлегматора.
курсовая работа [30,7 K], добавлен 17.05.2014Процесс ректификации. Технологическая схема ректификационной установки для разделения смеси диоксан–толуол. Расчет параметров дополнительных аппаратов для тарельчатой колонны. Выбор конструкционных материалов, расчет теплового и материального баланса.
курсовая работа [461,0 K], добавлен 30.11.2010