Исследование шумов и вибрации отрезных круглопильных станков

Зависимость звукового давления источников шума объекта исследования. Источники звуковой энергии: дисковая фреза и оправка. Пути снижения уровня звукового давления: увеличение звукопоглощения производственного помещения и уменьшение звукового давления.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 25.05.2017
Размер файла 39,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Исследование шумов и вибрации отрезных круглопильных станков

Расчет шума и звуковой вибрации рассматриваемого оборудования основан на главных положениях статистической теории акустики: акустический сигнал широкополосный, звуковое поле в производственном помещении диффузное, источники звука одновременно излучают звуковую энергию, акустическая мощность источников постоянная. Такие допущения позволяют получить достоверные результаты для практических целей, начиная с частоты со среднегеометрическим значением 125 Гц, т.е. начиная с третьей октавы.[1-12] Для металлорежущего оборудования превышение санитарных норм практически для всех типов станков наблюдается с четвертой октавы со среднегеометрической частоты 250 Гц.

Условия расположения станка в производственном помещении таковы, что габаритные размеры самого станка того же порядка, что и производственного помещения. Поэтому процесс шумообразования в рабочей зоне следует рассматривать для источников, расположенных в соразмерных помещениях. В этом случае зависимость для уровней шума приведена к виду:

, (2.1)

звуковой производственный фреза оправка

где Lp - уровни звукового давления источника шума, дБ;

r - расстояние от источника до рабочей зоны, м;

c--- коэффициент, учитывающий влияние ближнего звукового поля и принимаемый в зависимости от отношения расстояния между акустическим центром источника к линейному размеру источника;

B - постоянная помещения, 1/м2;

y - коэффициент, учитывающий нарушение диффузности звукового поля

при

при

S - площадь внутренней поверхности производственного помещения, м2.

,

- среднее значение коэффициента звукопоглощения помещения.

Для рассматриваемой планировки и компоновки станка выражение (2.1) приведено к виду:

. (2.2)

Практический расчет спектров шума основан на определении зависимостей звукового давления источников шума объекта исследования.

В акустической системе круглопильных станков звуковая энергия излучается следующими источниками: дисковой фрезой и оправкой. Поэтому звуковое давление в формуле (2.1) определяется по принципу энергетического суммирования:

, (2.3)

где L1 и L2 - уровни звукового давления, создаваемые фрезами и оправкой колесных пар (соответственно), дБ;

- количество фрез на оправке.

Несущая система рассматриваемого станка представляет собой конструкцию, обладающую значительной массой и виброустойчивостью. Кинематика станка достаточно проста и обеспечивает бесступенчатое изменение частот вращения 70-180 об/мин. Поэтому можно предположить, что звуковым излучением несущей системы можно пренебречь. Вместе с тем при величинах глубины резания до 8 мм возникают значительные технологические нагрузки. Поэтому в качестве доминирующих источников шума следует выделить технологическую подсистему «фреза - оправка», обладающие немного меньшей жесткостью, чем несущая система станка и непосредственно воспринимающие силы резания при фрезеровании.

С учетом выполнения санитарных норм шума зависимость (2.1) приведена к следующему виду:

, (2.4)

где - средний коэффициент звукопоглощения производственного помещения;

S - площадь поверхности производственного помещения, м2;

Lc - предельно-допустимые октавные уровни звукового давления, дБ.

Таким образом, снизить уровни звукового давления практически можно двумя способами: увеличением звукопоглощения производственного помещения и (или) уменьшением звукового давления, самого источника шума. В данной работе обоснован второй способ - уменьшение интенсивности звукового излучения источника.

Моделью источника шума дисковой фрезы принята круглая пластина, защемленная в центре. Звуковое давление (Р) и собственные частоты колебаний (fk) для такого источника определяются следующими зависимостями.

Для выбранного типа излучателя звука на основе работ [2- 14] зависимость для расчета звукового давления фрезы определяется следующим образом:

, (2.5)

где Vk - скорость колебаний колеса на собственных частотах, м/с; D - диаметр, м;

Е - модуль упругости, Па;

h - толщина, м;

m - коэффициент Пуассона;

r - плотность материала, кг/м3.

Для оправки в качестве источника шума принят цилиндр ограниченной длины. Поскольку источники, излучающие звук в замкнутое пространство, рассматриваются как ненаправленные, то звуковое давление и собственные частоты колебаний таких источников определяются следующими выражениями на основе работ [2-14]:

- для условий шарнирного закрепления

; , (2.6)

где l - длина источника, м;

J - момент инерции, м4;

m0 - распределенная масса, кг/м;

k - коэффициент, определяющий собственную частоту колебаний;

- для условий жесткого закрепления:

. (2.7)

Для стальных фрезы и оправки зависимости звукового давления и собственные частоты колебаний приведены к следующему виду:

фреза:

; (2.8)

оправка:

- для условий шарнирного закрепления:

; (2.9)

- для условий жесткого закрепления:

, (2.10)

где М - масса, кг.

На этой основе определены уровни звукового давления источников

фреза:

; (2.11)

оправка:

- для условий шарнирного закрепления:

; (2.12)

- для условий жесткого закрепления:

. (2.13)

Как видно из полученных зависимостей для расчета спектров шума необходимо определить скорости колебаний соответствующих источников на их собственных частотах колебаний.[10-22]

Список литературы

1. Проектирование металлорежущих станков / ShinnoHidenori, HashisumeHitoshi//Nohonkikaigakkaironbunshu/ C-Trans. Jap. Soc. Mech. Eng. C. -1999. -№636. - С. 399-405.

2. Защитное устройство станка. Safetysecuringdevice: Заявка 0665405 А1 ЕВП, МКИ F 16 Р 3/08/Sugimotonoboru, TheNipoonsignalCo/LTD, Yamataka&Co. -Ltd. # 93913483.7; Заявл. 4.6.93; Опубл. 2.8.95.

3. Ограждение станка. Fatlenbald, insbesondereFalwand: Заявка 4437766 Германия, МКИ F 16 J 3/04/ bunselmeyer Dieter; Moller WerkeGmbh.-№ 4437766/5; Заявл. 24.10.94; Опубл. 25.4.96.

4. Защитные экраны многоцелевых станков. Protectiveshield // Mod. Mach. Shop. -1998. -71, -№5. - 257 с.

5. Шумозащитные устройства. OffenZellen// Production. -1997, №38. - С. 20.

6. Чукарин А.Н. Теория и методы акустических расчетов и проектирования технологических машин для механической обработки // А.Н. Чукарин. - Ростов н/Д: Издательский центр ДГТУ, 2005. - 152 с.

7. Чукарин А.Н., Каганов В.С. Звукоизлучение заготовки при токарной обработке // Борьба с шумом и звуковой вибрацией. -М., 1993. - С. 21-24.

8. Заверняев Б.Г., Попов Р.В., Чукарин А.Н. Влияние режимов резания на виброакустические характеристики металлорежущих станков // XI Всесоюзная акустическая конференция: Аннотация докл. -М., 1991. - С. 49.

9. Чукарин А.Н. Акустическая модель системы деталь-инструмент при токарной обработке // Надёжность и эффективность станочных и инструментальных систем. -Ростов н/Д, 1993. - С. 19-28.

10. Балыков И.А., Чукарин А.Н., Евсеев Д.З. Влияние процессов резания на шум фрезерных станков // Новое в безопасности и жизнедеятельности и экологии: Сб. ст. докл. конф., Санкт-Петербург 14-16 октября. -Санкт-Петербург, 1996. - С. 222-223.

11. Балыков И.А. О расчёте шума, излучаемого заготовкой при фрезеровании / Донской гос. тех. ун-т. -Ростов-н/Д, 1996. -Деп. в ВИНИТИ 16.08.96, № 2687-В96.

12. Чукарин А.Н., Балыков И.А. Экспериментальные исследования шума и вибрации фрезерных станков / Донской гос. тех. ун-т. -Ростов-н/Д, Деп. в ВИНИТИ 16.08.96, № 2687-В96.

13. Гергерт В.А., Месхи Б.Ч. Математическое моделирование шумообразования системы инструмент-заготовка при фрезеровании и шлифовании // Строительство - 2003: Материалы Междунар. науч.-практ. конф. / РГСУ. -Ростов н/Д, 2003. - С. 50-57.

14. Замшин В.А. Математическое моделирование шумообразования системы "заготовка-инструмент" заточных станков / В.А. Замшин, Г.Ю. Виноградова, А.Н. Чукарин // Вестник Ростовского государственного университета путей сообщения. -2006. -№3. -С.112-118.

15. Литвинов А.Е., Чукарин А.Н., Корниенко В.Г. Экспериментальные исследования шумов и вибрации на ленточнопильных станках. Политематический сетевой электронный научный журнал КубГАУ.-2011.-№69(05)

16. Литвинов А.Е., Сухоносов Н.И., Корниенко В.Г. Ленточно-отрезной станок (патент) № 2548853  МПК B23D 55/08 (2006.01) по заявке № 2013154955/02 от 10.12.2013.

17. Litvinov A.E. Improving tool life and machining precision in band saws. Russian engineering research 2016 г. № 9 с.761-760

18. Литвинов А.Е. Некоторые аспекты шумообразования отрезных ленточнопильных станков. Сборник статей студентов, аспирантов, молодых ученых и преподавателей международной конференции "Векторы развития науки" 2015 г. с 74-75 

19. Литвинов А.Е. Методика расчета ленточной пилы на прочность и усилия натяжения для обеспечения устойчивости резания//Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) №9(113)2015 г 

20. Литвинов А.Е. Оценка влияния резонансной частоты колебаний системы “пила-направляющая пилы” на процесс резания ленточными пилами//Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ)№2(96)2014 г.

21. Литвинов А.Е. Технические решения по повышению стойкости режущего инструмента и улучшению эксплуатационных свойств ленточнопильных металлорежущих станков/А.Е. Литвинов, В.Г, Корниенко//Сборник международной конференции "Современное состояние и перспективы развития технических наук" 2014 г. с 49-51

22. Литвинов А.Е. Износ и производительность, как основные факторы, влияющие на процесс резания на ленточнопильных станках//Современные проблемы науки и образования № 6, 2013 г. С. 42

Размещено на Allbest.ru


Подобные документы

  • Понятие давления как физической величины. Типы, особенности устройства датчиков давления: упругие, электрические преобразователи, датчики дифференциального давления, датчики давления вакуума. Датчики давления, основанные на принципе магнетосопротивления.

    реферат [911,5 K], добавлен 04.10.2015

  • Пакет Flow Simulation программы Solidworks 2012. Моделирование аэродинамической трубы на примере ПВД, получение эпюр распределения давления. Распределение давления вблизи корпуса. Динамическое давление внутри трубки Пито. Приемник статического давления.

    курсовая работа [1,3 M], добавлен 29.05.2014

  • Регулирование и контроль давления пара в паровой магистрали для качественной работы конвейера твердения. Стабилизация давления с помощью первичного преобразователя датчика давления Метран-100Ди. Выбор регулирующего устройства, средств автоматизации.

    курсовая работа [318,8 K], добавлен 09.11.2010

  • Исследование видов и единиц измерения давления жидкой или газообразной среды. Изучение классификации манометров. Описания жидкостных приборов. Обзор действия пьезоэлектрических манометров. Установка и использование измерительных преобразователей давления.

    презентация [1,5 M], добавлен 22.07.2015

  • Общее описание приборов. Измерение давления. Классификация приборов давления. Особенности эксплуатации Индивидуальное задание. Преобразователь давления Сапфир-22-Еx-М-ДД. Назначение. Устройство и принцип работы преобразователя. Настройка прибора.

    практическая работа [25,4 K], добавлен 05.10.2008

  • Годовое потребление газа на различные нужды. Расчетные перепады давления для всей сети низкого давления, для распределительных сетей, абонентских ответвлений и внутридомовых газопроводов. Гидравлический расчет сетей высокого давления, параметры потерь.

    курсовая работа [226,8 K], добавлен 15.12.2010

  • Характеристика геологического строения эксплуатационного объекта. Анализ и контроль текущего состояния разработки. Анализ состояния системы поддержания пластового давления. Расчет потерь давления в трубопроводе и скважине. Охрана труда и природы.

    дипломная работа [660,3 K], добавлен 14.06.2010

  • Проектирование автоматизированной системы для стабилизации давления сокового пара корпусов I и II выпарной станции. Описание используемых средств: Контроль температуры, давления, уровня. Исследование структуры и схемы системы автоматизации, компоненты.

    курсовая работа [398,2 K], добавлен 16.03.2016

  • Определение давления в гидроцилиндре. Вычисление диаметра, штока поршня и длины его хода. Потери давления в гидросистеме по всасывающей, нагнетательной и сливной линии. Потери давления из-за местных сопротивлений и установки гидроарматуры в трубопроводах.

    курсовая работа [1,3 M], добавлен 04.05.2014

  • Общие принципы измерения расхода методом переменного перепада давления, расчет и выбор сужающего устройства и дифференциального манометра; требования, предъявляемые к ним. Зависимость изменения диапазона объемного расхода среды от перепада давления.

    курсовая работа [871,6 K], добавлен 04.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.